JPH0552716U - Earth observation device - Google Patents

Earth observation device

Info

Publication number
JPH0552716U
JPH0552716U JP10302991U JP10302991U JPH0552716U JP H0552716 U JPH0552716 U JP H0552716U JP 10302991 U JP10302991 U JP 10302991U JP 10302991 U JP10302991 U JP 10302991U JP H0552716 U JPH0552716 U JP H0552716U
Authority
JP
Japan
Prior art keywords
sensor
target
image
wide area
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302991U
Other languages
Japanese (ja)
Inventor
薫 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10302991U priority Critical patent/JPH0552716U/en
Publication of JPH0552716U publication Critical patent/JPH0552716U/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Navigation (AREA)
  • Image Processing (AREA)

Abstract

(57)【要約】 【目的】 同一人工衛星に広域センサと高分解能センサ
を搭載し、広域センサで広範囲な画像を取得しながら、
高分解能画像が必要な観測域を自動的に撮影することを
目的とした地球観測装置。 【構成】 人工衛星の進行方向前方を観測する広域セン
サ6と、広域センサ画像データで高分解能画像が必要な
観測域を判定し高分解能センサ9に撮影タイミング信号
と、可動装置8に可動信号を生成する演算装置7で構成
する。
(57) [Summary] [Purpose] A wide area sensor and a high resolution sensor are mounted on the same artificial satellite, and while acquiring a wide area image with the wide area sensor,
An earth observation device aimed at automatically capturing observation areas that require high-resolution images. [Structure] A wide area sensor 6 for observing the forward direction of a satellite is determined, and an observation area for which a high resolution image is required is determined from wide area sensor image data, and a high timing image signal is sent to a high resolution sensor 9 and a movable signal is sent to a movable device 8. It is composed of a calculation device 7 for generation.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial application]

この考案は、人工衛星に複数の地球観測センサを搭載して、地球の画像を取得 する装置に関するものである。 The present invention relates to a device for acquiring an image of the earth by mounting a plurality of earth observation sensors on an artificial satellite.

【0002】[0002]

【従来の技術】[Prior Art]

従来より地球を広範囲に観測する有効な手段として人工衛星を利用することが 行われている。図4は例えば、日本の観測衛星「もも」或いは米国の観測衛星「 LANDSAT」といった従来の人工衛星を利用して地球の画像を取得する装置 を示すもので、図において、1は地球、2は軌道を周回する人工衛星、3は取得 した画像データを地上に伝送するための画像データ伝送装置、4は地球の画像を 撮影する観測センサ、5は人工衛星の進行方向を示す矢印である。なお、図4で は、人工衛星を構成する他の装置もあるが、この考案の説明には直接関係がない ので省略してある。 Conventionally, artificial satellites have been used as an effective means for observing the earth over a wide area. FIG. 4 shows an apparatus for acquiring an image of the earth using a conventional artificial satellite such as the Japanese observation satellite "Momo" or the US observation satellite "LANDSAT". Is an orbiting satellite, 3 is an image data transmission device for transmitting the acquired image data to the ground, 4 is an observation sensor for capturing an image of the earth, and 5 is an arrow indicating the direction of travel of the satellite. It should be noted that, in FIG. 4, there are other devices constituting the artificial satellite, but they are omitted because they are not directly related to the description of the present invention.

【0003】 次に動作について説明する。従来の地球観測装置において地球の画像を取得す るには、予め、選定した軌道に人工衛星2を周回させて、人工衛星2の軌跡に沿 って観測センサ4の走査幅(観測センサの人工衛星進行方向に直交する地表面の 視野幅)分の画像を撮影し、その画像データを画像データ伝送装置3によって地 上に伝送する。この地球観測装置で高い分解能画像を取得しようとすると、分解 能に反比例して走査幅が狭くなる関係にあり、例えばLANDSATに搭載して いる観測センサのセマティックマッパは分解能が30mで走査幅が185Kmで あるが、高分解能化し、分解能を30cmにすると走査幅は1.85Kmになる 。ただし観測センサの設計に依存するので、走査幅は厳密には反比例にはならな いが、この考案に直接関係しないので説明を省略する。Next, the operation will be described. In order to acquire an image of the earth in a conventional earth observation device, the artificial satellite 2 is orbited in advance in a selected orbit, and the scanning width of the observation sensor 4 along the trajectory of the artificial satellite 2 (observation sensor artificial An image corresponding to the visual field width of the ground surface orthogonal to the satellite traveling direction is taken, and the image data is transmitted to the ground by the image data transmission device 3. When trying to acquire a high resolution image with this earth observation device, there is a relationship that the scanning width becomes narrower in inverse proportion to the resolution. For example, the observation sensor's thematic mapper installed in LANDSAT has a resolution of 30 m and a scanning width of Although it is 185 Km, if the resolution is increased to 30 cm, the scanning width becomes 1.85 Km. However, the scanning width is not strictly inversely proportional because it depends on the design of the observation sensor, but the description is omitted because it is not directly related to the present invention.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

従来の地球観測装置は以上のように構成されているので、必要となる観測域の 高分解能画像を取得するには走査幅が狭すぎて実用化が極めて困難であった。又 必要な観測域が予め分かっている場合に、地上から人工衛星の地球観測装置に観 測域位置を指令し観測センサ4を高分解能にして、視野の方向を可動できる装置 を付加し高分解能画像を取得することも考えられるが、観測センサ4の指向精度 が試算すると、0.01゜程度で搭載する人工衛星2の姿勢制御精度及び軌道制 御精度と併せ実現が難しいなどの課題があった。 Since the conventional earth observation device is configured as described above, it was extremely difficult to put it into practical use because the scanning width was too narrow to acquire a high resolution image of the required observation area. When the required observation area is known in advance, the observation area position is commanded from the ground to the earth observation device of the artificial satellite, the observation sensor 4 is set to high resolution, and a device that can move the direction of the field of view is added to achieve high resolution. Although it may be possible to obtain images, when the pointing accuracy of the observation sensor 4 is estimated, there are problems such as difficulty in achieving the attitude control accuracy and orbit control accuracy of the satellite 2 installed at about 0.01 °. It was

【0005】 この考案は上記のような課題を解消するためになされたもので、必要な観測域 の高分解能画像が取得できる地球観測装置を得ることを目的とする。The present invention has been made to solve the above problems, and an object thereof is to obtain an earth observation apparatus capable of acquiring a high resolution image of a necessary observation area.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

この考案に係る地球観測装置は、広域センサと高分解能センサを同一人工衛星 に搭載し、人工衛星の進行方向に対して前方を広域センサで観測し、付加する演 算装置で高分解能画像の取得が必要な位置を判定し、高分解能センサを付加する 可動装置で視野方向を変えて高分解能画像を取得するようにしたものである。 The earth observing device according to the present invention is equipped with a wide area sensor and a high resolution sensor on the same artificial satellite, observes the area ahead of the direction of travel of the artificial satellite with a wide area sensor, and acquires high resolution images with an additional computing device. It determines the required position and adds a high-resolution sensor. The movable device changes the field of view to acquire a high-resolution image.

【0007】[0007]

【作用】[Action]

この考案における地球観測装置では、広域センサが取得した広域画像データを 順次に予め記憶した目標識別パラメータと照合し、高分解能撮影が必要と判定し たら広域画像データの照合画素番地から観測位置を演算し対応する可動信号と撮 影タイミング信号によって高分解能センサの視野方向を変えて必要な観測域の高 分解能画像を取得できる。 In the earth observation device according to this invention, the wide area image data acquired by the wide area sensor is sequentially compared with the target identification parameter stored in advance, and when it is determined that high resolution imaging is necessary, the observation position is calculated from the collation pixel address of the wide area image data. Then, the direction of view of the high-resolution sensor can be changed by the corresponding movable signal and imaging timing signal to obtain a high-resolution image of the required observation area.

【0008】[0008]

【実施例】【Example】

実施例1. 以下、この考案の一実施例を図について説明する。図1において1〜5は上記 従来装置と同一のものである。6は人工衛星進行方向5の前方の広域観測を行う 広域センサ、7は高分解能観測を行う高分解能センサ、8は高分解能センサの視 野の方向を変える可動装置、9は広域センサ6の画像データから高分解能画像が 必要な域を判定し高分解能センサ7の撮影タイミングと視野の方向を変える可動 装置8の向きを演算しそれぞれの信号を生成する演算装置である。 Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 to 5 are the same as those of the conventional device. 6 is a wide area sensor that performs wide area observation in front of the satellite traveling direction 5, 7 is a high resolution sensor that performs high resolution observation, 8 is a movable device that changes the direction of the visual field of the high resolution sensor, and 9 is an image of the wide area sensor 6. It is an arithmetic unit that determines a region where a high-resolution image is required from data, calculates the image capturing timing of the high-resolution sensor 7 and the direction of the movable unit 8 that changes the direction of the visual field, and generates respective signals.

【0009】 図2はこの考案の実施例の概念図で、10は広域センサ6で走査した観測域と 画素を示したもの、11は走査幅を示す矢印、12は人工衛星2の進行方向の走 査方向を示す矢印、13は高分解能画像が必要な目標識別域、14は高分解能セ ンサ9の視野の方向を変える可動を示す矢印である。FIG. 2 is a conceptual diagram of an embodiment of the present invention, in which 10 is an observation area and pixels scanned by the wide area sensor 6, 11 is an arrow indicating a scanning width, and 12 is a traveling direction of the artificial satellite 2. An arrow indicating the scanning direction, 13 is a target identification area for which a high-resolution image is required, and 14 is an arrow indicating the movement of the high-resolution sensor 9 to change the direction of the visual field.

【0010】 図3は演算装置7の動作を示すフローチャートで、15は広域センサ6の画像 データの入力部、16は広域センサ画像データを処理する画像処理部、17は人 工衛星2の姿勢信号、18は広域センサで取得した画像で高分解能画像が必要な 域を識別する目標識別部、19は高分解能画像が必要と判定する部、20は目標 識別域から高分解能センサ9の撮影タイミングと高分解能センサ9の視野方向を 変える可動角度を演算する幾何変換演算部、21は高分解能センサ9の撮影タイ ミング信号生成部、22は可動装置8への可動信号生成部である。FIG. 3 is a flowchart showing the operation of the arithmetic unit 7. Reference numeral 15 is an image data input section of the wide area sensor 6, 16 is an image processing section for processing the wide area sensor image data, and 17 is an attitude signal of the artificial satellite 2. Reference numeral 18 denotes a target discriminating unit for discriminating an area where a high resolution image is required in an image acquired by a wide area sensor, 19 is a portion for discriminating a high resolution image is required, and 20 is a photographing timing of the high resolution sensor 9 from the target discriminating area. A geometric conversion calculation unit for calculating a movable angle for changing the visual field direction of the high resolution sensor 9, 21 is a photographing timing signal generation unit of the high resolution sensor 9, and 22 is a movement signal generation unit for the movable device 8.

【0011】 上記の実施例において、人工衛星2に進行方向5の前方に向けて配置した広域 センサ3で広域画像を撮影し、その画像データを演算装置7に入力する。演算装 置は図3に示すように目標識別部18で広域画像データを順次に予め記憶した目 標識別パラメータと照合し、判定部19で高分解能撮影が必要と判定したら、幾 何変換演算部20で演算を行う。この間に画像データを処理する画像処理部16 があるが、この考案と直接関係が無いので省略する。幾何変換演算部20におい ては図2に示すように広域センサ画像の画素番地を走査幅11と走査方向12に 対応した高分解能センサ9の可動角度と撮影タイミングを演算し、可動信号生成 部22で可動角度演算データから可動信号を生成し、撮影タイミング信号生成部 21で撮影タイミング演算データから撮影タイミング信号を生成する。可動装置 8に可動信号を入力し作動させ、高分解能センサ9の視野を目標識別域になるよ うに指向させる。人工衛星が目標識別域に位置したところで高分解能センサが撮 影タイミング信号によって作動し、高分解能画像を撮影する。広域画像データ及 び高分解能画像データは画像データ伝送装置3で地上に伝送される。In the above-described embodiment, a wide area image is taken by the wide area sensor 3 arranged on the artificial satellite 2 toward the front in the traveling direction 5, and the image data is input to the arithmetic unit 7. As shown in FIG. 3, the calculation device sequentially compares the wide area image data with the target parameter stored in advance in the target identification unit 18, and if the determination unit 19 determines that high resolution imaging is required, the conversion unit Calculation is performed at 20. There is an image processing unit 16 for processing image data in the meantime, but it is omitted because it is not directly related to the present invention. As shown in FIG. 2, the geometric transformation calculation unit 20 calculates the movable angle and the photographing timing of the high resolution sensor 9 corresponding to the scanning address 11 and the scanning direction 12 at the pixel address of the wide area sensor image, and the movable signal generation unit 22. A movable signal is generated from the movable angle calculation data, and a photographing timing signal is generated from the photographing timing signal generation unit 21 from the photographing timing calculation data. A movable signal is input to the movable device 8 to operate it, and the field of view of the high-resolution sensor 9 is directed so as to be in the target discrimination region. When the artificial satellite is located in the target discrimination area, the high-resolution sensor is activated by the imaging timing signal to capture a high-resolution image. The wide area image data and the high resolution image data are transmitted to the ground by the image data transmission device 3.

【0012】 実施例2. 上記実施例1では目標識別部18において予め記憶した目標識別パラメータと 照合して高分解能画像が必要な目標識別域13を判定しているが、本実施例では 広域センサ3を多スペクトルバンド光学センサにして、目標識別部18に目標識 別のためのスペクトルとレベル及び複数のスペクトルの組合せを記憶させて前記 多バンドスペクトル光学センサ画像データを照合して目標識別域13を判定する 地球観測装置とした。Example 2. In the first embodiment, the target discriminating unit 18 determines the target discriminating area 13 for which a high resolution image is required by collating with the target discriminating parameter stored in advance, but in the present embodiment, the wide area sensor 3 is used as a multi-spectral band optical sensor. Then, the target discriminating unit 18 is made to store a spectrum and a level for eye marker discrimination and a combination of a plurality of spectra, and the multiband spectral optical sensor image data is collated to judge the target discriminating area 13. did.

【0013】 実施例3. 上記実施例1において、本実施例では広域センサ3を光学センサにして目標識 別部18に目標識別のための2次元パターンを記憶させて前記光学センサの2次 元画像と照合させるものとして同様の動作を行うようにした。Example 3. In the first embodiment, the wide area sensor 3 is used as an optical sensor in the present embodiment, and a two-dimensional pattern for target identification is stored in the eye mark identifying unit 18 and is compared with the secondary image of the optical sensor. I made it work.

【0014】 実施例4. 上記実施例1において、本実施例では広域センサ3をマイクロ波レーダにして 目標識別部に目標識別のために2次元パターンを記憶させて前記マイクロ波レー ダの2次元画像と照合させるものとして同様の動作を行うようにした。Example 4. In the first embodiment, the same applies to the case where the wide area sensor 3 is a microwave radar in the present embodiment and a two-dimensional pattern is stored in the target identifying section for target identification and collated with the two-dimensional image of the microwave radar. I made it work.

【0015】 実施例5. 上記実施例1において、本実施例では広域センサ3をマイクロ波レーダにして 目標識別部に目標識別のためにマイクロ波レーダの反射レベルを記憶させ、前記 マイクロ波レーダの画像データと照合させるものとして同様の動作を行うように した。Example 5. In the first embodiment, in this embodiment, the wide area sensor 3 is used as a microwave radar, and the target discriminating unit stores the reflection level of the microwave radar for target discrimination, and collates it with the image data of the microwave radar. The same operation was performed.

【0016】[0016]

【考案の効果】[Effect of the device]

以上のように、この考案によれば、人工衛星の進行前方を広域センサで観測し 、その中の目標識別域を自動的に判定し、必要な領域の高分解能画像を高分解能 センサで取得するように構成したので、走査幅が狭いが高い分解能であるセンサ を用いることができ、更に従来の地球観測装置の人工衛星では姿勢変動及び軌道 変動によって観測センサの視野方向が変化し、観測位置がずれることが問題にな っていたが、この地球観測装置では高分解能センサと広域センサの視野方向の相 対精度だけが観測位置のずれの主因となるため、上記問題が回避できる効果があ る。 As described above, according to the present invention, the forward direction of the artificial satellite is observed by the wide area sensor, the target identification area in it is automatically determined, and the high resolution image of the necessary area is acquired by the high resolution sensor. With this configuration, it is possible to use a sensor with a narrow scanning width but high resolution.In addition, in the conventional satellite of the earth observation device, the view direction of the observation sensor changes due to attitude changes and orbit changes, and the observation position is changed. Although there was a problem of misalignment, this earth observation device has the effect of avoiding the above problem because only the relative accuracy of the high-resolution sensor and the wide-area sensor in the direction of the field of view is the main cause of the displacement of the observation position. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例による地球観測装置を示す
ブロック図である。
FIG. 1 is a block diagram showing an earth observation apparatus according to an embodiment of the present invention.

【図2】この考案の一実施例の概念図である。FIG. 2 is a conceptual diagram of an embodiment of the present invention.

【図3】この考案の一実施例による演算装置のフローチ
ャートである。
FIG. 3 is a flowchart of an arithmetic unit according to an embodiment of the present invention.

【図4】従来の地球観測装置を示すブロック図である。FIG. 4 is a block diagram showing a conventional earth observation device.

【符号の説明】[Explanation of symbols]

1 地球 2 人工衛星 3 画像データ伝送装置 4 観測センサ 5 人工衛星の進行方向を示す矢印 6 広域センサ 7 演算装置 8 可動装置 9 高分解能センサ 10 観測域と画素 11 走査幅を示す矢印 12 走査方向を示す矢印 13 目標識別域 14 可動を示す矢印 15 入力部 16 画像処理部 17 人工衛星姿勢信号 18 目標識別部 19 判定部 20 幾何変換演算部 21 撮影タイミング信号生成部 22 可動信号生成部 1 Earth 2 Artificial satellite 3 Image data transmission device 4 Observation sensor 5 Arrow indicating the direction of travel of artificial satellite 6 Wide area sensor 7 Computing device 8 Mobile device 9 High resolution sensor 10 Observation area and pixel 11 Arrow indicating scanning width 12 Scanning direction Shown arrow 13 Target identification area 14 Arrow indicating movement 15 Input section 16 Image processing section 17 Artificial satellite attitude signal 18 Target identification section 19 Judgment section 20 Geometric transformation calculation section 21 Imaging timing signal generation section 22 Movable signal generation section

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 人工衛星に複数の地球観測センサを搭載
し、地表面の画像を取得する地球観測装置において、人
工衛星に広域を走査し、画像を取得する広域センサと、
高い分解能画像を取得する高分解能センサと、高分解能
センサの視野方向を可動する可動装置と、可動装置に可
動信号を与える演算装置を備え、前記広域センサの視野
が人工衛星の進行方向の前方になるよう配置し、広域セ
ンサが取得した画像データを前記演算装置に入力して、
前記演算装置に予め記憶した目標識別パラメータによっ
て、前記画像データを照合し、目標識別した前記画像デ
ータの画素番地に対応する視野目標位置を演算し、前記
可動装置に視野目標位置の可動信号を入力して、人工衛
星の直下域から進行方向の後方に向けて配置した前記高
分解能センサを目標域に指向させ高分解能画像を取得す
ることを特徴とした地球観測装置。
1. An earth observation apparatus for mounting an earth observation sensor on an artificial satellite to acquire an image of the ground surface, and a wide area sensor for scanning an artificial satellite over a wide area to acquire an image,
A high-resolution sensor that acquires a high-resolution image, a movable device that moves the visual field direction of the high-resolution sensor, and an arithmetic device that gives a movable signal to the movable device are provided, and the visual field of the wide-area sensor is in front of the traveling direction of the artificial satellite. The image data acquired by the wide area sensor is input to the arithmetic unit,
The image data is collated by the target identification parameter stored in advance in the arithmetic unit, the visual field target position corresponding to the pixel address of the target identified image data is calculated, and the movable signal of the visual field target position is input to the movable device. The earth observation apparatus is characterized in that the high resolution sensor arranged from the area directly below the artificial satellite toward the rear in the traveling direction is directed to the target area to acquire a high resolution image.
【請求項2】 請求項1記載の装置において、前記広域
センサを多スペクトルバンド光学センサとして、前記演
算装置に目標を識別するためのスペクトルとレベル及び
複数のスペクトルの組合せを目標識別パラメータとして
記憶させ、前記多スペクトルバンド光学センサの画像デ
ータと照合して、目標対象域を判定し目標域の高分解能
画像を取得することを特徴とした地球観測装置。
2. The apparatus according to claim 1, wherein the wide area sensor is a multi-spectral band optical sensor, and the arithmetic unit stores a spectrum and a level for identifying a target and a combination of a plurality of spectra as a target identification parameter. An earth observing device, characterized in that the target area of interest is determined and a high-resolution image of the target area is acquired by collating with the image data of the multispectral band optical sensor.
【請求項3】 請求項1記載の装置において、前記広域
センサを光学センサ又はマイクロ波レーダとし、光学セ
ンサの画像データ又はマイクロ波レーダのデータを前記
演算装置に入力し2次元画像を生成して、前記演算装置
に目標を識別するための2次元パターンを目標識別パラ
メータとして記憶させ、前記光学センサの2次元画像と
照合して、目標対象域を判定し目標域の高分解能画像を
取得することを特徴とした地球観測装置。
3. The apparatus according to claim 1, wherein the wide area sensor is an optical sensor or a microwave radar, and image data of the optical sensor or data of the microwave radar is input to the arithmetic unit to generate a two-dimensional image. Storing a two-dimensional pattern for identifying a target in the arithmetic device as a target identification parameter, collating with a two-dimensional image of the optical sensor to determine a target target area and acquiring a high resolution image of the target area. Earth observation device featuring.
【請求項4】 前記演算装置に目標を識別するためのマ
イクロ波レーダの反射レベルを目標識別パラメータとし
て記憶させ、前記マイクロ波レーダのデータと照合し
て、目標対象域を判定し目標域の高分解能画像を取得す
ることを特徴とした地球観測装置。
4. A reflection level of a microwave radar for identifying a target is stored as a target identification parameter in the arithmetic unit, and is compared with data of the microwave radar to determine a target target area to determine a target area height. Earth observation device characterized by acquiring high resolution images.
JP10302991U 1991-12-13 1991-12-13 Earth observation device Pending JPH0552716U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302991U JPH0552716U (en) 1991-12-13 1991-12-13 Earth observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302991U JPH0552716U (en) 1991-12-13 1991-12-13 Earth observation device

Publications (1)

Publication Number Publication Date
JPH0552716U true JPH0552716U (en) 1993-07-13

Family

ID=14343227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302991U Pending JPH0552716U (en) 1991-12-13 1991-12-13 Earth observation device

Country Status (1)

Country Link
JP (1) JPH0552716U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122199A (en) * 1999-10-28 2001-05-08 Mitsubishi Electric Corp On-satellite image pickup device
JP2011183911A (en) * 2010-03-08 2011-09-22 Fujitsu Ltd Observation plan device, observation plan method, and observation plan program
JP2013518246A (en) * 2010-01-25 2013-05-20 オズクル タリック Autonomous decision system for observation satellite to select target

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122199A (en) * 1999-10-28 2001-05-08 Mitsubishi Electric Corp On-satellite image pickup device
JP2013518246A (en) * 2010-01-25 2013-05-20 オズクル タリック Autonomous decision system for observation satellite to select target
JP2011183911A (en) * 2010-03-08 2011-09-22 Fujitsu Ltd Observation plan device, observation plan method, and observation plan program

Similar Documents

Publication Publication Date Title
JP6931096B2 (en) Methods and devices for calibrating external parameters of onboard sensors, and related vehicles
CN109313031B (en) Vehicle-mounted processing device
AU2015234395B2 (en) Real-time range map generation
CN112017251B (en) Calibration method and device, road side equipment and computer readable storage medium
JP3561473B2 (en) Object position tracking / detection method and vehicle
JP4181800B2 (en) Topographic measurement system, storage medium, and program using stereo image
EP3361446B1 (en) Imu-aided image registration
JP5160370B2 (en) Autonomous mobile robot device, mobile body steering assist device, autonomous mobile robot device control method, and mobile body steering assist method
CN108537885B (en) Method for acquiring three-dimensional topographic data of mountain wound surface
JP2011080845A (en) Method and apparatus for creating three-dimensional data
WO2005085896A1 (en) Passive positioning sensors
EP3193136A1 (en) Method and system for geometric referencing of multi-spectral data
Konecny et al. Reliability of radar image data
JPH0552716U (en) Earth observation device
WO2017047873A1 (en) Scanning method using high-speed scanning apparatus
JP4116116B2 (en) Ranging origin recognition device for moving objects
KR101409802B1 (en) System for analysis space information using three dimensions 3d scanner
WO2004081598A2 (en) An active electro-optical device for detecting obstacles, in particular for autonomous navigation
JPH10512953A (en) Optical range and speed detection system
US11580690B1 (en) Horizon-based navigation
Meng et al. The research of TDI-CCDs imagery stitching using information mending algorithm
JPH1141521A (en) Image pickup device, instrument and method for measuring distance between vehicles
JP4412799B2 (en) Aircraft aiming point calculation apparatus and method
JP2000231637A (en) Image monitor device
Collins et al. Targeting for future weapon systems