JPH0552714A - Dynamic diagnosing method for structure by fluctuation analysis - Google Patents
Dynamic diagnosing method for structure by fluctuation analysisInfo
- Publication number
- JPH0552714A JPH0552714A JP23885091A JP23885091A JPH0552714A JP H0552714 A JPH0552714 A JP H0552714A JP 23885091 A JP23885091 A JP 23885091A JP 23885091 A JP23885091 A JP 23885091A JP H0552714 A JPH0552714 A JP H0552714A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- fluctuation
- state
- reflected light
- building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は静止状態ないし運動状態
にある構造体(橋梁、ビルディングなどの建造物や発電
機、エンジンなどの機械、装置類を含む総称)の動態を
診断する方法に関し、詳しく言うと、構造体の外部から
この構造体に光ビームを当て、その反射光を測定し、こ
の測定によって得られたデータを解析することによって
当該構造体の動態が正常であるか異常であるかを診断す
る構造体の動態診断法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing a dynamic state of a structure (a generic name including structures such as bridges and buildings and generators, machines such as engines, and devices) in a stationary state or a motion state, In detail, by shining a light beam on the structure from outside the structure, measuring the reflected light, and analyzing the data obtained by this measurement, the dynamics of the structure are normal or abnormal. The present invention relates to a method of diagnosing the dynamics of a structure for diagnosing whether or not it is.
【0002】[0002]
【従来の技術】ビルディングや橋梁などの静止状態にあ
る構造体は近来巨大化し、その安全性を診断することが
安全管理・危険予測の面で極めて重要な課題となってき
た。この安全性の診断には、特に、その構造体が風力や
地震などの外力に対してどのように応答するかを計測す
ることが重要である。現在そのための計測に多大の努力
が払われているが、これらの努力の対象はおおむね局部
的応答の計測であり、従って、構造体全体の動態が正常
であるか否かの診断はできない。2. Description of the Related Art Structures in a stationary state such as buildings and bridges have recently become huge, and diagnosing their safety has become an extremely important issue in terms of safety management and risk prediction. For this safety diagnosis, it is particularly important to measure how the structure responds to external forces such as wind and earthquake. Although much effort is currently being made on measurement for that purpose, the target of these efforts is mostly measurement of local response, and therefore it is not possible to diagnose whether or not the dynamics of the entire structure are normal.
【0003】また、発電機、船舶、自動車、或はモー
タ、タービンなどの運動状態にある構造体においては、
例えばシリンダ或は回転軸の運動状態を診断することが
安全管理・危険予測の面で同じく非常に重要である。Further, in a structure such as a generator, a ship, an automobile, or a motor, a turbine in a moving state,
For example, diagnosing the motion state of a cylinder or a rotating shaft is also very important in terms of safety management and risk prediction.
【0004】[0004]
【発明が解決しようとする課題】構造体の外力に対する
応答は、一般的に言えば、構造体の各部が外部応力に応
答し、その応答が全体として相互相関した結果である。
この構造体全体としての応答結果は種々の周波数の周期
運動からなるが、その中に持続的な特定周波数が見出さ
れるのが一般であり、この特定周波数は当該構造体の外
力に対する共鳴振動数(共鳴周波数)と言うことができ
る。Generally speaking, the response of a structure to an external force is a result of each part of the structure responding to an external stress, and the response is generally cross-correlated.
Although the response result of the structure as a whole consists of periodic motions of various frequencies, it is common to find a continuous specific frequency therein, and this specific frequency is the resonance frequency ( Resonance frequency).
【0005】一般に、外部からの応力に対する構造体各
部の応答が相関すると、全体の結果として、高周波分が
失われ、低周波分の共鳴振動が残る。従って、この低周
波分の共鳴振動周波数が計測できれば、構造体の動態が
正常であるか否かが正確に診断できる。しかしながら、
通常、構造体の共鳴振動数を外部から計測することは困
難であり、さらに、低周波の振動の測定は特に困難であ
る。このため、構造体の低周波の共鳴振動数の測定は殆
ど行なわれていないのが実情である。しかも、構造体の
共鳴振動の低周波分が地震災害に際して当該構造体の極
めて重要な事項であることは、例えば先年のカリホルニ
アの地震でも指摘されているところである。Generally, when the response of each part of the structure to the stress from the outside is correlated, the high frequency component is lost and the resonance vibration of the low frequency component remains as a whole. Therefore, if the resonance vibration frequency for this low frequency can be measured, it can be accurately diagnosed whether the dynamic state of the structure is normal. However,
Usually, it is difficult to externally measure the resonance frequency of a structure, and it is particularly difficult to measure low-frequency vibration. Therefore, in reality, the measurement of the low-frequency resonance frequency of the structure is hardly performed. Moreover, it has been pointed out that the low frequency component of the resonance vibration of the structure is an extremely important matter of the structure in the event of an earthquake disaster, for example, in the earthquake in California last year.
【0006】一方、運動状態にある構造体の動態が正常
であるか否かを正確に診断するには、運動時の構造体の
シリンダ軸或は回転軸が正常位に維持されているか否か
を計測すること、特に、運動量を変えたとき、或は負荷
を変えたとき、構造体の動的特性が如何なる状態にある
か、正常な状態が維持されているか否かなど、運動状態
を続け、しかも運動条件を変えた状況下での構造体の動
的状態を計測することが最も重要な要件であり、この計
測データなしには構造体動態の正常、異常の正確な診断
は行なえない。On the other hand, in order to accurately diagnose whether or not the dynamic state of the structure in motion is normal, whether or not the cylinder axis or rotation axis of the structure during motion is maintained in the normal position. Measurement, especially when the amount of exercise is changed or the load is changed, the state of dynamic characteristics of the structure, whether the normal state is maintained, etc. Moreover, it is the most important requirement to measure the dynamic state of the structure under the condition that the motion condition is changed, and without this measurement data, accurate diagnosis of normal and abnormal structure dynamics cannot be performed.
【0007】従って、本発明の1つの目的は、静止状態
にある構造体の共鳴振動数を外部から測定して当該構造
体の動態の正常・異常を診断する揺らぎ解析による構造
体の動態診断法を提供することである。Therefore, one object of the present invention is to measure the resonance frequency of a structure in a static state from the outside to diagnose the normal / abnormal of the dynamics of the structure by a fluctuation analysis method of the structure. Is to provide.
【0008】本発明の他の目的は、運動状態にある構造
体の揺らぎを、運動を引き起こす応力の関数として外部
から測定し、当該構造体の動態の正常・異常を診断する
揺らぎ解析による構造体の動態診断法を提供することで
ある。Another object of the present invention is to measure a fluctuation of a structure in a motion state from the outside as a function of a stress that causes a motion, and to analyze a structure by fluctuation analysis for diagnosing normality / abnormality of dynamics of the structure. It is to provide a dynamic diagnostic method for.
【0009】[0009]
【課題を解決するための手段】上記目的は本発明に係る
揺らぎ解析による構造体の動態診断法によって達成され
る。要約すれば、本発明は、静止状態ないし運動状態に
ある構造体に外部から光ビームを照射する段階と、該構
造体からの反射光を受光する段階と、該受光した反射光
を解析して前記構造体の動的特性を測定する段階とから
なることを特徴とする揺らぎ解析による構造体の動態診
断法である。The above object can be achieved by the method for diagnosing the dynamics of a structure by fluctuation analysis according to the present invention. In summary, the present invention analyzes the reflected light received by irradiating a structure in a stationary state or a moving state with a light beam from the outside, receiving reflected light from the structure, and analyzing the received reflected light. And a step of measuring a dynamic characteristic of the structure, which is a dynamic diagnostic method for the structure by fluctuation analysis.
【0010】[0010]
【実施例】以下、本発明の実施例について添付図面を参
照して詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0011】実施例1 本実施例はレーザ光を用いて静止構造体の低周波揺動固
有振動数を計測したものであり、実験対象の静止構造体
として建坪約3000m2 、3階建ての建物を使用し、
この建物から約15メートル離れた2階建ての建物の2
階に測定装置を設置した。上記実験対象の建物を標的と
し、上記測定装置を設置した建物から水平方向の上記実
験対象建物の一点に鏡を固定し、測定装置からこの鏡に
ほぼ水平方向にレーザ光を照射し、その反射光を測定装
置の位置敏感器で検出し、反射光の揺らぎを時系列デー
タとして取得し、これをフーリエ変換した。このフーリ
エ変換図形を図1に示す。 Example 1 In this example, the low-frequency oscillation natural frequency of a stationary structure was measured by using a laser beam, and the stationary structure to be tested was a building of about 3000 m 2 and a three-story building. Use
2 of a two-story building about 15 meters away from this building
A measuring device was installed on the floor. A mirror is fixed to one point of the building to be tested in the horizontal direction from the building where the measuring device is installed, and a laser beam is radiated from the measuring device to the mirror in a substantially horizontal direction, and its reflection The light was detected by the position sensitive device of the measuring device, the fluctuation of the reflected light was acquired as time series data, and this was Fourier transformed. This Fourier transform figure is shown in FIG.
【0012】図1の図形から明白なように、2つの建て
物の相対位置の揺らぎ(揺動)のフーリエ変換図形は、
周波数の増加に伴なって指数関数的に減衰するパターン
に加えて、18.75Hz(ヘルツ)に鋭いピークを示
すものとなり、この特定周波数は実験対象建物の固有低
周波振動数であると考えられる。As is apparent from the figure of FIG. 1, the Fourier transform figure of the fluctuation (rocking) of the relative position of the two buildings is
In addition to the pattern that decays exponentially with increasing frequency, it shows a sharp peak at 18.75 Hz (hertz), and this specific frequency is considered to be the natural low-frequency frequency of the experimental building. ..
【0013】このことを確かめるために2つの実験を行
なった。まず、測定装置を載せている台に衝撃を与えな
がら同じ計測を行なった。その結果のフーリエ変換図形
を図2に示す。図2の図形から明瞭なように、上記1
8.75Hzのピーク(図中の矢印で示すピーク)の位
置及び基本パターンは図1の図形と変わらなかったが、
新たに32.25Hzと43.25Hzにピークが見出
された。これら後者のピークは測定装置の固有振動数と
考えられる。次に、実験対象建物の鏡を固定した部分に
打撃(衝撃)を与え続けて同じ計測を行なった。その結
果のフーリエ変換図形を図3に示す。図3の図形から明
瞭なように、周波数の増加に伴って指数関数的に減衰す
るパターンの背景の上に、周波数ゼロの近傍に鋭い立ち
上がりが現われ、さらに18.75Hzのピークが1
9.3125Hzと僅かに高周波側にシフトすることが
見出された。Two experiments were conducted to confirm this. First, the same measurement was performed while giving an impact to the table on which the measuring device is placed. The resulting Fourier transform diagram is shown in FIG. As is clear from the figure in FIG.
The position and basic pattern of the 8.75 Hz peak (the peak indicated by the arrow in the figure) did not differ from the figure in FIG.
New peaks were found at 32.25 Hz and 43.25 Hz. These latter peaks are considered to be the natural frequencies of the measuring device. Next, the same measurement was performed by continuously giving a shock (impact) to the portion of the experimental building where the mirror was fixed. The resulting Fourier transform figure is shown in FIG. As is clear from the figure of FIG. 3, a sharp rise appears near the frequency zero on the background of the pattern that exponentially attenuates as the frequency increases, and the peak at 18.75 Hz becomes 1
It was found that there was a slight shift to the high frequency side at 9.3125 Hz.
【0014】以上の実験結果から18Hz近傍の周波数
は実験対象建物の固有共鳴振動周波数であると断定でき
る。このように、本発明によれば、静止状態にある構造
体の固有共鳴振動周波数を外部から極めて精密な分光法
により高感度、高分解能で計測することができるから、
必要時に構造体の固有共鳴振動周波数を計測することに
より構造体の動態が正常であるか否かの診断が極めて正
確に、かつ容易に行なえ、安全管理・危険予測上で非常
に有効である。From the above experimental results, it can be concluded that the frequency near 18 Hz is the natural resonance vibration frequency of the experimental building. As described above, according to the present invention, since the natural resonance vibration frequency of the structure in a stationary state can be measured from the outside with high sensitivity and high resolution by extremely precise spectroscopy,
By measuring the natural resonance vibration frequency of the structure when necessary, it is possible to extremely accurately and easily diagnose whether or not the dynamic state of the structure is normal, which is very effective in safety management and risk prediction.
【0015】実施例2 本実施例はレーザ光を用いて運動状態にある構造体の回
転軸の軸芯の揺れ、傾きなど(これを一括して偏芯と呼
ぶことにする)を計測するものであり、運動状態にある
構造体としてモータを選択し、その回転軸にレーザ光を
照射し、それからの反射光の検出器上での到着点を測定
することにより、回転軸の偏芯を測定した。反射光の到
着点は偏芯の度合により差を生じる。この差を時系列関
数として位置敏感器で検出し、この検出信号をフーリエ
変換することによって周波数分解した。 Embodiment 2 In this embodiment, laser light is used to measure fluctuations and tilts of the axis of the rotating shaft of a structure in motion (collectively referred to as eccentricity). The eccentricity of the rotation axis is measured by selecting the motor as the structure in motion, irradiating the rotation axis with laser light, and measuring the arrival point of the reflected light from the motor on the detector. did. The arrival point of the reflected light varies depending on the degree of eccentricity. This difference was detected as a time series function by a position sensitive device, and the detected signal was subjected to Fourier transform for frequency decomposition.
【0016】図4〜図6は「弱」、「中」、「強」の3
段階に回転数が切り換えできる小型モータの回転軸の偏
芯を計測した結果のフーリエ変換図形であり、図4はモ
ータの回転数が弱である場合のフーリエ変換図形、図5
はモータの回転数が中である場合のフーリエ変換図形、
図6はモータの回転数が強であるときのフーリエ変換図
形をそれぞれ示す。図4の図形から理解できるように、
モータの回転数が弱の場合にはフーリエ変換による偏位
の周波数分布が3つの対応部、即ち、最も周波数の低い
領域である0〜500Hzの範囲に対数的減衰パターン
を示す第1の領域と、中間周波数領域である500〜1
000Hzの範囲に山型のパターンを示す第2の領域
と、より高い周波数領域である1200〜1400Hz
の範囲に緩やかな山型のパターンを示す第3の領域とか
らなる。また、モータの回転数が中の場合には、図5の
図形から理解できるように、フーリエ変換による偏位の
全体のパターンは図4と同じであるが、各領域の周波数
は高い側にシフトしている。即ち、図4の図形に比べ、
第1の領域は900〜1000Hzに移り、第2の領域
はその中心が1500Hzとなっている。そして、第3
の領域は計測領域外にある。また、図6の図形から理解
できるように、モータの回転数が強の場合には図4の図
形における第1の領域が1800Hzにまで達してい
る。4 to 6 show three types of "weak", "medium", and "strong".
5 is a Fourier transform diagram of the result of measuring the eccentricity of the rotation axis of a small motor whose rotation speed can be switched in stages, and FIG. 4 is a Fourier transform diagram when the rotation speed of the motor is weak, and FIG.
Is the Fourier transform diagram when the motor speed is medium,
FIG. 6 shows Fourier transform figures when the rotation speed of the motor is high. As you can see from the figure in Figure 4,
When the rotation speed of the motor is weak, the frequency distribution of the deviation due to the Fourier transform has three corresponding parts, that is, the first region showing a logarithmic attenuation pattern in the range of 0 to 500 Hz which is the region of the lowest frequency. , 500-1 which is the intermediate frequency range
The second region showing a mountain-shaped pattern in the range of 000 Hz and the higher frequency region of 1200 to 1400 Hz
And a third region showing a gentle mountain-shaped pattern. Further, when the number of rotations of the motor is medium, as can be understood from the figure in FIG. 5, the entire pattern of the deviation due to the Fourier transform is the same as that in FIG. is doing. That is, compared to the figure in FIG.
The first region shifts to 900 to 1000 Hz, and the center of the second region is 1500 Hz. And the third
Area is outside the measurement area. Further, as can be understood from the figure of FIG. 6, when the rotation speed of the motor is high, the first region in the figure of FIG. 4 reaches 1800 Hz.
【0017】以上の結果はモータの回転軸の動的状態、
特にその揺らぎが回転条件により変わることを実測でき
たことを示すものにほかならない。構造体の動的状態に
ついて、特にその運動の揺らぎを、運動を引き起こす応
力の関数として測定することは、構造体の動態が正常で
あるか否かを診断する上で甚だ重要なことであるが、極
めて困難なことであった。本発明によれば、この測定が
可能となるので構造体の動態の正常・異常の診断を正確
に行なうことができ、安全管理・危険予測上で非常に有
効である。The above results indicate the dynamic state of the rotary shaft of the motor,
In particular, this is nothing but the fact that it was possible to actually measure that fluctuation fluctuates depending on the rotation conditions. Measuring the dynamic state of a structure, especially its fluctuations, as a function of the stresses that cause it, is of great importance in diagnosing whether the structure's dynamics are normal. It was extremely difficult. According to the present invention, since this measurement can be performed, the normality / abnormality of the dynamics of the structure can be accurately diagnosed, which is very effective in safety management and risk prediction.
【0018】実施例3 上記実施例2において使用したモータの回転軸にさらに
荷重を加えてその軸芯に応力がかかった場合の揺らぎを
上記実施例2と同じ方法で測定した。図7はモータの回
転軸に長さ2cmの鉄棒を連結したときのフーリエ変換
図形である。図7の図形から理解できるように、荷重を
加えた場合には、500Hz以下の第1の領域における
対数的減衰パターンが図4に示す無負荷時のパターンよ
り著しく増幅されることが認められた。 Example 3 The fluctuation when a load was further applied to the rotary shaft of the motor used in Example 2 and a stress was applied to the shaft core was measured by the same method as in Example 2 above. FIG. 7 is a Fourier transform diagram when an iron rod having a length of 2 cm is connected to the rotating shaft of the motor. As can be seen from the diagram of FIG. 7, it was found that when a load is applied, the logarithmic attenuation pattern in the first region of 500 Hz or less is significantly amplified as compared with the no-load pattern shown in FIG. ..
【0019】また、負荷の鉄棒を10cmに変えて同じ
測定を行なった結果のフーリエ変換図形を図8に示す。
図8の図形から明瞭なように、荷重負荷が大きくなる
と、500Hz以下の第1の領域における対数的減衰パ
ターンがより一層顕著に増幅されることが認められ、さ
らに、700Hzから1.5KHzの領域に新たに大き
な揺らぎの振幅が観測された。Further, FIG. 8 shows a Fourier transform diagram of a result obtained by performing the same measurement while changing the load iron bar to 10 cm.
As is clear from the figure of FIG. 8, it is recognized that the logarithmic attenuation pattern in the first region of 500 Hz or less is more significantly amplified when the load is increased, and further, in the region of 700 Hz to 1.5 KHz. A new large fluctuation amplitude was observed at.
【0020】上記第2及び第3の実施例の実験結果は、
運動状態にある構造体について、その運動の強弱や、構
造体に荷重する負荷を変えた場合に、その条件変化の効
果を当該構造体の運動を保持したまま外部から測定でき
ることを示したものにほかならない。運動状態にある構
造体の揺らぎを、運動の制御条件を変えつつ外部から測
定することは従来実現できなかったことであり、従っ
て、これを実現した本発明の診断法は静止状態にある構
造体はもとより運動状態にある構造体の動態の正常・異
常を極めて正確に診断できるから、この技術分野で待望
されていた正に画期的な診断法と言えよう。The experimental results of the second and third embodiments are as follows.
For structures that are in motion, when the strength of the motion or the load applied to the structure is changed, the effect of the condition change can be measured externally while maintaining the motion of the structure. Nothing else. It has been impossible to externally measure the fluctuation of the structure in the motion state while changing the control condition of the motion. Therefore, the diagnostic method of the present invention that realizes this is the structure in the static state. It can be said that this is a truly epoch-making diagnostic method that has been long-awaited in this technical field, since it can very accurately diagnose the normality / abnormality of the dynamic state of the structure in motion.
【0021】なお、本発明の診断法は上記実施例に示さ
れた構造体に限らず、橋梁、ビルディングを始めとする
建造物や、発電機、エンジンなどの機械、装置類に等し
く適用でき、同様の作用効果が得られることは言うまで
もない。The diagnostic method of the present invention is not limited to the structures shown in the above embodiments, but is equally applicable to buildings such as bridges and buildings, and machines and devices such as generators and engines. It goes without saying that the same effect can be obtained.
【0022】[0022]
【発明の効果】以上の説明で明白なように、本発明によ
れば、静止状態にある構造体の固有の共鳴振動数、特に
低周波数領域の共鳴振動数(揺らぎ)を外部から極めて
精密な分光法により高感度、高分解能で計測することが
でき、また、運動状態にある構造体の揺らぎを、外部か
ら同じく極めて精密な分光法により高感度、高分解能で
計測することができるから、構造体の動態が正常である
か否かが正確に、かつ容易に診断できる。かくして、ビ
ルディングや橋梁などの静止状態にある構造体や、発電
機、船舶、自動車、或はモータ、タービンなどの運動状
態にある構造体の安全性の確認が極めて正確に行なえ、
安全管理・危険予測の上で非常に有効であるという顕著
な効果がある。さらに、構造体の揺らぎの解析から安全
管理・危険予防の方策をフィードバック的に設計し、施
工することも可能となるという効果もある。As is apparent from the above description, according to the present invention, the resonance frequency peculiar to the structure in a stationary state, particularly the resonance frequency (fluctuation) in the low frequency region, can be extremely accurately controlled from the outside. High sensitivity and high resolution can be measured by spectroscopy, and fluctuations of a structure in motion can be measured externally with high sensitivity and high resolution by extremely precise spectroscopy. Whether or not the body dynamics are normal can be accurately and easily diagnosed. Thus, it is possible to extremely accurately confirm the safety of stationary structures such as buildings and bridges, and structures in motion such as generators, ships, automobiles, motors, and turbines.
It has a remarkable effect of being very effective in safety management and risk prediction. Furthermore, there is also an effect that it becomes possible to design and construct safety management / danger prevention measures in a feedback manner based on the analysis of the fluctuation of the structure.
【図1】本発明の診断法により静止構造体から得られた
時系列データのフーリエ変換図形を示す特性図である。FIG. 1 is a characteristic diagram showing a Fourier transform figure of time series data obtained from a stationary structure by the diagnostic method of the present invention.
【図2】計測システムを載せている台に衝撃を与えた場
合に本発明の診断法により静止構造体から得られた時系
列データのフーリエ変換図形を示す特性図である。FIG. 2 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained from a stationary structure by the diagnostic method of the present invention when a table on which the measurement system is mounted is impacted.
【図3】静止構造体に衝撃を与えつつ本発明の診断法に
より当該静止構造体から本発明の診断法により得られた
時系列データのフーリエ変換図形を示す特性図である。FIG. 3 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained from the stationary structure by the diagnostic method of the present invention by impacting the stationary structure with the diagnostic method of the present invention.
【図4】モータの回転軸から当該モータの回転数が弱で
ある場合に本発明の診断法により得られた時系列データ
のフーリエ変換図形を示す特性図である。FIG. 4 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained by the diagnostic method of the present invention when the rotation speed of the motor is weak from the rotation axis of the motor.
【図5】モータの回転軸から当該モータの回転数が中で
ある場合に本発明の診断法により得られた時系列データ
のフーリエ変換図形を示す特性図である。FIG. 5 is a characteristic diagram showing a Fourier transform diagram of time series data obtained by the diagnostic method of the present invention when the rotation speed of the motor is medium from the rotation axis of the motor.
【図6】モータの回転軸から当該モータの回転数が強で
ある場合に本発明の診断法により得られた時系列データ
のフーリエ変換図形を示す特性図である。FIG. 6 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained by the diagnostic method of the present invention when the rotation speed of the motor is strong from the rotation axis of the motor.
【図7】モータの回転軸に長さ2cmの鉄棒を負荷した
ときに当該モータの回転軸から本発明の診断法により得
られた時系列データのフーリエ変換図形を示す特性図で
ある。FIG. 7 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained by a diagnostic method of the present invention from a rotation shaft of a motor when a steel rod having a length of 2 cm is loaded on the rotation shaft of the motor.
【図8】モータの回転軸に長さ10cmの鉄棒を負荷し
たときに当該モータの回転軸から本発明の診断法により
得られた時系列データのフーリエ変換図形を示す特性図
である。FIG. 8 is a characteristic diagram showing a Fourier transform diagram of time-series data obtained by a diagnostic method of the present invention from a rotating shaft of a motor when a 10 cm-long iron rod is loaded on the rotating shaft of the motor.
Claims (3)
外部から光ビームを照射する段階と、該構造体からの反
射光を受光する段階と、該受光した反射光を解析して前
記構造体の動的特性を測定する段階とからなることを特
徴とする揺らぎ解析による構造体の動態診断法。1. A structure in which a stationary or moving structure is externally irradiated with a light beam, reflected light from the structure is received, and the received reflected light is analyzed to analyze the structure. Dynamics of a structure by fluctuation analysis, which comprises the step of measuring the dynamic characteristics of the structure.
部から光ビームを照射する段階と、該構造体の特定の部
位からの反射光を受光して時系列のデータを得る段階
と、該データをフーリエ変換して前記構造体の共鳴振動
数を測定する段階とからなることを特徴とする揺らぎ解
析による構造体の動態診断法。2. A step of externally irradiating a specific portion of the structure in a stationary state with a light beam, and a step of receiving reflected light from the specific portion of the structure to obtain time-series data, A step of measuring the resonance frequency of the structure by Fourier transforming the data, and a method for diagnosing the dynamic state of the structure by fluctuation analysis.
ムを照射する段階と、該構造体からの反射光を受光して
時系列のデータを得る段階と、該データをフーリエ変換
して前記構造体の揺らぎを測定する段階とからなること
を特徴とする揺らぎ解析による構造体の動態診断法。3. A step of irradiating a structure in a motion state with a light beam from the outside, a step of receiving reflected light from the structure to obtain time-series data, and Fourier transforming the data to obtain the data. A method for diagnosing the dynamics of a structure by fluctuation analysis, which comprises a step of measuring the fluctuation of the structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23885091A JPH061238B2 (en) | 1991-08-27 | 1991-08-27 | Dynamic analysis of structures by fluctuation analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23885091A JPH061238B2 (en) | 1991-08-27 | 1991-08-27 | Dynamic analysis of structures by fluctuation analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0552714A true JPH0552714A (en) | 1993-03-02 |
JPH061238B2 JPH061238B2 (en) | 1994-01-05 |
Family
ID=17036194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23885091A Expired - Fee Related JPH061238B2 (en) | 1991-08-27 | 1991-08-27 | Dynamic analysis of structures by fluctuation analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH061238B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020016996A (en) * | 2000-08-28 | 2002-03-07 | 김정태 | Vibration-based damage detection method for structural damage identification |
KR20030018391A (en) * | 2001-08-28 | 2003-03-06 | 주식회사 레이콤 | Apparatus for optically monitoring safety of structure |
JP2006522347A (en) * | 2003-04-03 | 2006-09-28 | エスアールアイ インターナショナル | Real-time vibration imaging method and apparatus |
-
1991
- 1991-08-27 JP JP23885091A patent/JPH061238B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020016996A (en) * | 2000-08-28 | 2002-03-07 | 김정태 | Vibration-based damage detection method for structural damage identification |
KR20030018391A (en) * | 2001-08-28 | 2003-03-06 | 주식회사 레이콤 | Apparatus for optically monitoring safety of structure |
JP2006522347A (en) * | 2003-04-03 | 2006-09-28 | エスアールアイ インターナショナル | Real-time vibration imaging method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH061238B2 (en) | 1994-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pandey et al. | Experimental verification of flexibility difference method for locating damage in structures | |
Silva et al. | Early fault detection of single-point rub in gas turbines with accelerometers on the casing based on continuous wavelet transform | |
Correa et al. | Mechanical vibrations and condition monitoring | |
Cong et al. | Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing | |
Lyu et al. | Full-field mode shape estimation of a rotating structure subject to random excitation using a tracking continuously scanning laser Doppler vibrometer via a two-dimensional scan scheme | |
US4078434A (en) | Method and apparatus for determining the parameters of natural vibration of a system | |
JPH0552714A (en) | Dynamic diagnosing method for structure by fluctuation analysis | |
JP2001215148A (en) | Diagnostic method for structure | |
Carrie et al. | Modal testing of a rotating wind turbine | |
Osuagwu et al. | Effect of inter-modulation and quasi-periodic instability in the diagnosis of rolling element incipient defect | |
Yang et al. | Output-only modal analysis using continuous-scan laser doppler vibrometry and application to a 20kW wind turbine | |
US5952554A (en) | Method for testing frequency response characteristics of laser displacement/vibration meters | |
Nava et al. | Design and experimental characterization of a nonintrusive measurement system of rotating blade vibration | |
Robert et al. | Applications | |
Schulz et al. | Theory of damage detection using constrained vibration deflection shapes | |
Her et al. | Quantitative prediction of rattle in impacting system | |
Vu-Manh et al. | The eigensystem realization algorithm for ambient vibration measurement using laser Doppler vibrometers | |
Nieves et al. | Estimation of the elastic constants of a cylinder with a length equal to its diameter | |
Oliver | Scanning laser vibrometer for dynamic deflection shape characterization of aerospace structures | |
SU1796952A1 (en) | Method for vibration control of faults of load-bearing members of aircraft structures | |
JPS60122327A (en) | Investigating method of load-dependent oscillation of rotary machine | |
Wang et al. | Design of monitoring system for material vibration screening equipment | |
Sanderson et al. | The applicability of online monitoring for the assurance of fixed jacket structures’ structural integrity | |
Zimmer | Investigation of the impact of turbine blade geometry on near-field microwave blade tip time of arrival measurements | |
Đukić et al. | A comparison of modal parameter identification tests in laboratory conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |