JPH0552645B2 - - Google Patents

Info

Publication number
JPH0552645B2
JPH0552645B2 JP59273703A JP27370384A JPH0552645B2 JP H0552645 B2 JPH0552645 B2 JP H0552645B2 JP 59273703 A JP59273703 A JP 59273703A JP 27370384 A JP27370384 A JP 27370384A JP H0552645 B2 JPH0552645 B2 JP H0552645B2
Authority
JP
Japan
Prior art keywords
iron powder
toluene
metal powder
magnetic
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59273703A
Other languages
Japanese (ja)
Other versions
JPS61154007A (en
Inventor
Kazufumi Ooshima
Seiichi Takahashi
Haruo Sekiguchi
Akio Suetsugu
Masanobu Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59273703A priority Critical patent/JPS61154007A/en
Publication of JPS61154007A publication Critical patent/JPS61154007A/en
Publication of JPH0552645B2 publication Critical patent/JPH0552645B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、高密度記録に適した磁気記録媒体に
於ける磁性素材としての強磁性金属粉微粒子及び
その製造方法に関する。 <従来技術> 磁気記録用磁性素材については、広い記録波長
域での高出力・低ノイズを計る為に、均一性の高
い微細形状粒子で、高い保磁力(Hc)を有し、
飽和磁化(σs)・残留磁化(σr)共に大きく、か
つ角形比(Rs=σr/σs)も可及的に大きい磁気
特性が基本的に要求され、更に塗料用樹脂との親
和性や分散性、塗膜での配向性・充填性に優れた
特性が要望され、しかも信頼性を保証する媒体寿
命が充分である事が望まれている。近年は、高密
度記録が社会的に要請され、素材粉としての磁性
粉を始めとして、バインダー樹脂・各種添加剤・
更には媒体加工法等の多岐にわたつて改良研究が
成されている(:例えば、明石五郎「磁気テープ
の進歩」、日本応用磁気学会誌、7(3)、185
(1983).)。 このうち、磁性素材としての磁性粉について
は、強磁性金属粉がその優れた磁気特性から、ま
ずオーデイオ用磁気テープの素材として実用化さ
れ、近い将来はビデオ用素材としての活用が計ら
れようとしている。鉄を主要成分とした針状性金
属粉微粒子の場合、Hc−値及びσs−値の充分な
高さに基づく優れた磁気的ポテンシヤリテイが利
用されている事となる訳であるが、通常は1μ以
下の微粒子である事から、空気に対する酸化活性
が極めて強く、磁気記録媒体としての適用性を確
保し、かつ信頼性を付与せしめる為の安定性が重
要な物性として位置づけられている。 従来、この種の安定性を確保する手段として、 (1) 微粒子表層部に酸化層を設ける方法や、 (2) 微粒子表面に特殊な層を被膜形成させる方法 更にこれ等の組合せの方法等が知られている。
(1)に属する方法としては、酸化層形成を気相接触
反応で行う方法、及び液層反応で行う方法に分類
され、前者の例としては、 特開昭55−125205、56−69301、56−127701、
57−9211等が挙げられ、後者の例としては、 特開昭52−85054、55−164001、57−85901、57
−93504、58−110433、58−159311等が挙げられ
る。 更に、(2)に属する方法としては有機物を被着す
る方法と無機分を被着する方法とに分けられ、前
者にはシリコーン等に代表される特殊な界面活性
剤的性格の強い低分子量有機を被着する方法とし
て 特開昭46−5057、50−104164、51−122655、51
−140860、52−155398、53−5798、53−76958、
54−24000、55−69660、55−69661、55−39662、
56−29841、56−54013、56−148726 更に、樹脂類を被覆する方法として、 特開昭53−13906、53−78099、54−139508、56
−130831等がある。又、後者は珪酸アルミニウム
や酸化アルミニウムその他を被着する方法とし
て、 特開昭53−8798、56−98401、57−9802、57−
63601、58−159306、58−159307、58−159308、
58−161708、58−161709、58−161725等が挙げら
れる。 <本発明の解決しようとする問題点> 鉄を主要成分とする強磁性金属粉微粒子の表面
に、前記の有機物乃至は無機物の被着もしくは被
膜を形成せしめる方法は、実際的かつ効果的であ
る事から多数の例が報告されている訳であるが、
多くの場合後に続く塗料化を考慮に入れると、媒
体用バインダー樹脂との親和性迄を十二分に配慮
した物でなければならず、しかも液状的性格の強
い低分子量物である場合、媒体中でのマイグレー
シヨン現象の要因形成の可能性に成り易く、従つ
て強固な被膜を形成しつつ、かつバインダー樹脂
との親和性を保有する系・方法が望まれていた。 しかも、ビデオ用途と考えられる針状性金属粉
微粒子の場合、長軸径は約0.1μ、短軸径は0.01μ
程度と極めて小さい所謂超微粒子系に属し、単純
な有機物の被着のみでは充分な経時性変化を抑制
する作用効果を与える事が不可能であつた。 <問題点を解決する為の手段> 本発明者等は、上記の問題点の解決を計る為
に、種々の検討を加えた結果、H2ガス等の還元
性ガスによる接触式還元反応によつて得た鉄を主
要成分とする強磁性金属粉微粒子の表面にトルエ
ン重縮合体を形成せしめた微粒子及び方法が極め
て効果的である事を見い出し、本発明に到達し
た。 なお、従来、金属粉微粒子に有機重合体を被覆
乃至は被膜化する方法自体はよく知られており、
ポリウレタン樹脂(:特開昭53−78099)、ポリビ
ニルブチラール樹脂(:特開昭56−130831)、そ
の他の例が見られる。しかし乍ら、これ等分子量
の高い重合体樹脂を被覆乃至は被着化する場合、
微細な金属粉粒子の個々の表層部上に均一に吸着
させる事は一般に極めて困難であり、通常は金属
粉微粒子の凝集対形成を生じ易い。 本発明者等はこれ等の基本的な問題点を解決す
る方法を研究検討し、P、Si及び/又はBを含む
Feを主要成分とした強磁性金属微粒子を、微量
のアルデヒド類を添加したトルエン溶剤中に浸漬
し、80〜150℃の範囲で加熱処理すると、トルエ
ンが金属粉微粒子の表面上で重縮合し、微粒子の
凝集を伴くなう事無く樹脂被膜の形成が可能であ
る事を見い出して、本発明に到達したのである。 本発明で使用する鉄を主要成分とした磁性金属
粉微粒子は、本発明者等が開示している方法(:
特開昭56−114833、57−96504、57−106527、57
−106526、57−113202、58−48612等)、即ち針状
性オキシ水酸化鉄微粒子の表層部に形状保持成分
を被着し、洗浄・乾燥・粉砕工程を経た後仮焼及
び気相接触還元反応に供する事により製造する事
が出来る。 該還元鉄粉微粒子は、形状保持成分としてP、
Si、及び/又はBをFeとの原子重量比で P/Fe=0.1/100〜5/100、 Si/Fe=0.1/100〜5/100、 B/Fe=0.1/100〜5/100、 の範囲に含有する事が好ましい。 P、Si及び/又はBがこの範囲未満の場合、ト
ルエンの重縮合形成能が低く、目的としている磁
性金属粉微粒子の経時劣化特性を改善する効果が
少ない。又、P及びSi、及び/又はBがこの範囲
を越える場合、トルエの重縮合反応が強く進み過
ぎ、結果としてはバインダー樹脂との親和性は向
上するものの、塗料化工程での分散性が低下して
しまい、好ましくない。 添加すべきアルデヒド類としては、ホルムアル
デヒドやその重合体即ちパラホルム等が使い易く
最も好ましいが、アセトアルデヒドや安息香酸ア
ルデヒド等の芳香族系の類の使用を制限するもの
ではない。 添加量としては、対金属粉微粒子との重量比
で、0.01乃至5%、好ましくは0.5〜3%である。
0.01%未満の添加の場合、形成トルエン重縮合体
量が少なく、目的としている金属粉微粒粉の経時
性改良効果が顕著でない。又、5%を越えた添加
の場合、トルエン重縮合体の形成量が多くなり過
ぎ、既述の様に塗料化工程での分散性に問題が生
ずる。 トルエン重縮合体の形成方法としては、撹拌式
の一般的な加圧可能な反応器を利用すれば良く、
他に特別の条件は無い。即ちこの反応器に既述の
アルデヒド類を微量添加したトルエンを投入して
おき、次いで気相接触還元反応によつて製造した
既述の還元鉄粉類を浸漬し、撹拌を5時間程続
け、溶剤に完全に濡れさせる工程を設ける。 次いで、該還元鉄粉微粒子を撹拌しつつ80〜
150℃に加熱して10〜1時間継続してトルエンの
重縮合反応を完結せしめ、以後室温まで降温す
る。 反応温度が80℃未満では、トルエンの重縮合反
応は実質上殆んど進行せず、又、150℃を越える
と反応が急激に進む為、均一な樹脂被覆が困難と
なる。更に、先に伸べたP、Si及び/又はBの含
量が少ない場合はこの範囲で高温側反応が効率的
であり、多量の場合は低温反応が好ましい。 〔作用〕 本発明の方法では、微量のアルデヒド類を含む
トルエン溶剤中に、P及びSi、及び/又はBを所
定量含む鉄を主要成分とした磁性金属粉微粒子を
投入・浸漬し、加熱反応によつてトルエンの重縮
合反応を行なう事を特徴とする。 鉄を主要成分とした金属粉微粒子表面上でトル
エンが重縮合反応する事は従来全く知られておら
ず、本発明者等によつて始めて見い出された。こ
の反法はP及びSi、及び/又はBを所定量含む鉄
を主要成分とした磁性金属粉微粒子系で特に顕著
であつた。 一般に、トルエンは、過塩素酸を触媒としてア
ルデヒド類と反応して油状の含酸素樹脂を形成す
る事が知られている(:直川・垣内、「トルエ
ン・ホルムアルデヒド樹脂の生成とその組成」、
工業化学雑誌、65(10)、1679(1962))。 既述の還元鉄粉類の場合、過塩素酸の様な強酸
点の発現は知られていないが、所謂田部ルールと
類似な機構によつて、P、Si、及び/又はBを所
定量含む鉄を主要成分とした磁性金属粉微粒子系
の場合、固体酸としての活性点が形成され、これ
が重縮合開始の触媒作用点として働いたものと推
定している。 かくして、強磁性金属粉微粒子が溶剤でもある
トルエンに充分に濡れた後にアルデヒド類との重
縮合化反応が進行する事となるので、微細な金属
粉粒子の場合でも被着・被覆に基づく凝集化は生
じない。又、形成される樹脂は実質上添加したア
ルデヒド類の量で制御する事が可能であるので、
極めて好都合である。 本発明の法によりトルエン重縮合体被覆された
強磁性金属粉微粒子は、引き続き蒸散その他の方
法により溶剤を除去し、完全な乾燥粉体化させる
事が可能であり、しかもその際、既に樹脂被覆が
出来あがつている為に、空気による酸化反応が効
率的に制御され、好ましい徐酸化が行われる。こ
の為、徐酸化後の磁気特性、特に、σs−値が高い
レベルで安定化され、極めて好ましい。 又、バインダー樹脂として多用される塩ビ・酢
ビ系のコポリマーに対する濡れが良く、塗料化工
程に於けるは分散性が向上し、かつ塗工媒体の磁
気特性、特に角型比の改善が計られる等の作用効
果が認められる。 更に、同加工媒体を高温・多湿下の環境下で経
時性促進テストに供すると、磁気特性、特に残留
磁束密度(Br)の劣化が大きく改良される。 〔実施例〕 以下、実施例及び比較例により、本発明の方法
及び効果を詳細に述べる。 実施例 1 本実施例は、オーデイオ用途の、鉄を主要成分
とした強磁性金属粉についての本発明の方法及び
その効果の大要を示す例である。 <還元鉄粉の製造> 特開昭57−106527及び57−96504記載の方法に
より、P、及びSi成分を重量比でP/Fe=0.3/
100、及びSi/Fe=1.5/100だけ含む針状特性オ
キシ水酸化鉄微粒子を合成した。 該Goe.粒子の形状は、N2−ガスの吸着特性か
ら算出した比表面積(:SA)は40.2m2/gr.、又
6乃至9万倍の透過電子顕微鏡像から算出した長
軸径(:L)と短軸径(:D)との比即ち軸比
(:L/D)は15であつた。 次いで、特開昭58−48612記載の方法によりほ
う酸亜鉛の被着変性処理を加え(:B/Fe=
0.6/100重量比)、乾燥・粉砕工程を経た後、H2
−ガスによる気相接触還元反応(:温度=375℃、
ガス空間速度=20Nm3−H2/Kgr−Fe.Hr.)に
より還元鉄粉とした。 該鉄粉をN2−ガス雰囲気下で一部抜き出して、
N2−ガス法による比表面積及び東英工業社製振
動式磁気特性測定相違:VSM−型による磁性
の評価を行つたところ、SA=35.2m2/gr.、Hc
=1205Oe.、σs=182emu/gr.、Rs=0.490であ
つた。 <トルエン重縮合体による被覆処理> 内容積1の加圧可能型の撹拌器付き反応器を
用意し、純度89.0%の市販パラホルム1.12gr.を
添加したトルエン400gr.を投入する。 次いで、該還元鉄粉100gr.を浸漬せしめ、反
応器の封入・雰囲気のN2−ガス置換を行い、5
時間程撹拌を継続する。 次に、全系を105℃迄昇温加熱し、そこで5時
間保持後、室温迄降温し、反応器を開封する。 先ず、溶剤を一部回収し、赤外線吸収スペクト
ル分光・ガスクロマトグラフー質量連結分析・核
磁気共鳴分析に供したところ、ホルムアルデヒド
の含量は100ppm以下であつた。 次に、反応処理した鉄粉の一部を取り出しN2
−ガス雰囲気下でメチル・エチル・ケトンによる
洗浄を加え、廃溶剤中の樹脂様成分の回収を試み
たが成功しなかつた。 次いで、同じく反応処理した鉄粉の一部を取り
出し前記溶液中に投入して鉄分の溶解を行い、溶
液中の樹脂様成分の回収を試みたところ、油脂状
物が得られた。この物を、先に記載したと同じ分
光分析に供したところ、数個のトルエン分子がメ
チレン結合した構造が同定出来た。 以上の事から、ホルムアルデヒドにより、還元
鉄粉粒子表面上で、溶剤としていたトルエン分子
が重縮合し数核体の構造体となる事、更にこの重
縮合体は鉄粉粒子表面上に強固に被膜化されてい
る事が判明した。 <処理鉄粉の風乾> 次に、該処理鉄粉50gr.をホーロー製バツト上
に1cm程の厚味になる様移し、大気下で溶剤の飛
散処理を加えた。 溶剤臭が完全に無くなつた段階で鉄粉を回収
し、風乾鉄粉とした。 該風乾鉄粉の物性評価を行つたところ、SA=
33.3m2/gr.、Hc=1295Oe.、σs=152emu/gr.、
Rs=0.496であつた。 <風乾鉄粉の塗料化・塗工化及びテープ特性の評
価> 該風乾鉄粉10gr.を採取して、下記材料と共
に、内容積550mlのポツトに投入し、米国・レツ
ド・デビル社製ペイント・シエーカーで5時間混
合・分散を続ける(:分散メデイアとしては、2
m/m径のα−アルミナ・ビーズを用いた)。 ●米・UCC社製塩酢ビ系ポリマー VAGH:1.0
gr. ●三井東圧化学社製ポリウレタン NL−2448:
1.0gr. ●大八化学社製燐酸エステル AP−13:0.2gr. ●住友化学社製α−アルミナ AKP−30:0.2g
r. ●溶剤 トルエン:14gr.、MEK:14gr. 以後、分散メデイアを分離して磁性塗料とし、
磁気テープ使用の精密コーターにてアプリケータ
ーを利用して12μ厚の東レ社製ポリエステル・フ
イルム:ルミラー(:12B−L100)上に塗工す
る。 その後、カレンダー・ロール処理して塗膜面の
平滑化処理を加え、次いで50℃にて2日間熱処理
を加えてポリウレタン硬化反応を完結せしめる。
3.81m/mに裁断して、現行コンパクト・カセツ
ト仕様サイズの磁気テープとする。 該磁気テープの磁気特性を、既述の測定装置に
て測定・評価したところ、 Hc=1190Oe、Br=3450G、Br/Bm=0.845 であり、充分な特性値を示した。 <磁気テープの劣化促進テスト> 該磁気テープを、60℃・相対湿度90%の環境下
で一週間、経時促進処理実験を行つて、磁気特
性、特に残留磁束密度の劣化速度を評価した。 Br−値は3345Gで、初期値から3.0%低下して
いただけであつた。 この値は、この種の磁気媒体の示す劣化特性と
しては十二分に小さく、優れた経時性を示したと
言えるものである。 実施例 2 本実施例は、ビデオ用途の、鉄を主要成分とし
た強磁性金属粉について本発明の方法及びその効
果の大要を示す例である。 <還元鉄粉の製造> 特開昭57−106527及び57−96504更に出願昭59
−209748記載の方法により、P、及びSi更にMn
及びCo−成分を重量比でP/Fe=0.5/100、及
びSi/Fe=2.0/100更にMn/Fe=2.0/100及び
Co/Fe=2.0/100だけ含む針状特性オキシ水酸
化鉄微粒子を合成した。 該Goe.粒子の形状は、N2−ガスの吸着特性か
ら算出した比表面積(:SA)は10.5m2/gr.、又
6乃至9万倍の透過電子顕微鏡像から算出した長
軸径(:L)と短軸径(:D)との比即ち軸比
(:L/D)は20であつた。 次いで、特開昭58−48612記載の方法によりほ
う酸亜鉛の被着変性処理を加え(:B/Fe=
0.9/100重量比)、乾燥・粉砕工程を経た後、H2
−ガスによる気相接触還元反応(:温度=355℃、
ガス空間速度=20Nm3−H2/Kgr−Fe.Hr.)に
より還元鉄粉とした。 該鉄粉をN2−ガス雰囲気下で一部抜き出して、
N2−ガス法による比表面積及び既述の磁気特性
測定装置による磁性の評価を行つたとろ、SA=
71.5m2/gr.、Hc=1425Oe.、σs=170emu/gr.、
Rs=0.501であつた。 <トルエン重縮合体による被覆処理> 内容積1の加圧可能型の撹拌器付き反応器を
用意し、純度89.0%の市販ポラホルム2.24gr.を
添加したトルエン400gr.を投入する。次いで、
該還元鉄粉100gr.を浸漬せしめ、反応器の封
入・雰囲気のN2−ガス置換を行い、5時間程撹
拌を継続する。 次に、全系を105℃迄昇温加熱し、そこで5時
間保持後、室温迄降温し、反応器を開封する。 先ず、溶剤を一部回収し、赤外線級数スペクト
ル分光・ガスクロマトグラフー質量連結分析・核
磁気共鳴分析に供したところ、ホルムアルデヒド
の含量は100ppm以下であつた。 次に、反応処理した鉄粉の一部を取り出しN2
−ガス雰囲気下でメチル・エチル・ケトンによる
洗浄を加え、廃溶剤中の樹脂様成分の回収を試み
たが成功しなかつた。 次いで、同じく反応処理した鉄粉の一部を取り
出し塩酸溶液中に投入して鉄分の溶解を行い、溶
液中の樹脂様成分の回収を試みたところ、油脂状
物が得られた。この物を、先に記載したと同じ分
光分析に供したところ、数個のトルエン分子がメ
チレン連結及びエーテル結合した構造が同定出来
た。 以上の事から、ホルムアルデヒドにより、還元
鉄粉粒子表面上で、溶剤としていたトルエン分子
が重縮合し数核体の構造体となる事、更にこの重
縮合体は鉄粉粒子表面上に強固に被膜化されてい
る事が判明した。 <処理鉄粉の風乾> 次に、該処理鉄粉50gr.をホーロー製バツト上
に1cm程の厚味になる様移し、大気下で溶剤の飛
散処理を加えた。 溶剤臭が完全に無くなつた段階で鉄粉を回収
し、風乾鉄粉とした。 該風乾鉄粉の物性評価を行つたところ、SA=
62.1m2/gr.、Hc=1505Oe.、σs=135emu/gr.、
Rs=0.502であつた。 <風乾鉄粉の塗料化・塗工化及びテープ特性の評
価> 該風乾鉄粉10gr.を採取して、下記材料と共
に、内容積550mlのポツトに投入し、米国・レツ
ド・デビル社製ペイント・シエーカーで5時間混
合・分散を続ける(:分散メデイアとしては、2
m/m径のα−アルミナ・ビーズを用いた)。 ●米・UCC社製塩酢ビ系ポリマー VAGH:0.8
gr. ●三井東圧化学社製ポリウレタン NL−2448:
1.2gr. ●大八化学社製燐酸エステル AP−13:0.5gr. ●住友化学社製α−アルミナ AKP−30:0.2g
r. ●溶剤 トルエン:15gr.、MEK:15gr. 以後、分散メデイアを分離して磁性塗料とし、
磁気テープ使用の精密コーターにてアプリケータ
ーを利用して13μ厚の東レ社製ポリエステル・フ
イルム:ルミラー(:13W−Q06S)上に塗工す
る。その後、カレンダー・ロール処理して塗膜面
の平滑化処理を加え、次いで50℃にて2日間熱処
理を加えてポリウレタン硬化反応を完結せしめ
る。 1/2−インチに裁断して、現行ホーム・ビデオ
仕様サイズの磁気テープとする。 該磁気テープの磁気特性を、既述の測定装置に
て測定・評価したところ、 Hc=1420Oe、Br=2150G、Br/B=0.810 であり、充分な特性値を示した。 <磁気テープの劣化促進テスト> 該磁気テープを、60℃・相対湿度90%の環境下
で一週間、経時促進処理実験を行つて、磁気特
性、特に残留磁束密度の劣化速度を評価した。 Br−値は2060Gで、初期値から4.2%低下して
いただけであつた。 この値は、この種の磁気媒体の示す劣化特性と
しては十二分に小さく、優れた経時性を示したと
言えるものである。 比較例 1 本比較例は、オーデイオ用途の、鉄を主要成分
とした強磁性金属粉について、トルエンの重縮合
処理を加えなかつた場合の特性評価を示す例であ
る。 <還元鉄粉の製造> 実施例1記載の還元鉄粉を使用した。 <処理鉄粉の風乾> 次に、該処理鉄粉50gr.をホーロー製バツト上
に1cm程の厚味になる様移し、大気下で溶剤の飛
散処理を加えた。 溶剤臭が完全に無くなつた段階で鉄粉を回収
し、風乾鉄粉とした。 該風乾鉄粉の物性評価を行つたところ、SA=
31.0m2/gr.、Hc=1280Oe.、σs=145emu/gr.、
Rs=0.488であつた。 <風乾鉄粉の塗料化・塗工化及びテープ特性の評
価> 該風乾鉄粉10gr.を採取して、実施例1記載と
同様にして塗料調製を行い、以後塗工・平滑化・
ポストアニーリング・裁断を加えて現行コンパク
ト・カセツト仕様サイズの磁気テープとする。 該磁気テープの磁気特性を、既述の測定装置に
て測定・評価したところ、 Hc=1190Oe、Br=3000G、Br/Bm=0.800 であつた。 <磁気テープの劣化促進テスト> 該磁気テープを、60℃・相対湿度90%の環境下
で一週間、経時促進処理実験を行つて、磁気特
性、特に残留磁束密度の劣化速度を評価した。 Br−値は2850Gで、初期値から5.0%低下して
いた。 (対応する実施例1では3.0%の低下)。 比較例 2 本比較例は、ビデオ用途の、鉄を主要成分とし
た強磁性金属粉について、トルエンの重縮合処理
を加えなかつた場合の特性評価を示す例である。 <還元鉄粉の製造> 実施例2記載の還元鉄粉を使用した。 <処理鉄粉の風乾> 次に、該還元鉄粉50gr.をホーロー製バツト上
に1cm程の厚味になる様移し、大気下で溶剤の飛
散処理を加えた。 溶剤臭が完全になくなつた段階で鉄粉を回収
し、風乾鉄粉とした。 該風乾鉄粉の物性評価を行つたところ、SA=
60.5m2/gr.、Hc=1490Oe.、σs=130emu/gr.、
Rs=0.501であつた。 <風乾鉄粉の塗料化・塗工化及びテープ特性の評
価> 該風乾鉄粉10gr.を採取して、実施例2記載と
同様にして塗料調製を行い、以後塗工・平滑化・
ポストアニーリング・裁断を加えて現行ホーム・
ビデオ仕様サイズの磁気テープとする。 該磁気テープの磁気特性を、既述の測定装置に
て測定・評価したところ、 Hc=1410Oe、Br=2010G、Br/Bm=0.780で
あつた。 <磁気テープの劣化促進テスト> 該磁気テープを、60℃・相対湿度90%の環境下
で一週間、経時促進処理実験を行つて、磁気特
性、特に残留磁束密度の劣化速度を評価した。 Br−値は1890Gで、初期値から6.0%も低下し
ていた。 (対応する実施例2では4.2%の低下)。 比較例 3 本比較例は、本発明の方法によらないオーデイ
オ用途の、鉄を主要成分とした強磁性金属粉につ
いての特性評価を示す例である。 <還元鉄粉の製造> 良く知られた湿式法、即ち硫酸第一鉄と過剰の
苛性ソーダとの中和反応およびそれに引き続く空
気による酸化反応によつて、不可避的に混入する
微量不純物以外は何ら含む事の無い針状性オキシ
水酸化鉄微粒子を合成した。 該Goe.粒子の形状は、N2−ガスの吸着特性か
ら算出した比表面積(:SA)は39.5m2/gr.、又
6乃至9万倍の透過電子顕微鏡像から算出した長
軸径(:L)と短軸径(:D)との比即ち軸比
(:L/D)は12であつた。 次いで、特開昭58−48612記載の方法によりほ
う酸亜鉛の被着変性処理を加え(:B/Fe=
0.05/100重量比)、乾燥・粉砕工程を経た後、
H2−ガスによる気相接触還元反応(:温度=365
℃、ガス空間速度=20Nm3−H2/Kgr−Fe.Hr)
により還元鉄粉とした。 該鉄粉をN2−ガス雰囲気下で一部抜き出して、
N2−ガス法による比表面積及び磁気特性測定装
置による特性の評価を行つたところ、SA=34.2
m2/gr.、Hc=1200Oe.、σs=180emu/gr.、Rs
=0.492であつた。 <トルエン重縮合体による被覆処理> 内容積1の加圧可能型の撹拌器付き反応器を
用意し、純度89.0%の市販パラホルム1.12gr.を
添加したトルエン400gr.を投入する。次いで、
該還元鉄粉100gr.を浸漬せしめ、反応器の封
入・雰囲気のN2−ガス置換を行い、5時間程撹
拌を継続する。 次に、全系を105℃迄昇温加熱し、そこで5時
間保持後、室温迄降温し、反応器を開封する。 先ず、溶剤を一部回収し、赤外線級数スペクト
ル分光・ガスクロマトグラフー質量連結分析・核
磁気共鳴分析に供したところ、ホルムアルデヒド
の含量は2000ppm程度存在であつた。 次に、反応処理した鉄粉の一部を取り出しN2
−ガス雰囲気下でメチル・エチル・ケトンによる
洗浄を加え、廃溶剤中の樹脂様成分の回収を試み
たが成功しなかつた。 次いで、同じく反応処理した鉄粉の一部を取り
出し前記溶液中に投入して鉄分の溶解を行い、溶
液中の樹脂様成分の回収を試みたところ、極めて
わずかな油脂状物が得られた。この物を、先に記
載したと同じ分光分析に供したところ、数個のト
ルエン分子がメチレン結合した構造が同定出来
た。 以上の事から、本発明の方法によらない鉄を主
要成分とした強磁性金属粉微粒子の表層部の上で
は、強固に被膜化されるには違いないものの、ホ
ルムアルデヒドによる溶剤としていたトルエン分
子の重縮合化は極くわずかに進行するのみである
事が判明した。 <処理鉄粉の風乾> 次に、該処理鉄粉50gr.をホーロー製バツト上
に1cm程の厚味になる様移し、大気下で溶剤の飛
散処理を加えた。 溶剤臭が完全に無くなつた段階で鉄粉を回収
し、風乾鉄粉とした。 該風乾鉄粉の物性評価を行つたところ、SA=
30.0m2/gr.、Hc=1280Oe.、σs=140emu/gr.、
Rs=0.485であつた。 <風乾鉄粉の塗料化・塗工化及びテープ特性の評
価> 該風乾鉄粉10gr.を採取して、実施例1記載と
同様にして塗料化・塗工化・平滑化・ポストアニ
ーリング・裁断を加えて現行コンパクト・カセツ
ト仕様サイズの磁気テープとする。 該磁気テープの磁気特性を、既述の測定装置に
て測定・評価したところ、 Hc=1180Oe、Br=3020G、Br/Bm=0.810 であつた。 <磁気テープの劣化促進テスト> 該磁気テープを、60℃・相対湿度90%の環境下
で一週間、経時促進処理実験を行つて、磁気特
性、特に残留磁束密度の劣化速度を評価した。 Br−値は2865Gで、初期値から5.1%低下して
いた。 以上の結果を表−1にまとめた。
<Industrial Application Field> The present invention relates to ferromagnetic metal powder particles as a magnetic material in a magnetic recording medium suitable for high-density recording, and a method for producing the same. <Prior art> In order to achieve high output and low noise in a wide recording wavelength range, magnetic materials for magnetic recording are made of highly uniform finely shaped particles and have a high coercive force (Hc).
Basically, magnetic properties are required, including large saturation magnetization (σs) and residual magnetization (σr), and as large a squareness ratio (Rs = σr/σs) as possible, as well as affinity with paint resins and dispersibility. In addition, it is desired that the coating film has excellent properties in terms of orientation and filling properties, and that the media has a sufficient lifespan to ensure reliability. In recent years, there has been a social demand for high-density recording, and in addition to magnetic powder as a material powder, binder resins, various additives,
In addition, research has been carried out to improve a wide range of media processing methods (for example, Goro Akashi, "Advances in magnetic tape", Journal of the Japan Society of Applied Magnetics, 7(3), 185).
(1983). ). Of these, regarding magnetic powder as a magnetic material, ferromagnetic metal powder was first put to practical use as a material for audio magnetic tape due to its excellent magnetic properties, and in the near future it is expected that it will be used as a material for video. There is. In the case of acicular metal powder particles containing iron as the main component, excellent magnetic potential based on sufficiently high Hc-value and σs-value is utilized, but usually Since it is a fine particle of 1μ or less, it has extremely strong oxidizing activity against air, and stability is considered an important physical property to ensure applicability as a magnetic recording medium and to provide reliability. Conventionally, methods for ensuring this kind of stability include (1) a method of providing an oxidized layer on the surface of the fine particles, (2) a method of forming a special layer on the surface of the fine particles, and a combination of these methods. Are known.
Methods belonging to (1) are classified into methods in which the oxidation layer is formed by a gas phase contact reaction and methods in which the oxide layer is formed by a liquid phase reaction. −127701,
57-9211, etc., and examples of the latter include JP-A-52-85054, 55-164001, 57-85901, 57
-93504, 58-110433, 58-159311, etc. Furthermore, methods belonging to (2) can be divided into methods that deposit organic materials and methods that deposit inorganic materials. JP-A-46-5057, 50-104164, 51-122655, 51
−140860, 52−155398, 53−5798, 53−76958,
54−24000, 55−69660, 55−69661, 55−39662,
56-29841, 56-54013, 56-148726 Furthermore, as a method for coating resins, JP-A-53-13906, 53-78099, 54-139508, 56
-130831 etc. In addition, the latter is a method for depositing aluminum silicate, aluminum oxide, etc., as described in Japanese Patent Application Laid-Open Nos. 53-8798, 56-98401, 57-9802, 57-
63601, 58−159306, 58−159307, 58−159308,
Examples include 58-161708, 58-161709, 58-161725, etc. <Problems to be Solved by the Present Invention> The method of depositing or forming a film of an organic or inorganic substance on the surface of fine ferromagnetic metal powder particles containing iron as a main component is practical and effective. Although many cases have been reported,
In many cases, taking into consideration the subsequent application of paint, the product must be fully compatible with the media binder resin, and if it is a low molecular weight material with strong liquid characteristics, the media Therefore, there has been a desire for a system and method that can form a strong film and maintain affinity with the binder resin. Moreover, in the case of acicular metal powder particles considered for video use, the major axis diameter is approximately 0.1μ and the minor axis diameter is 0.01μ.
They belong to the so-called ultrafine particle system, which is extremely small in size, and it has been impossible to provide a sufficient effect of suppressing changes over time by simply depositing organic matter on them. <Means for Solving the Problems> In order to solve the above problems, the present inventors have conducted various studies, and as a result, have developed a method using a catalytic reduction reaction using a reducing gas such as H 2 gas. The inventors have discovered that the fine particles and method in which a toluene polycondensate is formed on the surface of fine ferromagnetic metal powder particles containing iron as a main component are extremely effective, and have arrived at the present invention. It should be noted that the method of coating or forming a film on metal powder particles with an organic polymer is well known.
Examples include polyurethane resin (Japanese Unexamined Patent Publication No. 53-78099), polyvinyl butyral resin (Japanese Unexamined Patent Publication No. 56-130831), and others. However, when coating or adhering a polymer resin with a high molecular weight,
Generally, it is extremely difficult to uniformly adsorb fine metal powder particles onto the individual surface layers, and usually the metal powder particles tend to form agglomerated pairs. The present inventors have researched and considered methods to solve these basic problems, and have
When ferromagnetic metal fine particles containing Fe as the main component are immersed in a toluene solvent containing a small amount of aldehyde and heat-treated in the range of 80 to 150°C, toluene is polycondensed on the surface of the metal powder fine particles. The present invention was achieved by discovering that it is possible to form a resin film without agglomeration of fine particles. The magnetic metal powder particles containing iron as a main component used in the present invention are produced by the method disclosed by the present inventors (:
Unexamined Japanese Patent Publication No. 56-114833, 57-96504, 57-106527, 57
-106526, 57-113202, 58-48612, etc.), that is, a shape-retaining component is applied to the surface layer of acicular iron oxyhydroxide fine particles, and after a washing, drying, and pulverizing process, calcining and gas phase catalytic reduction It can be produced by subjecting it to a reaction. The reduced iron powder fine particles contain P as a shape-retaining component,
Atomic weight ratio of Si and/or B to Fe: P/Fe=0.1/100 to 5/100, Si/Fe=0.1/100 to 5/100, B/Fe=0.1/100 to 5/100, It is preferable that the content be within the range of . When P, Si and/or B are less than this range, the ability to form polycondensation of toluene is low, and the effect of improving the aged deterioration characteristics of the target magnetic metal powder particles is small. In addition, if P, Si, and/or B exceed this range, the polycondensation reaction of toluene will proceed too strongly, and as a result, although the affinity with the binder resin will improve, the dispersibility in the coating process will decrease. I ended up doing it and I don't like it. As the aldehydes to be added, formaldehyde and its polymers, ie, paraform, etc. are most preferred because they are easy to use, but the use of aromatic aldehydes such as acetaldehyde and benzoic aldehyde is not limited. The amount added is from 0.01 to 5%, preferably from 0.5 to 3%, based on the weight ratio of the metal powder to the fine particles.
When less than 0.01% is added, the amount of toluene polycondensate formed is small, and the intended effect of improving the aging properties of fine metal powder particles is not significant. Moreover, if it is added in excess of 5%, the amount of toluene polycondensate formed becomes too large, causing problems in dispersibility in the coating process as described above. To form the toluene polycondensate, a general stirred reactor that can be pressurized can be used.
There are no other special conditions. That is, toluene to which a small amount of the aforementioned aldehydes had been added was charged into this reactor, and then the aforementioned reduced iron powder produced by gas phase catalytic reduction reaction was immersed therein, and stirring was continued for about 5 hours. A step is provided to completely wet the material with the solvent. Next, while stirring the reduced iron powder fine particles, 80~
The mixture was heated to 150°C and continued for 10 to 1 hour to complete the polycondensation reaction of toluene, and then the temperature was lowered to room temperature. If the reaction temperature is less than 80°C, the polycondensation reaction of toluene will hardly proceed, and if it exceeds 150°C, the reaction will proceed rapidly, making it difficult to achieve a uniform resin coating. Further, when the content of P, Si and/or B that has been expanded earlier is small, the reaction at a high temperature is efficient within this range, and when the content is large, the reaction at a low temperature is preferable. [Operation] In the method of the present invention, magnetic metal powder particles containing iron as a main component and containing a predetermined amount of P, Si, and/or B are placed and immersed in a toluene solvent containing a trace amount of aldehydes, and then subjected to a heating reaction. It is characterized by carrying out a polycondensation reaction of toluene. It was not previously known that toluene undergoes a polycondensation reaction on the surface of metal powder particles containing iron as a main component, and was discovered for the first time by the present inventors. This reaction was particularly noticeable in magnetic metal powder fine particle systems whose main component was iron and which contained a certain amount of P, Si, and/or B. It is generally known that toluene reacts with aldehydes using perchloric acid as a catalyst to form an oily oxygen-containing resin (Naokawa and Kakiuchi, "Formation of toluene-formaldehyde resin and its composition",
Journal of Industrial Chemistry, 65(10), 1679 (1962)). In the case of the already mentioned reduced iron powders, it is not known that strong acid sites such as perchloric acid occur, but they contain a certain amount of P, Si, and/or B by a mechanism similar to the so-called Tabe rule. In the case of a magnetic metal powder particle system containing iron as a main component, it is assumed that active sites as solid acids were formed and these acted as catalytic sites for the initiation of polycondensation. In this way, the polycondensation reaction with aldehydes will proceed after the ferromagnetic metal powder particles are sufficiently wetted with toluene, which is also a solvent, so that even in the case of fine metal powder particles, agglomeration due to adhesion and coating will occur. does not occur. In addition, since the resin formed can be substantially controlled by the amount of aldehydes added,
This is extremely convenient. The ferromagnetic metal powder particles coated with toluene polycondensate by the method of the present invention can be completely dried and powdered by removing the solvent by evaporation or other methods. Since the oxidation reaction is already completed, the oxidation reaction by air is efficiently controlled, and a preferable gradual oxidation is performed. Therefore, the magnetic properties after slow oxidation, especially the σs value, are stabilized at a high level, which is extremely preferable. In addition, it has good wettability with vinyl chloride/vinyl acetate copolymers that are often used as binder resins, improves dispersibility in the coating process, and improves the magnetic properties of the coating medium, especially the squareness ratio. Effects such as these are observed. Furthermore, when the processed media is subjected to an accelerated aging test in a high temperature and high humidity environment, the deterioration of magnetic properties, especially residual magnetic flux density (Br), is greatly improved. [Example] Hereinafter, the method and effects of the present invention will be described in detail with reference to Examples and Comparative Examples. Example 1 This example is an example showing an overview of the method of the present invention and its effects on ferromagnetic metal powder containing iron as a main component for audio use. <Manufacture of reduced iron powder> By the method described in JP-A No. 57-106527 and No. 57-96504, P and Si components were adjusted to a weight ratio of P/Fe=0.3/
Iron oxyhydroxide fine particles with acicular characteristics containing only 100 and Si/Fe=1.5/100 were synthesized. The shape of the Goe. particles has a specific surface area (SA) of 40.2 m 2 /gr. calculated from the adsorption characteristics of N 2 -gas, and a major axis diameter ( The ratio of the short axis diameter (:D) to the short axis diameter (:D), that is, the axial ratio (:L/D), was 15. Next, adhesion modification treatment with zinc borate was applied by the method described in JP-A-58-48612 (:B/Fe=
0.6/100 weight ratio), after drying and grinding process, H2
- Gas phase catalytic reduction reaction with gas (temperature = 375℃,
It was made into reduced iron powder by gas space velocity= 20Nm3 - H2 /Kgr-Fe.Hr.). A portion of the iron powder is extracted under an N 2 − gas atmosphere, and
Specific surface area measured by N 2 - gas method and vibration type magnetic property measurement made by Toei Kogyo Co., Ltd. Differences: When evaluation of magnetism was performed using VSM- type, SA = 35.2 m 2 /gr., Hc
= 1205 Oe., σs = 182 emu/gr., Rs = 0.490. <Coating treatment with toluene polycondensate> A pressurizable reactor with an internal volume of 1 and equipped with a stirrer is prepared, and 400 g of toluene to which 1.12 g of commercially available paraform with a purity of 89.0% is added is charged. Next, 100g of the reduced iron powder was immersed, the reactor was sealed, and the atmosphere was replaced with N 2 gas.
Continue stirring for about an hour. Next, the entire system is heated to 105°C, held there for 5 hours, then cooled to room temperature, and the reactor is unsealed. First, a portion of the solvent was recovered and subjected to infrared absorption spectroscopy, gas chromatography-mass coupled analysis, and nuclear magnetic resonance analysis, and the formaldehyde content was found to be 100 ppm or less. Next, take out a part of the reaction-treated iron powder and put it in N2
- An attempt was made to recover the resin-like components in the waste solvent by adding washing with methyl ethyl ketone in a gas atmosphere, but it was not successful. Next, a portion of the iron powder that had been subjected to the same reaction treatment was taken out and put into the solution to dissolve the iron content, and when an attempt was made to recover the resin-like component in the solution, an oily substance was obtained. When this product was subjected to the same spectroscopic analysis as described above, a structure in which several toluene molecules were bonded with methylene was identified. From the above, formaldehyde polycondenses the toluene molecules used as a solvent on the surface of the reduced iron powder particles to form a structure of several nuclei, and furthermore, this polycondensate forms a strong coating on the surface of the iron powder particles. It turned out that it was morphed. <Air Drying of Treated Iron Powder> Next, 50g of the treated iron powder was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to a solvent scattering treatment in the atmosphere. When the solvent odor was completely gone, the iron powder was collected and made into air-dried iron powder. When the physical properties of the air-dried iron powder were evaluated, SA=
33.3m 2 /gr., Hc=1295Oe., σs=152emu/gr.,
It was Rs=0.496. <Evaluation of air-dried iron powder for paint/coating and tape properties> Collect 10g of the air-dried iron powder and put it into a pot with an internal volume of 550ml along with the following materials, and add paint made by Red Devil Co., Ltd., USA. Continue mixing and dispersing for 5 hours using a sheaker (as a dispersion media, 2
m/m diameter α-alumina beads). ●Salt vinyl acetate polymer manufactured by UCC, USA VAGH: 1.0
gr. ●Polyurethane NL-2448 manufactured by Mitsui Toatsu Chemical Co., Ltd.:
1.0gr. ●Phosphate ester AP-13 manufactured by Daihachi Chemical: 0.2gr. ●α-Alumina AKP-30 manufactured by Sumitomo Chemical: 0.2g
r. ●Solvent Toluene: 14gr., MEK: 14gr. After that, the dispersion media is separated and used as a magnetic paint.
Coat on a 12μ thick Toray polyester film: Lumirror (:12B-L100) using a precision coater using magnetic tape and an applicator. Thereafter, the coated film surface is smoothed by calender roll treatment, and then heat treated at 50°C for 2 days to complete the polyurethane curing reaction.
Cut it to 3.81m/m to make magnetic tape of the current compact cassette specification size. When the magnetic properties of the magnetic tape were measured and evaluated using the above-mentioned measuring device, Hc=1190 Oe, Br=3450 G, and Br/Bm=0.845, showing sufficient characteristic values. <Test for accelerating deterioration of magnetic tape> The magnetic tape was subjected to an aging acceleration treatment experiment for one week in an environment of 60° C. and 90% relative humidity to evaluate the magnetic properties, particularly the rate of deterioration of the residual magnetic flux density. The Br- value was 3345G, which was only 3.0% lower than the initial value. This value is sufficiently small for the deterioration characteristics exhibited by this type of magnetic medium, and can be said to exhibit excellent aging properties. Example 2 This example is an example showing an overview of the method of the present invention and its effects regarding a ferromagnetic metal powder containing iron as a main component for video use. <Manufacture of reduced iron powder> JP-A-57-106527 and 57-96504, further application filed in 1982
-209748, P, Si, and Mn
and Co components in a weight ratio of P/Fe=0.5/100, Si/Fe=2.0/100, and Mn/Fe=2.0/100.
We synthesized acicular iron oxyhydroxide fine particles containing only Co/Fe=2.0/100. The shape of the Goe. particles has a specific surface area (SA) of 10.5 m 2 /gr. calculated from the adsorption characteristics of N 2 -gas, and a major axis diameter ( :L) and the short axis diameter (:D), that is, the axial ratio (:L/D) was 20. Next, adhesion modification treatment with zinc borate was applied by the method described in JP-A-58-48612 (:B/Fe=
0.9/100 weight ratio), after drying and grinding process, H2
- Gas phase catalytic reduction reaction with gas (temperature = 355℃,
It was made into reduced iron powder by gas space velocity= 20Nm3 - H2 /Kgr-Fe.Hr.). A portion of the iron powder is extracted under an N 2 − gas atmosphere, and
When we evaluated the specific surface area using the N 2 -gas method and the magnetism using the magnetic property measuring device described above, we found that SA=
71.5m 2 /gr., Hc=1425Oe., σs=170emu/gr.,
It was Rs=0.501. <Coating treatment with toluene polycondensate> A pressurizable reactor equipped with a stirrer having an internal volume of 1 is prepared, and 400 g of toluene to which 2.24 g of commercially available Polaform with a purity of 89.0% is added is charged. Then,
100g of the reduced iron powder is immersed in the reactor, the reactor is sealed, the atmosphere is replaced with N2 gas, and stirring is continued for about 5 hours. Next, the entire system is heated to 105°C, held there for 5 hours, then cooled to room temperature, and the reactor is unsealed. First, a portion of the solvent was recovered and subjected to infrared series spectroscopy, gas chromatography-mass coupled analysis, and nuclear magnetic resonance analysis, and the formaldehyde content was found to be less than 100 ppm. Next, take out a part of the reaction-treated iron powder and put it in N2
- An attempt was made to recover the resin-like components in the waste solvent by adding washing with methyl ethyl ketone in a gas atmosphere, but it was not successful. Next, a part of the iron powder that had been subjected to the same reaction treatment was taken out and put into a hydrochloric acid solution to dissolve the iron content. When an attempt was made to recover the resin-like component in the solution, an oily substance was obtained. When this product was subjected to the same spectroscopic analysis as described above, a structure in which several toluene molecules were linked with methylene and ether was identified. From the above, formaldehyde polycondenses the toluene molecules used as a solvent on the surface of the reduced iron powder particles to form a structure of several nuclei, and furthermore, this polycondensate forms a strong coating on the surface of the iron powder particles. It turned out that it was morphed. <Air Drying of Treated Iron Powder> Next, 50g of the treated iron powder was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to a solvent scattering treatment in the atmosphere. When the solvent odor was completely gone, the iron powder was collected and made into air-dried iron powder. When the physical properties of the air-dried iron powder were evaluated, SA=
62.1m 2 /gr., Hc=1505Oe., σs=135emu/gr.,
It was Rs=0.502. <Evaluation of air-dried iron powder for paint/coating and tape properties> Collect 10g of the air-dried iron powder and put it into a pot with an internal volume of 550ml along with the following materials, and add paint made by Red Devil Co., Ltd., USA. Continue mixing and dispersing for 5 hours using a sheaker (as a dispersion media, 2
m/m diameter α-alumina beads). ●Salt vinyl acetate polymer made by UCC, USA VAGH: 0.8
gr. ●Polyurethane NL-2448 manufactured by Mitsui Toatsu Chemical Co., Ltd.:
1.2gr. ●Phosphate ester AP-13 manufactured by Daihachi Chemical: 0.5gr. ●α-Alumina AKP-30 manufactured by Sumitomo Chemical: 0.2g
r. ●Solvent Toluene: 15gr., MEK: 15gr. After that, the dispersion media is separated and used as a magnetic paint.
Coat on a 13μ thick Toray polyester film: Lumirror (:13W-Q06S) using a precision coater using magnetic tape and an applicator. Thereafter, the coated film surface is smoothed by calender roll treatment, and then heat treated at 50°C for 2 days to complete the polyurethane curing reaction. It is cut into 1/2-inch pieces to make magnetic tape of current home video specification size. When the magnetic properties of the magnetic tape were measured and evaluated using the above-mentioned measuring device, Hc=1420 Oe, Br=2150 G, and Br/B=0.810, showing sufficient characteristic values. <Test for accelerating deterioration of magnetic tape> The magnetic tape was subjected to an aging acceleration treatment experiment for one week in an environment of 60° C. and 90% relative humidity to evaluate the magnetic properties, particularly the rate of deterioration of the residual magnetic flux density. The Br- value was 2060G, which was only 4.2% lower than the initial value. This value is sufficiently small for the deterioration characteristics exhibited by this type of magnetic medium, and can be said to exhibit excellent aging properties. Comparative Example 1 This comparative example shows the evaluation of the characteristics of a ferromagnetic metal powder containing iron as a main component for audio use without being subjected to toluene polycondensation treatment. <Manufacture of reduced iron powder> The reduced iron powder described in Example 1 was used. <Air Drying of Treated Iron Powder> Next, 50g of the treated iron powder was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to a solvent scattering treatment in the atmosphere. When the solvent odor was completely gone, the iron powder was collected and made into air-dried iron powder. When the physical properties of the air-dried iron powder were evaluated, SA=
31.0m 2 /gr., Hc=1280Oe., σs=145emu/gr.,
It was Rs=0.488. <Evaluation of air-dried iron powder into paint/coating and tape properties> 10g of the air-dried iron powder was collected and prepared as a paint in the same manner as described in Example 1, and thereafter coated, smoothed, and coated.
After post-annealing and cutting, it is made into a magnetic tape of the current compact cassette specification size. The magnetic properties of the magnetic tape were measured and evaluated using the measuring device described above, and found to be Hc = 1190 Oe, Br = 3000 G, and Br/Bm = 0.800. <Test for accelerating deterioration of magnetic tape> The magnetic tape was subjected to an aging acceleration treatment experiment for one week in an environment of 60° C. and 90% relative humidity to evaluate the magnetic properties, particularly the rate of deterioration of the residual magnetic flux density. The Br− value was 2850G, which was 5.0% lower than the initial value. (3.0% reduction in corresponding Example 1). Comparative Example 2 This Comparative Example is an example showing the evaluation of the characteristics of a ferromagnetic metal powder containing iron as a main component for video use when no toluene polycondensation treatment was applied. <Manufacture of reduced iron powder> The reduced iron powder described in Example 2 was used. <Air Drying of Treated Iron Powder> Next, 50g of the reduced iron powder was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to a solvent scattering treatment in the atmosphere. Once the solvent odor was completely gone, the iron powder was collected and made into air-dried iron powder. When the physical properties of the air-dried iron powder were evaluated, SA=
60.5m 2 /gr., Hc=1490Oe., σs=130emu/gr.,
It was Rs=0.501. <Evaluation of air-dried iron powder as paint/coating and tape properties> 10g of the air-dried iron powder was collected and prepared as a paint in the same manner as described in Example 2, and then coated, smoothed, and coated.
Add post annealing and cutting to the current home
It shall be a magnetic tape of video specification size. The magnetic properties of the magnetic tape were measured and evaluated using the above-mentioned measuring device, and were found to be Hc = 1410 Oe, Br = 2010 G, and Br/Bm = 0.780. <Test for accelerating deterioration of magnetic tape> The magnetic tape was subjected to an aging acceleration treatment experiment for one week in an environment of 60° C. and 90% relative humidity to evaluate the magnetic properties, particularly the rate of deterioration of the residual magnetic flux density. The Br− value was 1890G, which was 6.0% lower than the initial value. (4.2% reduction in corresponding Example 2). Comparative Example 3 This comparative example is an example showing the evaluation of the characteristics of a ferromagnetic metal powder containing iron as a main component for audio use, which is not based on the method of the present invention. <Manufacture of reduced iron powder> The well-known wet method, i.e., the neutralization reaction of ferrous sulfate and excess caustic soda, followed by the oxidation reaction with air, results in the production of reduced iron powder, which contains no trace impurities that are inevitably mixed in. We synthesized fine acicular iron oxyhydroxide particles. The shape of the Goe. particles has a specific surface area (SA) of 39.5 m 2 /gr. calculated from the adsorption characteristics of N 2 -gas, and a major axis diameter ( :L) and the minor axis diameter (:D), that is, the axial ratio (:L/D) was 12. Next, adhesion modification treatment with zinc borate was applied by the method described in JP-A-58-48612 (:B/Fe=
0.05/100 weight ratio), after drying and crushing process,
Gas phase catalytic reduction reaction with H 2 − gas (temperature = 365
°C, gas space velocity = 20Nm 3 −H 2 /Kgr−Fe.Hr)
It was made into reduced iron powder. A portion of the iron powder is extracted under an N 2 − gas atmosphere, and
When evaluating the specific surface area using the N 2 -gas method and the characteristics using a magnetic property measuring device, SA = 34.2
m2 /gr., Hc=1200Oe., σs=180emu/gr., Rs
= 0.492. <Coating treatment with toluene polycondensate> A pressurizable reactor with an internal volume of 1 and equipped with a stirrer is prepared, and 400 g of toluene to which 1.12 g of commercially available paraform with a purity of 89.0% is added is charged. Then,
100g of the reduced iron powder is immersed in the reactor, the reactor is sealed, the atmosphere is replaced with N2 gas, and stirring is continued for about 5 hours. Next, the entire system is heated to 105°C, held there for 5 hours, then cooled to room temperature, and the reactor is unsealed. First, a portion of the solvent was recovered and subjected to infrared series spectroscopy, gas chromatography-mass coupled analysis, and nuclear magnetic resonance analysis, and the formaldehyde content was found to be approximately 2000 ppm. Next, take out a part of the reaction-treated iron powder and put it in N2
- An attempt was made to recover the resin-like components in the waste solvent by adding washing with methyl ethyl ketone in a gas atmosphere, but it was not successful. Next, a portion of the iron powder that had been subjected to the same reaction treatment was taken out and put into the solution to dissolve the iron content, and when an attempt was made to recover the resin-like components in the solution, a very small amount of oil-like material was obtained. When this product was subjected to the same spectroscopic analysis as described above, a structure in which several toluene molecules were bonded with methylene was identified. From the above, it can be seen that although the surface layer of ferromagnetic metal powder fine particles containing iron as a main component that is not produced by the method of the present invention is bound to form a strong film, toluene molecules, which were used as a solvent by formaldehyde, It was found that polycondensation proceeded only slightly. <Air Drying of Treated Iron Powder> Next, 50g of the treated iron powder was transferred onto an enamel vat to a thickness of about 1 cm, and subjected to a solvent scattering treatment in the atmosphere. Once the solvent odor was completely gone, the iron powder was collected and made into air-dried iron powder. When the physical properties of the air-dried iron powder were evaluated, SA=
30.0m2 / gr., Hc=1280Oe., σs=140emu/gr.,
It was Rs=0.485. <Evaluation of making air-dried iron powder into paint, coating, and tape properties> 10g of the air-dried iron powder was collected and made into paint, coating, smoothing, post-annealing, and cutting in the same manner as described in Example 1. In addition, it becomes a magnetic tape of the current compact cassette specification size. The magnetic properties of the magnetic tape were measured and evaluated using the above-mentioned measuring device, and found to be Hc = 1180 Oe, Br = 3020 G, and Br/Bm = 0.810. <Test for accelerating deterioration of magnetic tape> The magnetic tape was subjected to an aging acceleration treatment experiment for one week in an environment of 60° C. and 90% relative humidity to evaluate the magnetic properties, particularly the rate of deterioration of the residual magnetic flux density. The Br− value was 2865G, which was 5.1% lower than the initial value. The above results are summarized in Table-1.

【表】【table】

【表】【table】

【表】 ※注:単位については、本文を参照。
〔効果〕 実施例及びそれに対比する形で示した比較例の
結果から、本発明の作用・効果をまとめると、以
下の通りとなる。 即ち、高密度磁気記録に適した磁気記録媒体に
於ける磁性素材としての強磁性金属粉微粒子に於
いて、該金属粉微粒子がP、Si、及び/又はBを
所定量含む鉄を主要成分とした微粒子系であり、
気相接触還元反応による製造後に於いて、アルデ
ヒド類を所定の量添加したトルエン溶剤中に投入
し、所定温度に加熱・保持する事により該金属微
粒子表層部をトルエンの重縮合体で被覆処理する
事によつて、 (1) 金属粉微粒子自体に関しては、溶剤蒸散によ
る徐酸化が極めてマイルドに行われ、徐酸化後
の磁気特性、時に飽和磁化が充分に高いレベル
に維持される事、 (2) 塗料用樹脂に対しては親和性が向上し、その
結果媒体加工した段階での磁気特性、特に角型
比が大きく改良される事、 (3) 更に、記録媒体に於いて実用上最も重要とな
る信頼性指標としての経時劣化性に対して大き
な改良効果をもたらす事、 が判明したと言える。 以上の様に、本発明の方法は、オーデイオ用途
及びビデオ用途としての、鉄を主要成分とした特
性向上著しい強磁性金属粉及びその方法を提供す
るものである。
[Table] *Note: For units, see main text.
[Effects] The effects and effects of the present invention can be summarized as follows based on the results of Examples and Comparative Examples shown in comparison thereto. That is, in ferromagnetic metal powder fine particles as a magnetic material in a magnetic recording medium suitable for high-density magnetic recording, the metal powder fine particles mainly contain iron containing a predetermined amount of P, Si, and/or B. It is a fine particle system with
After production by gas-phase catalytic reduction reaction, the surface layer of the metal fine particles is coated with a polycondensate of toluene by pouring into a toluene solvent to which a predetermined amount of aldehydes has been added, and heating and maintaining the metal at a predetermined temperature. (1) Regarding the metal powder particles themselves, gradual oxidation by solvent evaporation is carried out extremely mildly, and the magnetic properties after gradual oxidation, sometimes the saturation magnetization, are maintained at a sufficiently high level; (2) ) The affinity for paint resins improves, and as a result, the magnetic properties at the stage of media processing, especially the squareness ratio, are greatly improved. It can be said that it has been found that this has a significant improvement effect on aging deterioration as a reliability index. As described above, the method of the present invention provides a ferromagnetic metal powder containing iron as a main component and having significantly improved properties for audio and video applications, and a method thereof.

Claims (1)

【特許請求の範囲】 1 トルエン重縮合体で被覆処理されたP及び
Si、及び/又はBを含むFeを主要成分とした強
磁性金属粉。 2 P及びSi、及び/又はBを含有量がFeとの
重合比で、 P/Fe=0.1/100〜5/100、 Si/Fe=0.1/100〜5/100、 B/Fe=0.1/100〜5/100 の範囲にある特許請求の範囲第1項記載のFeを
主要成分とした強磁性金属粉。 3 形状保持成分で被着変性された針状性オキシ
水酸化鉄微粒子を還元性ガスによる気相接触還元
反応によつて還元鉄粉とし、次いで微量のアルデ
ヒドを添加したトルエン溶剤中に浸漬した後、80
〜150℃に加熱処理し個々の該還元鉄粉微粒子表
層部にトルエン重縮合体を被覆形成せしめる、塗
料用樹脂への親和性を向上した安定化された鉄を
主要成分とした強磁性金属粉の製造方法。 4 形状保持成分がP、Si、及び/又はBを含む
特許請求の範囲第3項記載の強磁性金属粉の製造
方法。
[Claims] 1. P coated with toluene polycondensate and
Ferromagnetic metal powder whose main component is Fe containing Si and/or B. 2 The content of P, Si, and/or B is the polymerization ratio with Fe: P/Fe=0.1/100 to 5/100, Si/Fe=0.1/100 to 5/100, B/Fe=0.1/ A ferromagnetic metal powder containing Fe as a main component according to claim 1, which is in the range of 100 to 5/100. 3. Acicular iron oxyhydroxide particles modified with a shape-retaining component are made into reduced iron powder by a gas phase catalytic reduction reaction using a reducing gas, and then immersed in a toluene solvent containing a small amount of aldehyde. , 80
Stabilized iron-based ferromagnetic metal powder with improved affinity for coating resins, which is heated to ~150°C to coat the surface layer of each reduced iron powder fine particle with toluene polycondensate. manufacturing method. 4. The method for producing ferromagnetic metal powder according to claim 3, wherein the shape-retaining component contains P, Si, and/or B.
JP59273703A 1984-12-27 1984-12-27 Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof Granted JPS61154007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59273703A JPS61154007A (en) 1984-12-27 1984-12-27 Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59273703A JPS61154007A (en) 1984-12-27 1984-12-27 Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61154007A JPS61154007A (en) 1986-07-12
JPH0552645B2 true JPH0552645B2 (en) 1993-08-06

Family

ID=17531377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59273703A Granted JPS61154007A (en) 1984-12-27 1984-12-27 Ferromagnetic metal powder coated with toluene polycondensate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61154007A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188503A (en) 1998-12-22 2000-07-04 Yokowo Co Ltd Antenna for portable radio unit

Also Published As

Publication number Publication date
JPS61154007A (en) 1986-07-12

Similar Documents

Publication Publication Date Title
JPH0313647B2 (en)
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPH0552645B2 (en)
CA1132790A (en) Cobalt modified magnetic iron oxide
JPH051601B2 (en)
JPH051603B2 (en)
US4933014A (en) Magnetic iron oxide pigments and a process for their preparation
JPH0270003A (en) Method for treating ferromagnetic iron powder
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JPH051602B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0546687B2 (en)
JPS63142607A (en) Manufacture of magnetic iron powder
JPS63239802A (en) Manufacture of magnetic iron powder
JPS61154009A (en) Ferromagnetic metal powder coated with alkylphenol and manufacture thereof
JP3242102B2 (en) Magnetic powder and method for producing the same
JPH0230625A (en) Cobalt-containing ferromagnetic iron oxide powder and production thereof
JP3417981B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP3057823B2 (en) Ferromagnetic metal particles for magnetic recording media
JP2940117B2 (en) Ferromagnetic metal particles for magnetic recording media
JPS62156201A (en) Ferromagnetic metallic powder treated with carbon dioxide
JP2005101582A (en) Magnetic powder and its production method
JPS6289226A (en) Magnetic powder and its production