JPH0552355B2 - - Google Patents
Info
- Publication number
- JPH0552355B2 JPH0552355B2 JP59223465A JP22346584A JPH0552355B2 JP H0552355 B2 JPH0552355 B2 JP H0552355B2 JP 59223465 A JP59223465 A JP 59223465A JP 22346584 A JP22346584 A JP 22346584A JP H0552355 B2 JPH0552355 B2 JP H0552355B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction zone
- methanol
- city gas
- methanation
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 282
- 239000007789 gas Substances 0.000 claims description 131
- 238000006243 chemical reaction Methods 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 70
- 238000000629 steam reforming Methods 0.000 claims description 54
- 229930195733 hydrocarbon Natural products 0.000 claims description 46
- 150000002430 hydrocarbons Chemical class 0.000 claims description 46
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 40
- 239000003054 catalyst Substances 0.000 claims description 39
- 238000004519 manufacturing process Methods 0.000 claims description 34
- 238000002407 reforming Methods 0.000 claims description 33
- 238000006057 reforming reaction Methods 0.000 claims description 33
- 229910052739 hydrogen Inorganic materials 0.000 claims description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 25
- 239000001257 hydrogen Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000006114 decarboxylation reaction Methods 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000006477 desulfuration reaction Methods 0.000 description 3
- 230000023556 desulfurization Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- -1 LPG or naphtha Chemical class 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
Landscapes
- Industrial Gases (AREA)
Description
【発明の詳細な説明】
本発明は都市ガス製造法の改良に関するもので
あつて、さらに詳しくは原料炭化水素の水素化脱
硫工程と低温水蒸気改質工程を単位反応とする都
市ガス製造プロセスに、メタノールの改質工程を
組み込み、メタノールの改質工程に要する反応熱
を都市ガス製造プロセスから回収される熱量で賄
いながら、メタノールの改質反応で生成される水
素を原料炭化水素の水素化脱硫工程に使用するこ
とを改良点とする都市ガスの製造法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a city gas production method, and more specifically, to a city gas production process in which the unit reactions are a hydrodesulfurization process of raw material hydrocarbons and a low-temperature steam reforming process. Incorporating a methanol reforming process, the reaction heat required for the methanol reforming process is covered by the heat recovered from the city gas production process, and the hydrogen produced in the methanol reforming reaction is used in the hydrodesulfurization process of feedstock hydrocarbons. This relates to a method for producing city gas that has been improved so that it can be used for
一般に都市ガスはLPGないしナフサなどの原
料炭化水素を水素化脱硫した後、これを低温水蒸
気改質し、次いで生成ガス中の炭酸ガスを除去す
るという一連の操作で製造することができ、さら
に高カロリーの都市ガスは、低温水蒸気改質工程
と脱炭酸工程との間にメタン化工程を介在させる
ことによつて製造することができる。そして、こ
のような都市ガス製造プロセスに於ては、原料炭
化水素を水素化脱硫するための水素源として、低
温水蒸気改質工程から流出する改質ガスの一部を
利用するのが通例とされている。 In general, city gas can be produced through a series of operations, including hydrodesulfurization of feedstock hydrocarbons such as LPG or naphtha, followed by low-temperature steam reforming, and then removing carbon dioxide from the produced gas. Caloric city gas can be produced by interposing a methanation process between a low temperature steam reforming process and a decarboxylation process. In such city gas production processes, it is customary to use a portion of the reformed gas flowing out from the low-temperature steam reforming process as a hydrogen source for hydrodesulfurizing feedstock hydrocarbons. ing.
ところで、低温水蒸気改質触媒は近年その性能
が目覚ましく向上し、これに伴つて低温水蒸気改
質工程は、従前の低温水蒸気改質触媒を使用した
場合よりも、低温度で且つ低スチーム比(対原料
炭化水素)で実施できる情況にある。従つて、高
性能の低温水蒸気改質触媒の登場は、都市ガス製
造プロセスをより経済的な条件で運転可能ならし
めている。しかしながら、高性能触媒を用いて低
温水蒸気改質工程を低温、低スチーム比で実施し
た場合には、生成ガス中の水素濃度が必然的に低
下してしまうため、このガスの一部をそのまま原
料炭化水素の水素化脱硫工程に循環する態様では
原料炭化水素を充分に精製できない不都合があ
る。 By the way, the performance of low-temperature steam reforming catalysts has improved dramatically in recent years, and with this, the low-temperature steam reforming process requires lower temperatures and lower steam ratios (relative to The situation is such that it can be implemented using hydrocarbon feedstock). Therefore, the advent of high-performance low-temperature steam reforming catalysts has made it possible to operate the city gas production process under more economical conditions. However, when a low-temperature steam reforming process is carried out at a low temperature and low steam ratio using a high-performance catalyst, the hydrogen concentration in the generated gas inevitably decreases, so a part of this gas is used as raw material. In the embodiment in which the hydrocarbon is circulated to the hydrodesulfurization step, there is a disadvantage that the raw material hydrocarbon cannot be sufficiently purified.
このため、従来の都市ガス製造プロセスでは、
水素化脱硫工程に循環するガスの水素濃度を高め
る目的で、低温水蒸気改質工程から供給されるガ
スを高温水蒸気反応に付し、さらにCOシフト反
応に付してから水素化脱硫工程に循環する方式と
か、あるいは低温水蒸気改質工程からのガスにス
チームを補給してスチーム比を増大させ、このガ
スを第2の低温水蒸気改質反応工程で処理してか
ら水素化脱硫工程に循環する方式とかが採用され
ている。しかし、前者の方式は高温水蒸気改質反
応器とCOシフト反応器を付設しなければならな
いため、設備費が嵩む点で不都合がある。一方、
後者の方式では第2の低温水蒸気改質反応が吸熱
的である故、反応温度の低下によつて化学平衡上
水素の生成が抑えられる関係で、水素濃度の大幅
な増大は望めない。 For this reason, in the conventional city gas production process,
In order to increase the hydrogen concentration of the gas that is circulated to the hydrodesulfurization process, the gas supplied from the low-temperature steam reforming process is subjected to a high-temperature steam reaction, and then subjected to a CO shift reaction before being recycled to the hydrodesulfurization process. Alternatively, there is a method in which the gas from the low-temperature steam reforming process is supplemented with steam to increase the steam ratio, and this gas is processed in a second low-temperature steam reforming reaction process and then circulated to the hydrodesulfurization process. has been adopted. However, the former method requires the installation of a high-temperature steam reforming reactor and a CO shift reactor, which is disadvantageous in terms of increased equipment costs. on the other hand,
In the latter method, since the second low-temperature steam reforming reaction is endothermic, a significant increase in hydrogen concentration cannot be expected because hydrogen production is suppressed in chemical equilibrium by lowering the reaction temperature.
本発明は上記したような従来技術の現状に鑑み
て、原料炭化水素の水素化脱硫工程と脱硫された
炭化水素の低温水蒸気改質工程を単位反応とする
都市ガス製造プロセスに、メタノール改質工程を
組み込むことにより、高性能の低温水蒸気改質触
媒を使用した場合でも、原料炭化水素の水素化脱
硫工程に高濃度の水素ガスを自給できる都市ガス
製造法を提供する。 In view of the current state of the prior art as described above, the present invention incorporates a methanol reforming process into a city gas production process in which the unit reactions are a hydrodesulfurization process of feedstock hydrocarbons and a low-temperature steam reforming process of desulfurized hydrocarbons. By incorporating this, we provide a city gas production method that can self-suffice high-concentration hydrogen gas for the hydrodesulfurization process of feedstock hydrocarbons even when using a high-performance low-temperature steam reforming catalyst.
CH3OH+H2O→CO2+3H2 ……(1)
ΔHR=12Kcal/g・mole
メタノールの改質反応は上記(1)式で示される通
りの吸熱反応であるが、ここで必要な反応熱は都
市ガス製造プロセスに於て低温水蒸気改質工程か
ら流出する生成ガスの保有熱によつて賄うことが
できる。CH 3 OH + H 2 O → CO 2 + 3H 2 ...(1) ΔH R = 12Kcal/g・mole The methanol reforming reaction is an endothermic reaction as shown in equation (1) above, but the necessary reaction here is Heat can be provided by the retained heat of the product gas flowing out from the low temperature steam reforming process in the city gas production process.
従つて、本発明に係る第1の方法は、原料炭化
水素を水素化脱硫し、脱硫された炭化水素を水蒸
気と混合して低温水蒸気改質反応帯域に供給し、
当該反応帯域にて炭化水素と水蒸気を低温水蒸気
改質条件下に改質触媒と接触させて都市ガスを生
成させる都市ガスの製造方法に於て、低温水蒸気
改質反応帯域の下流側に、当該帯域からの流出ガ
スで間接的に加熱されるメタノール改質反応帯域
を設け、この反応帯域にメタノールと水蒸気を供
給してメタノール改質触媒の存在下にメタノール
を改質し、生成される水素を前記した原料炭化水
素の水素化脱硫に使用することを特徴とする。 Therefore, the first method according to the present invention includes hydrodesulfurizing feedstock hydrocarbons, mixing the desulfurized hydrocarbons with steam, and supplying the mixture to a low-temperature steam reforming reaction zone.
In a method for producing city gas in which city gas is produced by bringing hydrocarbons and steam into contact with a reforming catalyst under low-temperature steam reforming conditions in the reaction zone, the A methanol reforming reaction zone is provided which is indirectly heated by the gas effluent from the zone, and methanol and steam are supplied to this reaction zone to reform methanol in the presence of a methanol reforming catalyst, and the hydrogen produced is It is characterized in that it is used for hydrodesulfurization of the above-mentioned raw material hydrocarbon.
ところで、従前の都市ガス製造プロセスにも見
られる通り、所謂高カロリーガスを取得する場合
には、低温水蒸気改質工程の下流側にメタン化工
程を設け、低温水蒸気改質工程から流出する改質
ガスをメタン化工程に送り、改質ガス中のCO2を
メタン化してメタン濃度を高める方法が採用され
ている。 By the way, as seen in the conventional city gas production process, when obtaining so-called high-calorie gas, a methanation process is installed downstream of the low-temperature steam reforming process, and the reformed gas flowing out from the low-temperature steam reforming process is The method used is to send the gas to a methanation process to methanize the CO 2 in the reformed gas and increase the methane concentration.
CO2+4H2→CH4+2H2O ……(2)
ΔHR=−40Kcal/g・mole
然るに、CO2のメタン化反応は上記(2)式で示さ
れる通りの発熱反応であるため、この反応と先に
述べたメタノールの改質反応との間で反応熱の授
受を行なわせれば、熱の有効利用を図りながら(1)
式によつて水素化脱硫用の水素を生成させること
ができるばかりでなく、(2)式によつてメタン濃度
を増大させることができる利点がある。しかも、
(2)式のメタン化反応はその反応熱が(1)式のメタノ
ール改質反応に喰われるので、(2)式の化学平衡を
メタン生成にとつて有利に維持することもでき
る。CO 2 +4H 2 → CH 4 +2H 2 O ...(2) ΔH R = -40Kcal/g・mole However, since the methanation reaction of CO 2 is an exothermic reaction as shown in equation (2) above, this If the reaction heat is exchanged between the reaction and the methanol reforming reaction mentioned above, the heat can be used effectively (1)
Equation (2) has the advantage that not only can hydrogen for hydrodesulfurization be generated, but also methane concentration can be increased using equation (2). Moreover,
Since the reaction heat of the methanation reaction of formula (2) is absorbed by the methanol reforming reaction of formula (1), the chemical equilibrium of formula (2) can also be maintained advantageously for methane production.
従つて、本発明に係る第2の方法は、原料炭化
水素を水素化脱硫し、脱硫された炭化水素を水蒸
気と混合して低温水蒸気改質反応帯域に供給し、
当該反応帯域にて炭化水素と水蒸気を低温水蒸気
改質条件下に改質触媒と接触させて都市ガスを生
成させる都市ガスの製造方法に於て、加熱流体通
過側にメタン化反応帯域を、被加熱流体通過側に
メタノール改質反応帯域を有する熱交換型反応器
を低温水蒸気改質反応帯域の下流側に設け、その
メタン化反応帯域に低温水蒸気改質反応帯域から
流出する都市ガスを供給し、メタン化触媒の存在
下にメタン化反応を生起させて都市ガスのメタン
濃度を増大させ、このメタン化反応帯域から放出
される反応熱にてメタノール改質反応帯域を加熱
しながら、この帯域にメタノールと水蒸気を供給
してメタノール改質触媒の存在下にメタノールを
改質し、生成される水素を前記した原料炭化水素
の水素化脱硫に使用することを特徴とする。 Therefore, the second method according to the present invention includes hydrodesulfurizing feedstock hydrocarbons, mixing the desulfurized hydrocarbons with steam, and supplying the mixture to a low-temperature steam reforming reaction zone.
In a method for producing city gas in which city gas is produced by bringing hydrocarbons and steam into contact with a reforming catalyst under low-temperature steam reforming conditions in the reaction zone, a methanation reaction zone is provided on the heated fluid passage side. A heat exchange reactor having a methanol reforming reaction zone on the heated fluid passage side is provided downstream of the low temperature steam reforming reaction zone, and city gas flowing out from the low temperature steam reforming reaction zone is supplied to the methanation reaction zone. , a methanation reaction is caused in the presence of a methanation catalyst to increase the methane concentration of city gas, and while the methanol reforming reaction zone is heated with the reaction heat released from this methanation reaction zone, this zone is heated. The present invention is characterized in that methanol and steam are supplied to reform methanol in the presence of a methanol reforming catalyst, and the generated hydrogen is used for the hydrodesulfurization of the feedstock hydrocarbons described above.
この第2の都市ガス製造法は、メタン化工程を
設けている点で第1の方法と相違するが、前掲の
(2)式からも明らかな通り、CO2のメタン化反応は
かなりの発熱を伴うので、メタン化反応帯域とメ
タノール改質反応帯域が隣接した熱交換型反応器
を用いるのが得策であるが、両反応帯域を別個に
設け、メタン化反応帯域から流出するガスにてメ
タノール改質反応帯域を加熱することもでき、さ
らにまた第1の方法に見られる如く、低温水蒸気
改質反応帯域から流出するガスにてメタノール改
質反応帯域を加熱し、しかる後このガスをメタン
化反応帯域に供給することもできる。 This second city gas production method differs from the first method in that it includes a methanation step, but it
As is clear from equation (2), the methanation reaction of CO 2 is accompanied by considerable heat generation, so it is best to use a heat exchange reactor in which the methanation reaction zone and methanol reforming reaction zone are adjacent. It is also possible to provide both reaction zones separately and heat the methanol reforming reaction zone with the gas flowing out from the methanation reaction zone; It is also possible to heat the methanol reforming reaction zone with a gas which is then fed to the methanation reaction zone.
メタノールの改質反応は、前掲の(1)式から頷け
る通り水蒸気を必要とする。このため上記の第1
及び第2の方法ではメタノール改質反応帯域にメ
タノールと水蒸気を供給したが、メタノールの改
質に必要な水蒸気は、低温水蒸気改質反応帯域出
口ガスに残存する水蒸気で賄うと共に、メタノー
ルの改質に必要な反応熱を当該ガスが保有する熱
で賄うことができる。 The methanol reforming reaction requires water vapor, as can be seen from equation (1) above. For this reason, the first
In the second method, methanol and steam were supplied to the methanol reforming reaction zone, but the steam necessary for methanol reforming was supplied by the steam remaining in the outlet gas of the low temperature steam reforming reaction zone, and the methanol reforming reaction zone was supplied with methanol and steam. The reaction heat required for this can be covered by the heat possessed by the gas.
従つて、本発明の第3の方法は、原料炭化水素
を水素化脱硫し、脱硫された炭化水素を水蒸気と
混合して低温水蒸気改質反応帯域に供給し、当該
反応帯域にて炭化水素と水蒸気を低温水蒸気改質
条件下に改善触媒と接触させて都市ガスを生成さ
せる都市ガスの製造方法に於て、メタノール改質
反応帯域を付設し、当該反応帯域にメタノールと
低温水蒸気改質反応帯域から流出する都市ガスの
一部を供給してメタノール改質触媒の存在下にメ
タノールを改質し、生成される水素を原料炭化水
素の水素化脱硫に使用することを特徴とする。 Therefore, the third method of the present invention is to hydrodesulfurize feedstock hydrocarbons, mix the desulfurized hydrocarbons with steam, and supply the mixture to a low-temperature steam reforming reaction zone, where the hydrocarbons and In a method for producing city gas in which city gas is produced by contacting steam with an improved catalyst under low-temperature steam reforming conditions, a methanol reforming reaction zone is attached, and methanol and low-temperature steam reforming reaction zone are added to the reaction zone. The system is characterized by supplying a portion of city gas flowing out from the system to reform methanol in the presence of a methanol reforming catalyst, and using the generated hydrogen for hydrodesulfurization of feedstock hydrocarbons.
そしてまた本発明の第4の方法は、上記第3の
方法にメタン化工程を追加したものであつて、こ
の方法ではメタノール改質反応帯域に供給される
低温水蒸気改質反応帯域出口ガスの残部をメタン
化反応帯域に供給することによつてメタン濃度の
増大が図られる。この第4の方法の別法は低温水
蒸気改質反応帯域出口ガスをメタノール改質反応
帯域へ分流させることなく、メタン化反応帯域に
供給してメタン濃度を増大させ、しかる後、メタ
ン化反応帯域出口ガスの一部をメタノールと共に
メタノール改質反応帯域に供給するものである。 Furthermore, the fourth method of the present invention is the method in which a methanation step is added to the third method, and in this method, the remainder of the low temperature steam reforming reaction zone outlet gas is supplied to the methanol reforming reaction zone. By supplying methane to the methanation reaction zone, the methane concentration is increased. An alternative to this fourth method is to increase the methane concentration by supplying the low temperature steam reforming reaction zone outlet gas to the methanation reaction zone without diverting it to the methanol reforming reaction zone, and then increasing the methane concentration in the methanation reaction zone. A portion of the outlet gas is supplied to the methanol reforming reaction zone together with methanol.
以下、添付図面にそつて本発明をさらに詳しく
説明するが、それに先立ち、図面に用いた記号を
説明すると次の通りである。 Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. Prior to that, symbols used in the drawings will be explained as follows.
HDS=水素化脱硫工程 MRG=低温水蒸気改質
工程
MET=メタン化工程 REF=メタノール改質工
程
CO2Rem=CO2除去工程 ST′M=スチーム
第1図は本発明の第2の方法を実施する場合の
ブロツクダイアグラムであつて、LPG又はナフ
サなでの原料炭化水素は、ライン1からHDS工
程2に供給されて水素化脱硫を受ける。尚、
HDS工程2には水素含有ガスがライン3からリ
サイクルされるが、これについては後述する。
HDS工程で精製された原料炭化水素は、ライン
4に供給される水蒸気(ST′M)と共にMRG工
程5に導入され、メタン、水素、一酸化炭素、二
酸化炭素及び未反応水蒸気を含有する改質ガスに
転化する。この改質ガスはライン6からMET工
程7に送られ、ここでガス中の二酸化炭素が前掲
の(2)式に従つてメタン化される結果、メタン濃度
は増大する。メタン濃度が増大したガスは、都市
ガス製造の常法に従つて、ライン8からCO2Rem
工程に送られて脱炭酸処理を受け、所謂高カロリ
ーガスとなる。ここまでの各工程はMET工程を
MRG工程の下流側に設けた従前の都市ガス製造
プロセスと実質的に相違するところがなく、従つ
て各工程で使用される触媒及び反応条件には、従
前の都市ガス製造プロセスに於ける触媒及び反応
条件をそのまま採用することができる。HDS = hydrodesulfurization process MRG = low temperature steam reforming process MET = methanation process REF = methanol reforming process CO 2 Rem = CO 2 removal process ST'M = steam Figure 1 shows the implementation of the second method of the present invention In this block diagram, feedstock hydrocarbons such as LPG or naphtha are fed from line 1 to HDS step 2 to undergo hydrodesulfurization. still,
Hydrogen-containing gas is recycled from line 3 to HDS step 2, which will be described later.
The raw material hydrocarbons refined in the HDS process are introduced into the MRG process 5 together with steam (ST'M) supplied to line 4, where they are reformed to contain methane, hydrogen, carbon monoxide, carbon dioxide, and unreacted steam. Converts to gas. This reformed gas is sent from line 6 to MET step 7, where carbon dioxide in the gas is converted into methane according to equation (2) above, resulting in an increase in methane concentration. The gas with increased methane concentration is sent to CO 2 Rem from line 8 according to the standard method of city gas production.
It is sent to a process where it undergoes decarboxylation treatment and becomes what is called a high-calorie gas. Each process up to this point is a MET process.
There is no substantial difference from the previous city gas production process, which was established downstream of the MRG process, and the catalysts and reaction conditions used in each process are different from those in the previous city gas production process. The conditions can be adopted as they are.
しかしながら、通常の低温水蒸気改質触媒、例
えばアルミナ又はケイソウ土に担持させたニツケ
ル触媒を用いて2段改質したり、あるいはルテニ
ウム触媒のような高性能の低温水蒸気改質触媒を
使用してMRG工程5を低温低スチーム比で運転
した場合には、ライン6を流れる改質ガスの水素
濃度が低下するため、このガスの一部をHDS工
程2にリサイクルしても、原料炭化水素を充分に
水素化脱硫することができない。 However, two-stage reforming using conventional low-temperature steam reforming catalysts, such as nickel catalysts supported on alumina or diatomaceous earth, or using high-performance low-temperature steam reforming catalysts such as ruthenium catalysts, When Step 5 is operated at a low temperature and low steam ratio, the hydrogen concentration of the reformed gas flowing through Line 6 decreases, so even if some of this gas is recycled to HDS Step 2, the feedstock hydrocarbons cannot be sufficiently converted. Cannot be hydrodesulfurized.
従つて、本発明の第2の方法ではREF工程1
0をMET工程7と熱交換可能な状態に設け、こ
の工程10にメタノールと水蒸気を供給してメタ
ノールを前掲の(1)式に従つて改質する。メタノー
ルの改質は吸熱反応であるが、これに必要な反応
熱はMET工程7で生起するメタン化反応の発熱
量で賄われるので、メタノールは水素と二酸化炭
素に改質される。メタノールの改質ガスはREF
工程10からライン11に取り出され、熱交換器1
2及び気液分離器13を経て、原料炭化水素の水
素化脱硫用水素含有ガスとしてライン3から
HDS工程2にリサイクルされる。 Therefore, in the second method of the present invention, REF step 1
0 is provided in a state where it can exchange heat with the MET step 7, methanol and steam are supplied to this step 10, and methanol is reformed according to the above-mentioned equation (1). Although methanol reforming is an endothermic reaction, the reaction heat required for this is covered by the calorific value of the methanation reaction that occurs in MET step 7, so methanol is reformed into hydrogen and carbon dioxide. Methanol reformed gas is REF
It is taken out from process 10 to line 11, and heat exchanger 1
2 and gas-liquid separator 13, from line 3 as a hydrogen-containing gas for hydrodesulfurization of feedstock hydrocarbons.
Recycled to HDS process 2.
尚、第1図では熱交換型反応器を使用して
REF工程10とMET工程7との間で反応熱の授
受を行なわせる態様を示したが、REF工程10
に必要な反応熱はライン6又はライン8を流れる
ガスとの間接的熱交換によつて賄うことができ
る。そして第1図のブロツクダイアグラムに於
て、MET工程7の設置を省き、MRG工程5か
らライン6に流れる改質ガスにて、REF工程1
0を加熱する態様は、本発明の第1の方法に対応
する。 In addition, in Figure 1, a heat exchange type reactor is used.
Although the mode in which reaction heat is exchanged between REF step 10 and MET step 7 has been shown, REF step 10
The heat of reaction required for can be provided by indirect heat exchange with the gas flowing in line 6 or line 8. In the block diagram shown in Figure 1, the installation of the MET process 7 is omitted and the reformed gas flowing from the MRG process 5 to the line 6 is used in the REF process 1.
The mode of heating 0 corresponds to the first method of the present invention.
第2図は本発明の第4の方法を実施する場合の
ブロツクダイアグラムであつて、ライン1から供
給される原料炭化水素がHDS工程2で水素化脱
硫され、MRG工程5で低温水蒸気改質され、
MET工程7でメタン化され、そしてCO2Rem工
程9で脱炭酸されて所謂高カロリーガスに転化す
ることは、第1図の場合と同様である。第1図に
示す方法と第2図に示す方法との相違点は、前者
がREF工程10にメタノールとスチームを供給
してメタノールを改質しているのに対し、後者が
メタノールとライン6′に分流される改質ガスを
REF工程10に供給してメタノールを改質して
いる点にある。後者の場合、メタノールの改質に
必要なスチームには、ライン6′を流れる改質ガス
中の未反応スチームが利用される。一般にメタノ
ール改質触媒はメタン化活性を持たないので、第
2図のREF工程10ではメタノールの改質反応
を選択的に進行させることができる。念のため付
言すると、メタノールの改質は吸熱反応であるた
め反応温度を低下させるが、当該反応帯域ではメ
タン化活性は抑えられ、シフト活性は発現される
ため、平衡的にはCOが少なくなり、水素生成は
抑制されることがない。REF工程10での生成
ガスはライン11に取出され、第1図の場合と同
様、熱交換器12及び気液分離器13を経て、水
素化脱硫用の水素含有ガスとして、ライン3から
HDS工程2にリサイクルされる。 FIG. 2 is a block diagram when implementing the fourth method of the present invention, in which feedstock hydrocarbons supplied from line 1 are hydrodesulfurized in HDS step 2, and low-temperature steam reformed in MRG step 5. ,
The process of methanation in the MET step 7 and decarboxylation in the CO 2 Rem step 9 to convert into a so-called high-calorie gas is the same as in the case of FIG. The difference between the method shown in FIG. 1 and the method shown in FIG. The reformed gas is divided into
The point is that methanol is reformed by being supplied to the REF step 10. In the latter case, unreacted steam in the reformed gas flowing through line 6' is used as the steam necessary for reforming methanol. Since methanol reforming catalysts generally do not have methanation activity, the methanol reforming reaction can proceed selectively in the REF step 10 of FIG. As a reminder, since methanol reforming is an endothermic reaction, the reaction temperature is lowered, but in the reaction zone, methanation activity is suppressed and shift activity is expressed, so in equilibrium, CO is reduced. , hydrogen production is not inhibited. The gas produced in the REF step 10 is taken out to the line 11, and as in the case of Fig. 1, it passes through the heat exchanger 12 and the gas-liquid separator 13, and is sent out from the line 3 as a hydrogen-containing gas for hydrodesulfurization.
Recycled to HDS process 2.
第2図ではMRG工程5の下流側にMET工程
7を設けて都市ガス中のメタン濃度の増大を図
り、高カロリーガスを得ているが、通常の都市ガ
スを得る場合にはMET工程を省略することがで
き、第2図に示すブロツクダイアグラムに於て、
MET工程7を省いた態様は、本発明の第3の方
法に対応する。 In Figure 2, the MET process 7 is installed downstream of the MRG process 5 to increase the methane concentration in city gas and obtain high-calorie gas, but the MET process is omitted when obtaining regular city gas. In the block diagram shown in Figure 2,
The embodiment in which MET step 7 is omitted corresponds to the third method of the present invention.
上記した第1〜第4の方法に於て、メタノール
を改質するに際しての触媒及び反応条件には、公
知のものが使用可能であつて、例えばメタノール
改質触媒としては、銅、銅−亜鉛、銅−クロム、
白金などを使用することができ、反応条件として
は温度150℃〜500℃、圧力50Kg/cm2G以下を採用
することができる。そして、本発明の方法によれ
ば、都市ガス製造プロセスに於ける低温水蒸気改
質工程を、低温、低スチーム比で運転した場合に
生起する水素化脱硫用水素の質的低下が、当該プ
ロセスにメタノール改質工程を付加することで改
善でき、加えてメタノールの改質に要する反応熱
も、都市ガス製造プロセス内で自給することがで
きる。また、第1図及び第2図では図示を省略し
たが、一般の都市ガス製造プロセスではリサイク
ルガスをコンプレツサで昇圧して水素化脱硫工程
に戻すのが慣例であるが、第1図に示す本発明の
方法ではREF工程10をHDS工程2より高圧で
実施することにより、リサイクルガス用コンプレ
ツサを不要ならしめることができる。 In the first to fourth methods described above, known catalysts and reaction conditions can be used for reforming methanol. For example, as methanol reforming catalysts, copper, copper-zinc , copper-chromium,
Platinum or the like may be used, and the reaction conditions may be a temperature of 150° C. to 500° C. and a pressure of 50 Kg/cm 2 G or less. According to the method of the present invention, the quality deterioration of hydrogen for hydrodesulfurization that occurs when the low-temperature steam reforming step in the city gas production process is operated at low temperature and low steam ratio can be avoided in the process. This can be improved by adding a methanol reforming step, and in addition, the reaction heat required for methanol reforming can be self-sufficient within the city gas production process. Although not shown in Figures 1 and 2, in the general city gas production process, it is customary to pressurize recycled gas in a compressor and return it to the hydrodesulfurization process. In the method of the invention, by performing the REF step 10 at a higher pressure than the HDS step 2, a compressor for recycled gas can be made unnecessary.
実施例 1
本例は第3図に示すブロツクダイアグラムに従
つて都市ガスを製造する例を示す。Example 1 This example shows an example of producing city gas according to the block diagram shown in FIG.
予備硫化したNiMoX触媒を充填した水添帯域
と、ZnOを充填した吸着脱硫帯域を有する水素化
脱硫反応器2に、147/hrの原料ナフサ
(IBP35℃、EP162℃、比重0.68、イオウ分230wt.
ppm)と、9.48Nm3/hrの水添用ガスを供給し、
340℃、25Kg/cm2G、LHSV=2.0の条件で水添
後、硫化水素を除去した。こうして硫黄濃度
0.1wt.ppm以下に精製された原料ナフサにスチー
ム126.0Kg/hrを加え、ルテニウム触媒が充填さ
れた低温水蒸気改質反応器5に供給し、490℃、
19Kg/cm2Gの条件下に改質反応を行なつた。 Hydrodesulfurization reactor 2, which has a hydrogenation zone filled with a pre-sulfurized NiMoX catalyst and an adsorption desulfurization zone filled with ZnO, was charged with 147/hr raw material naphtha (IBP 35℃, EP 162℃, specific gravity 0.68, sulfur content 230wt.
ppm) and hydrogenation gas of 9.48Nm 3 /hr,
After hydrogenation under the conditions of 340° C., 25 Kg/cm 2 G, and LHSV=2.0, hydrogen sulfide was removed. Thus the sulfur concentration
126.0 Kg/hr of steam was added to the raw material naphtha refined to 0.1 wt.ppm or less, and the mixture was fed to the low temperature steam reforming reactor 5 filled with a ruthenium catalyst, and heated at 490°C.
The modification reaction was carried out under the condition of 19 kg/cm 2 G.
一方、メタノール3.66Kg/hrとスチーム2.06
Kg/hrとの混合物を250℃に予熱した後、熱交換
型反応器の管側に銅系メタノール改質触媒を充填
してなるメタノール改質反応器10に供給し、熱
交換型反応器の胴側には前記の反応器5から流出
する改質ガスを供給して、300℃、26Kg/cm2G、
LHSV=0.2の条件でメタノールの改質を行なつ
た。反応器10から得られるメタノール改質ガス
は冷却して過剰スチームを凝縮除去後、水添用ガ
スとしてライン3から水素化脱硫反応器2にリサ
イクルした。このガスの組成を表−1のa欄に、
また製品ガスとして反応器5から得られる改質ガ
スの組成を表−1のb欄に示す。 On the other hand, methanol 3.66Kg/hr and steam 2.06
After preheating the mixture with Kg/hr to 250°C, it is supplied to the methanol reforming reactor 10, which has a copper-based methanol reforming catalyst packed in the tube side of the heat exchange reactor. The reformed gas flowing out from the reactor 5 was supplied to the shell side, and the temperature was 300°C, 26 kg/cm 2 G,
Methanol reforming was carried out under the condition of LHSV=0.2. The methanol reformed gas obtained from the reactor 10 was cooled to condense and remove excess steam, and then recycled to the hydrodesulfurization reactor 2 through the line 3 as a hydrogenation gas. The composition of this gas is shown in column a of Table 1.
Further, the composition of the reformed gas obtained from the reactor 5 as the product gas is shown in column b of Table 1.
表−1
a b
CH4 −vol% 67.1vol%
H2 73.4 〃 10.6 〃
CO 6.2 〃 0.9 〃
CO2 20.4 〃 21.4 〃
実施例 2
本例は第1図に示すブロツクダイアグラム(但
し、脱炭酸工程を省く)に従つて都市ガスを製造
する例である。 Table 1 a b CH 4 -vol% 67.1vol% H 2 73.4 〃 10.6 〃 CO 6.2 〃 0.9 〃 CO 2 20.4 〃 21.4 〃 Example 2 This example is based on the block diagram shown in Figure 1 (however, the decarboxylation process is This is an example of producing city gas according to the method (omitted).
予備硫化したNiMoX触媒を充填した水添帯域
と、ZnOを充填した吸着脱硫帯域を有する水素化
脱硫反応器2に、147/hrの原料ナフサ
(IBP35℃、EP162℃、比重0.68、イオウ分230wt.
ppm)と、9.48Nm3/hrの水添用ガスを供給し、
340℃、25Kg/cm2G、LHSV=2.0の条件で水添
後、硫化水素を除去した。こうして硫黄濃度
0.1wt.ppm以下に精製された原料ナフサにスチー
ム126.0Kg/hrを加え、ルテニウム触媒が充填さ
れた低温水蒸気改質反応器5に供給し、500℃、
19Kg/cm2Gの条件下に改質反応を行なつた。 Hydrodesulfurization reactor 2, which has a hydrogenation zone filled with a pre-sulfurized NiMoX catalyst and an adsorption desulfurization zone filled with ZnO, was charged with 147/hr raw material naphtha (IBP 35℃, EP 162℃, specific gravity 0.68, sulfur content 230wt.
ppm) and hydrogenation gas of 9.48Nm 3 /hr,
After hydrogenation under the conditions of 340° C., 25 Kg/cm 2 G, and LHSV=2.0, hydrogen sulfide was removed. Thus the sulfur concentration
126.0 Kg/hr of steam was added to raw material naphtha refined to 0.1 wt.ppm or less, and the mixture was fed to a low-temperature steam reforming reactor 5 filled with a ruthenium catalyst, and heated at 500°C.
The modification reaction was carried out under the condition of 19 kg/cm 2 G.
得られた改質ガスを280℃まで冷却し、胴側に
ニツケル系メタン化触媒を、管側にメタノール改
質触媒をそれぞれ充填した熱交換型反応器の胴側
に供給し、340℃、17Kg/cm2Gの条件で反応させ
た。一方、メタノール3.66Kg/hrとスチーム2.06
Kg/hrとの混合物を250℃に予熱し、前記熱交換
型反応器の管側に供給して、280℃、26Kg/cm2G
の条件で反応させた。この反応で得られるメタノ
ール改質ガスは冷却してスチームを凝縮除去後、
水添用ガスとして反応器2にリサイクルした。ま
た前記熱交換型反応器の胴側から流出するガス
は、冷却して水蒸気を分離後、製品ガスとした。 The obtained reformed gas was cooled to 280°C and fed to the shell side of a heat exchange reactor, which was filled with a nickel-based methanation catalyst in the shell side and a methanol reforming catalyst in the tube side. The reaction was carried out under the conditions of /cm 2 G. On the other hand, methanol 3.66Kg/hr and steam 2.06
Kg/hr was preheated to 250°C and fed to the tube side of the heat exchange reactor, and the mixture was heated to 280°C and 26Kg/cm 2 G.
The reaction was carried out under the following conditions. The methanol reformed gas obtained from this reaction is cooled and the steam is condensed and removed.
It was recycled to reactor 2 as a hydrogenation gas. Further, the gas flowing out from the shell side of the heat exchange type reactor was cooled and water vapor was separated, followed by product gas.
表−2のa欄にメタノール改質ガスから得られ
る水添用ガスの組成を、b欄に製品ガスの組成を
示す。 Column a of Table 2 shows the composition of the hydrogenation gas obtained from the methanol reformed gas, and column b shows the composition of the product gas.
表−2
a b
CH4 −vol% 66.2vol%
H2 73.7 〃 11.5 〃
CO 5.4 〃 1.1 〃
CO2 20.9 〃 21.2 〃
実施例 3
本例では第4図に示すブロツクダイアグラムに
従つて都市ガスを製造した。 Table-2 a b CH 4 -vol% 66.2vol% H 2 73.7 〃 11.5 〃 CO 5.4 〃 1.1 〃 CO 2 20.9 〃 21.2 〃 Example 3 In this example, city gas is produced according to the block diagram shown in Figure 4. did.
予備硫化したNiMoX触媒を充填した水添帯域
と、ZnOを充填した吸着脱硫帯域を有する水素化
脱硫反応器2に、147/hrの原料ナフサ
(IBP35℃、EP162℃、比重0.68、イオウ分230wt.
ppm)と、9.48Nm3/hrの水添用ガスを供給し、
340℃、25Kg/cm2G、LHSV=2.0の条件で水添
後、硫化水素を除去した。こうして硫黄濃度
0.1wt.ppm以下に精製された原料ナフサにスチー
ム126.0Kg/hrを加え、ルテニウム触媒が充填さ
れた低温水蒸気改質反応器5に供給し、500℃、
19Kg/cm2Gの条件下に改質反応を行なつた。 Hydrodesulfurization reactor 2, which has a hydrogenation zone filled with a pre-sulfurized NiMoX catalyst and an adsorption desulfurization zone filled with ZnO, was charged with 147/hr raw material naphtha (IBP 35℃, EP 162℃, specific gravity 0.68, sulfur content 230wt.
ppm) and hydrogenation gas of 9.48Nm 3 /hr,
After hydrogenation under the conditions of 340° C., 25 Kg/cm 2 G, and LHSV=2.0, hydrogen sulfide was removed. Thus the sulfur concentration
126.0 Kg/hr of steam was added to raw material naphtha refined to 0.1 wt.ppm or less, and the mixture was fed to a low-temperature steam reforming reactor 5 filled with a ruthenium catalyst, and heated at 500°C.
The modification reaction was carried out under the condition of 19 kg/cm 2 G.
こうして得た改質ガスの1/30を分別し、これに
メタノール3.66Kg/hrを加えて銅系メタノール改
質触媒を充填したメタノール改質反応器10に供
給し、220℃、17Kg/cm2Gの条件で反応させた。
こゝにおいてスチーム供給量は、147/hrのナ
フサの126Kg/hrのスチームの反応によつて約60
Kg/hrのスチームが消費され、なお改質生成ガス
中には66Kg/hrのスチームが残つている。この1/
30をメタノールの改質に回すとき、実施例1及び
2と同様にメタノール3.66Kg/hrに対する所要の
スチーム量である約2.06Kg/hrを供給することが
できる。反応器10から流出するメタノール改質
ガスは冷却してスチームを除去後、リサイクルコ
ンプレツサで昇圧し、水添用ガスとして反応器2
に供給した。また、前記改質ガスの残部29/30は
冷却してスチームを凝縮除去し、製品ガスとし
た。 1/30 of the reformed gas thus obtained was separated, 3.66 kg/hr of methanol was added thereto, and the mixture was supplied to the methanol reforming reactor 10 filled with a copper-based methanol reforming catalyst, at 220°C and 17 kg/cm 2 The reaction was carried out under the conditions of G.
In this case, the amount of steam supplied is approximately 60 kg due to the reaction of 147 kg/hr of naphtha with 126 kg/hr of steam.
Kg/hr of steam is consumed, and 66 Kg/hr of steam still remains in the reformed gas. This 1/
30 is used for methanol reforming, as in Examples 1 and 2, it is possible to supply approximately 2.06 Kg/hr, which is the required amount of steam for 3.66 Kg/hr of methanol. The methanol reformed gas flowing out from the reactor 10 is cooled to remove steam, and then pressurized in a recycle compressor and sent to the reactor 2 as a hydrogenation gas.
supplied. Further, the remaining portion 29/30 of the reformed gas was cooled to condense and remove steam, and was used as a product gas.
表−3のa欄及びb欄にそれぞれ水添用ガス及
び製品ガスの組成を示す。 Columns a and b of Table 3 show the compositions of the hydrogenation gas and product gas, respectively.
表−3 a b CH4 25.4vol% 66.4vol% H2 50.1 〃 11.3 〃 CO 2.3 〃 1.1 〃 CO2 22.3 〃 21.2 〃 Table-3 a b CH 4 25.4vol% 66.4vol% H 2 50.1 〃 11.3 〃 CO 2.3 〃 1.1 〃 CO 2 22.3 〃 21.2 〃
第1図〜第4図はそれぞれ本発明の方法を実施
する場合のブロツクダイアグラムを示す。
2;水素化脱硫工程、5;低温水蒸気改質工
程、7;メタン化工程、9;CO2除去工程、1
0;メタノール改質工程、13;気液分離器。
1 to 4 each show a block diagram for carrying out the method of the present invention. 2; Hydrodesulfurization process, 5; Low temperature steam reforming process, 7; Methanation process, 9; CO 2 removal process, 1
0; methanol reforming step; 13; gas-liquid separator.
Claims (1)
化水素を水蒸気と混合して低温水蒸気改質反応帯
域に供給し、当該反応帯域にて炭化水素と水蒸気
を低温水蒸気改質条件下に改質触媒と接触させて
都市ガスを生成させる都市ガスの製造方法に於
て、低温水蒸気改質反応帯域の下流側に、当該帯
域からの流出ガスで間接的に加熱されるメタノー
ル改質反応帯域を設け、この反応帯域にメタノー
ルと水蒸気を供給してメタノール改質触媒の存在
下にメタノールを改質し、生成される水素を前記
した原料炭化水素の水素化脱硫に使用することを
特徴とする都市ガスの製造方法。 2 原料炭化水素を水素化脱硫し、脱硫された炭
化水素を水蒸気と混合して低温水蒸気改質反応帯
域に供給し、当該反応帯域にて炭化水素と水蒸気
を低温水蒸気改質反応条件下に改質触媒と接触さ
せて都市ガスを生成させる都市ガスの製造方法に
於て、加熱流体通過側にメタン化反応帯域を、被
加熱流体通過側にメタノール改質反応帯域を有す
る熱交換型反応器を低温水蒸気改質反応帯域の下
流側に設け、そのメタン化反応帯域に低温水蒸気
改質反応帯域から流出する都市ガスを供給し、メ
タン化触媒の存在下にメタン化反応を生起させて
都市ガスのメタン濃度を増大させ、このメタン化
反応帯域から放出される反応熱にてメタノール改
質反応帯域を加熱しながらこの帯域にメタノール
と水蒸気を供給してメタノール改質触媒の存在下
にメタノールを改質し、生成される水素を前記し
た原料炭化水素の水素化脱硫に使用することを特
徴とする都市ガスの製造方法。 3 特許請求の範囲第2項記載の方法に於て、前
記の熱交換型反応器を使用する代わりにメタン化
反応帯域とメタノール改質反応帯域を個別に設
け、低温水蒸気改質反応帯域から流出する都市ガ
スをメタン化反応帯域に供給し、メタン化触媒の
存在下にメタン化反応を生起させて都市ガスのメ
タン濃度を増大させ、メタン濃度が増大した都市
ガスにてメタノール改質反応帯域を間接的に加熱
しながらこの帯域にメタノールと水蒸気を供給し
てメタノールを改質し、生成する水素を原料炭化
水素の水素化脱硫に使用することを特徴とする都
市ガスの製造方法。 4 特許請求の範囲第2項記載の方法に於て、前
記の熱交換型反応器を使用する代わりにメタン化
反応帯域とメタノール改質反応帯域を個別に設
け、低温水蒸気改質反応帯域から流出する都市ガ
スにてメタノール改質反応帯域を間接的に加熱し
ながらこの帯域にメタノールと水蒸気を供給して
メタノールを改質し、生成する水素を原料炭化水
素の水素化脱硫に使用し、メタノール改質反応帯
域を加熱して降温した都市ガスをメタン化反応帯
域に供給し、メタン化反応を生起させて都市ガス
のメタン濃度を増大させることを特徴とする都市
ガスの製造方法。 5 原料炭化水素を水素化脱硫し、脱硫された炭
化水素を水蒸気と混合して低温水蒸気改質反応帯
域に供給し、当該反応帯域にて炭化水素と水蒸気
を低温水蒸気改質条件下に改質触媒と接触させて
都市ガスを生成させる都市ガスの製造方法に於
て、メタノール改質反応帯域を付設し、当該反応
帯域にメタノールと低温水蒸気改質反応帯域から
流出する都市ガスの一部を供給してメタノール改
質触媒の存在下にメタノールを改質し、生成され
る水素を原料炭化水素の水素化脱硫に使用するこ
とを特徴とする都市ガスの製造方法。 6 原料炭化水素を水素化脱硫し、脱硫された炭
化水素を水蒸気と混合して低温水蒸気改質反応帯
域に供給し、当該反応帯域にて炭化水素と水蒸気
を低温水蒸気改質条件下口改善触媒と接触させて
都市ガスを生成させる都市ガスの製造方法に於
て、低温水蒸気改質反応帯域の下流側にメタン化
反応帯域を設けてさらにメタノール改質反応帯域
を付設し、低温水蒸気改質反応帯域から流出する
都市ガスの一部をメタノール改質反応帯域に分流
させると共に当該反応帯域にメタノールを供給し
てこれを改質し、生成される水素を原料炭化水素
の水素化脱硫に使用し、低温水蒸気改質反応帯域
から流出する都市ガスの残部をメタン化反応帯域
に供給し、メタン化触媒の存在下にメタン化反応
を生起させて都市ガスのメタン濃度を増大させる
ことを特徴とする都市ガスの製造方法。 7 特許請求の範囲第6項記載の方法に於て、低
温水蒸気改質反応帯域から流出する都市ガスをメ
タノール改質反応帯域へ分流させることなくメタ
ン化反応帯域に供給し、メタン化反応を生起させ
て都市ガスのメタン濃度を増大させ、メタン化反
応帯域から流出する高メタン濃度都市ガスの一部
をメタノール改質反応帯域に分流させると共に、
当該反応帯域にメタノールを供給してこれを改質
し、生成される水素を原料炭化水素の水素化脱硫
に使用することを特徴とする都市ガスの製造方
法。[Claims] 1 Hydrodesulfurization of feedstock hydrocarbons, the desulfurized hydrocarbons mixed with steam and supplied to a low temperature steam reforming reaction zone, where the hydrocarbons and steam are subjected to low temperature steam reforming. In a method for producing city gas in which city gas is produced by bringing it into contact with a reforming catalyst under quality conditions, methanol is placed downstream of a low-temperature steam reforming reaction zone and is indirectly heated by the gas flowing out from the zone. A reforming reaction zone is provided, methanol and steam are supplied to this reaction zone to reform methanol in the presence of a methanol reforming catalyst, and the generated hydrogen is used for the hydrodesulfurization of the feedstock hydrocarbons described above. A method for producing city gas characterized by: 2. Hydrodesulfurize the feedstock hydrocarbons, mix the desulfurized hydrocarbons with steam, and supply the mixture to a low-temperature steam reforming reaction zone, where the hydrocarbons and steam are reformed under low-temperature steam reforming reaction conditions. In a method for producing city gas in which city gas is produced by bringing it into contact with a quality catalyst, a heat exchange reactor having a methanation reaction zone on the heated fluid passage side and a methanol reforming reaction zone on the heated fluid passage side is used. It is installed downstream of the low-temperature steam reforming reaction zone, and the city gas flowing out from the low-temperature steam reforming reaction zone is supplied to the methanation reaction zone, and the methanation reaction occurs in the presence of a methanation catalyst to convert city gas into the methanation reaction zone. While increasing the methane concentration and heating the methanol reforming reaction zone with the reaction heat released from this methanation reaction zone, methanol and steam are supplied to this zone to reform methanol in the presence of a methanol reforming catalyst. and the produced hydrogen is used for hydrodesulfurization of the above-mentioned feedstock hydrocarbon. 3 In the method according to claim 2, instead of using the heat exchange type reactor, a methanation reaction zone and a methanol reforming reaction zone are provided separately, and the methanation reaction zone and the methanol reforming reaction zone are provided separately. The city gas is supplied to the methanation reaction zone, the methanation reaction is caused in the presence of a methanation catalyst to increase the methane concentration of the city gas, and the city gas with increased methane concentration is supplied to the methanol reforming reaction zone. A method for producing city gas, characterized by supplying methanol and steam to this zone while indirectly heating it, reforming the methanol, and using the generated hydrogen for hydrodesulfurization of feedstock hydrocarbons. 4 In the method described in claim 2, instead of using the heat exchange type reactor, a methanation reaction zone and a methanol reforming reaction zone are provided separately, and the methanation reaction zone and the methanol reforming reaction zone are provided separately. Methanol is reformed by supplying methanol and steam to the methanol reforming reaction zone while indirectly heating the methanol reforming reaction zone with city gas, and the generated hydrogen is used for hydrodesulfurization of feedstock hydrocarbons. A method for producing city gas, which comprises supplying city gas whose temperature has been lowered by heating a quality reaction zone to a methanation reaction zone, causing a methanation reaction to increase the methane concentration of the city gas. 5. Hydrodesulfurize the feedstock hydrocarbons, mix the desulfurized hydrocarbons with steam, and supply the mixture to a low-temperature steam reforming reaction zone, where the hydrocarbons and steam are reformed under low-temperature steam reforming conditions. In a method for producing city gas in which city gas is produced through contact with a catalyst, a methanol reforming reaction zone is attached, and methanol and a portion of the city gas flowing out from the low-temperature steam reforming reaction zone are supplied to the reaction zone. A method for producing city gas, characterized in that methanol is reformed in the presence of a methanol reforming catalyst, and the generated hydrogen is used for hydrodesulfurization of feedstock hydrocarbons. 6. Hydrodesulfurize the feedstock hydrocarbons, mix the desulfurized hydrocarbons with steam, and supply the mixture to a low-temperature steam reforming reaction zone, where the hydrocarbons and steam are converted to a mouth improvement catalyst under low-temperature steam reforming conditions. In the method for producing city gas in which city gas is produced by contacting with the gas, a methanation reaction zone is provided downstream of the low-temperature steam reforming reaction zone, and a methanol reforming reaction zone is further attached to perform the low-temperature steam reforming reaction. Part of the city gas flowing out from the zone is diverted to a methanol reforming reaction zone, and methanol is supplied to the reaction zone to reform it, and the generated hydrogen is used for hydrodesulfurization of feedstock hydrocarbons, A city characterized by supplying the remainder of the city gas flowing out from the low-temperature steam reforming reaction zone to the methanation reaction zone and causing a methanation reaction in the presence of a methanation catalyst to increase the methane concentration of the city gas. Gas production method. 7 In the method described in claim 6, city gas flowing out from the low-temperature steam reforming reaction zone is supplied to the methanation reaction zone without being diverted to the methanol reforming reaction zone to cause the methanation reaction. to increase the methane concentration of city gas, and divert a part of the high methane concentration city gas flowing out from the methanation reaction zone to the methanol reforming reaction zone,
A method for producing city gas, comprising supplying methanol to the reaction zone, reforming it, and using the generated hydrogen for hydrodesulfurization of feedstock hydrocarbons.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22346584A JPS61101595A (en) | 1984-10-24 | 1984-10-24 | Preparation of town gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22346584A JPS61101595A (en) | 1984-10-24 | 1984-10-24 | Preparation of town gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61101595A JPS61101595A (en) | 1986-05-20 |
JPH0552355B2 true JPH0552355B2 (en) | 1993-08-05 |
Family
ID=16798572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22346584A Granted JPS61101595A (en) | 1984-10-24 | 1984-10-24 | Preparation of town gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61101595A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518303A (en) * | 1975-05-30 | 1976-01-23 | Ici Ltd | Daitaitennengasunoseiho |
JPS5213491A (en) * | 1975-07-24 | 1977-02-01 | Nippon Oil Co Ltd | Catalyst for refining by hydrogenation |
JPS5682888A (en) * | 1979-11-13 | 1981-07-06 | Veg Gasinstituut Nv | Manufacture of methaneecontaining gas |
-
1984
- 1984-10-24 JP JP22346584A patent/JPS61101595A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS518303A (en) * | 1975-05-30 | 1976-01-23 | Ici Ltd | Daitaitennengasunoseiho |
JPS5213491A (en) * | 1975-07-24 | 1977-02-01 | Nippon Oil Co Ltd | Catalyst for refining by hydrogenation |
JPS5682888A (en) * | 1979-11-13 | 1981-07-06 | Veg Gasinstituut Nv | Manufacture of methaneecontaining gas |
Also Published As
Publication number | Publication date |
---|---|
JPS61101595A (en) | 1986-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3828474A (en) | Process for producing high strength reducing gas | |
US7550635B2 (en) | Process for the preparation hydrogen and a mixture of hydrogen and carbon monoxide | |
US6527980B1 (en) | Reforming with intermediate reactant injection | |
JP4422029B2 (en) | Production of hydrocarbons | |
US4618451A (en) | Synthesis gas | |
CA2052452C (en) | Process for producing high purity hydrogen | |
EP0486174B1 (en) | Process for producing high purity hydrogen | |
CA1263671A (en) | Process for the production of synthesis gas | |
EA008048B1 (en) | Production of hydrocarbons by stream reforming and fischer-tropsch reaction | |
US4315900A (en) | Integrated process for the production of methanol and ammonia | |
RU2404117C2 (en) | Method of preparing mixture of carbon monoxide and hydrogen | |
JP2012511493A (en) | Integrated gas purifier | |
EP3983366B1 (en) | Process for synthesising methanol | |
EA030740B1 (en) | Process for production of hydrogen rich gas mixtures | |
US6900247B2 (en) | Natural gas conversion to hydrocarbons and ammonia | |
EP1414771B1 (en) | Integrated process for hydrocarbon synthesis | |
US20100176346A1 (en) | Process and system for conducting isothermal low-temperature shift reaction using a compact boiler | |
AU2002317859A1 (en) | Integrated process for hydrocarbon synthesis | |
US20240140891A1 (en) | Process for synthesising methanol | |
JP2911061B2 (en) | Method for hydrocarbon desulfurization and steam reforming | |
JPH0552355B2 (en) | ||
JP5102420B2 (en) | Desulfurization | |
GB2084973A (en) | An integrated process for the production of methanol and ammonia | |
CN102165041B (en) | Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis method | |
GB2606855A (en) | Process for synthesising methanol |