JPH0552235A - Viscous damper - Google Patents

Viscous damper

Info

Publication number
JPH0552235A
JPH0552235A JP21177591A JP21177591A JPH0552235A JP H0552235 A JPH0552235 A JP H0552235A JP 21177591 A JP21177591 A JP 21177591A JP 21177591 A JP21177591 A JP 21177591A JP H0552235 A JPH0552235 A JP H0552235A
Authority
JP
Japan
Prior art keywords
cylinder
vibration
fluid
piston
viscous damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21177591A
Other languages
Japanese (ja)
Inventor
Shunzo Watanabe
俊三 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21177591A priority Critical patent/JPH0552235A/en
Publication of JPH0552235A publication Critical patent/JPH0552235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To provide a viscous damper with which the sufficient vibration suppressing effect can be obtained in the ordinary use and the damping effect can be obtained surely even in case of the large vibration in the resonance point passing or in an earthquake. CONSTITUTION:A viscous damper is equipped with a cylinder 11 in which the working fluid 15 having viscosity is accommodated and a piston 12 which slidingly moves in the axial direction in the cylinder 11. The relative vibration along the axial direction of the cylinder 11 and the piston 12 is attenuated by the transfer resistance of the working fluid 15. The fluid 15 is a magnetic fluid. A magnet 17 for magnetizing the magnetic fluid 15 is installed on the peripheral wall side of the cylinder 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種プラント用機器その
他の機器に防振用として適用される粘性ダンパに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a viscous damper applied to various plant equipment and other equipment for vibration isolation.

【0002】[0002]

【従来の技術】従来、例えば図2に示すように、基礎1
上への搭載機器2の防振支持装置として、例えばゴムま
たはスプリング等の弾性支持部材3と粘性ダンパ4とを
並列に設置した構成のものが知られている。
2. Description of the Related Art Conventionally, as shown in FIG.
As an anti-vibration support device for the on-board device 2, there is known a device in which an elastic support member 3 such as rubber or a spring and a viscous damper 4 are installed in parallel.

【0003】このものにおいて、粘性ダンパ4は一般
に、粘性を有する作動流体を収容したシリンダと、この
シリンダ内で軸方向に摺動するピストンとを備えた構成
とされている。なお、流体としては例えば油等の粘性が
大きい流体が適用され、シリンダまたはピストンには、
軸方向両端のシリンダ室を互いに連通する流路が設けら
れている。
In this case, the viscous damper 4 is generally constituted by a cylinder containing a working fluid having a viscosity and a piston sliding in the cylinder in the axial direction. A fluid having a high viscosity such as oil is used as the fluid, and the cylinder or the piston is
A flow path is provided that connects the cylinder chambers at both ends in the axial direction to each other.

【0004】そして、例えば地震その他の振動が発生し
た場合、シリンダおよびピストンの軸方向に沿う移動に
沿う相対振動を、それに伴う作動流体の移動抵抗によっ
て減衰させるようになっている。
When, for example, an earthquake or other vibration occurs, the relative vibration along the movement of the cylinder and the piston in the axial direction is damped by the accompanying movement resistance of the working fluid.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の粘性ダ
ンパでは、シリンダ内の流体による粘性抵抗が一様とな
っているため、振動振幅の大小に拘らず、粘性ダンパの
減衰係数が略一定となっている。このため、例えば共振
点通過時に過大な振動になったり、逆にこれを避けるた
めに共振点の設定を変更すると、通常使用時に十分な防
振作用が得られない事態が生じる等の問題があった。
In the above-mentioned conventional viscous damper, since the viscous resistance due to the fluid in the cylinder is uniform, the damping coefficient of the viscous damper is substantially constant regardless of the vibration amplitude. Is becoming Therefore, for example, there is a problem that excessive vibration occurs when passing through the resonance point, or conversely, if the setting of the resonance point is changed to avoid this, a situation in which sufficient vibration damping effect cannot be obtained during normal use, etc. It was

【0006】本発明は、このような事情を考慮してなさ
れたもので、通常使用時に十分な防振効果が得られるの
は勿論、共振点通過あるいは地震等の大振動時にも確実
な減衰効果を得ることができる粘性ダンパを提供するこ
とを目的とする。
The present invention has been made in consideration of such circumstances, and it is of course possible to obtain a sufficient vibration-proof effect during normal use, and also a reliable damping effect even when passing through a resonance point or during a large vibration such as an earthquake. An object of the present invention is to provide a viscous damper that can obtain

【0007】[0007]

【課題を解決するための手段】本発明は前記の目的を達
成するために、粘性を有する作動流体を収容したシリン
ダと、このシリンダ内で軸方向に摺動するピストンとを
備え、これらシリンダとピストンとの軸方向に沿う移動
に沿う相対振動を、それに伴う作動流体の移動抵抗によ
って減衰させる粘性ダンパにおいて、前記流体を磁性流
体とするとともに、前記シリンダの周壁側に、前記磁性
流体を磁化させる磁石を設けたことを特徴とする。
In order to achieve the above object, the present invention comprises a cylinder containing a viscous working fluid, and a piston that slides in the cylinder in the axial direction. In a viscous damper that attenuates relative vibration along the movement along the axial direction with a piston by the movement resistance of the working fluid accompanying it, the fluid is a magnetic fluid, and the magnetic fluid is magnetized on the peripheral wall side of the cylinder. A feature is that a magnet is provided.

【0008】なお、好ましくは、磁石はピストンの中立
位置から軸方向に離間した配置とし、また軸方向に位置
調整可能とする。さらに好ましくは、磁石を永久磁石と
し、さらにまた分割構造とする。
Preferably, the magnet is arranged so as to be separated from the neutral position of the piston in the axial direction, and the position can be adjusted in the axial direction. More preferably, the magnet is a permanent magnet and has a split structure.

【0009】[0009]

【作用】発明者においては、上述した従来の問題点につ
いて究明してきた。その結果、下記のことが明らかとな
った。すなわち、粘性ダンパの減衰力Rは、ピストンと
シリンダとの相対移動速度をvとすると、
The inventor has investigated the above-mentioned conventional problems. As a result, the following was revealed. That is, the damping force R of the viscous damper is given by v, where v is the relative movement speed between the piston and the cylinder.

【0010】[0010]

【数1】R=cv ……(1) で表わされる。ここで、cはピストンやシリンダの寸法
および流体の粘性係数μにより決定される粘性減衰係数
である。この(1)式により、粘性ダンパの振動時等の
減衰力Rは、ピストンとシリンダとの相対移動速度vに
比例して大きくなることが分かる。
## EQU1 ## R = cv is represented by (1). Here, c is a viscous damping coefficient determined by the dimensions of the piston and the cylinder and the viscosity coefficient μ of the fluid. From this equation (1), it can be seen that the damping force R when the viscous damper vibrates increases in proportion to the relative moving speed v between the piston and the cylinder.

【0011】ところで、図2に示す防振支持装置におい
て、機器2の質量をM、弾性支持部材3のばね定数を
K、粘性ダンパの粘性減衰係数をcとし、機器2に外力
F=Psin ωt の周期力がx方向に作用した場合を考え
る。この時、支持台1に伝達される力の最大値Ps は
In the vibration-damping support device shown in FIG. 2, the mass of the device 2 is M, the spring constant of the elastic support member 3 is K, the viscous damping coefficient of the viscous damper is c, and the external force F = Psin ωt is applied to the device 2. Consider the case where the periodic force of is applied in the x direction. At this time, the maximum value Ps of the force transmitted to the support base 1 is

【0012】[0012]

【数2】 [Equation 2]

【0013】上記(2)式に基づいて求められるPs /
Pは、力の伝達率と呼ばれており、系の固有振動数ω0
と加振力の周波数ωとの比を横軸にとると、減衰係数比
ζをパラメータとして図3に示す曲線が得られる。した
がって、防振の方向としては、ω/ ω0 以上のところになるように防振系を設計する。図3から
分かるように、
Ps / obtained by the above equation (2)
P is called the force transmissibility, and is the natural frequency ω 0 of the system.
When the ratio of the vibration force to the frequency ω of the exciting force is plotted on the horizontal axis, the curve shown in FIG. 3 is obtained using the damping coefficient ratio ζ as a parameter. Therefore, as the vibration isolation direction, ω / ω 0 is Design the anti-vibration system so that it is as above. As you can see from Figure 3,

【0014】[0014]

【数3】 では、減衰係数比ζが大きい程、伝達率が小さく、[Equation 3] Then, the larger the damping coefficient ratio ζ, the smaller the transmissivity,

【0015】[0015]

【数4】 では減衰係数比ζが小さい程、伝達率が小さいというこ
とになり、 を境界として減衰係数比ζは伝達率に対して逆の作用を
及ぼすことになる。機器2を回転機として防振を考えた
場合、回転子に残るアンバランス力が加振力であり、そ
の周波数は
[Equation 4] Then, the smaller the damping coefficient ratio ζ, the smaller the transmissivity, The damping coefficient ratio ζ has an inverse effect on the transmissibility with the boundary being. When considering vibration isolation with the device 2 as a rotating machine, the unbalanced force remaining in the rotor is the excitation force, and its frequency is

【0016】[0016]

【数5】 となるように選定するが、回転上昇や回転降下時は、[Equation 5] However, when the rotation speed increases or decreases,

【0017】[0017]

【数6】 の部分を通るため、減衰係数比ζの選定によっては大振
動となってしまう。そのために、必要な減衰係数比ζを
選定すると、今度は定格運転での防振性能が落ちるとい
う欠点が生じる。また、防振系のω0 の選定を地震周波
数領域に選定せざるを得ない場合もあり、このような場
合、地震時に大振動となる欠点が生じる。そこで発明者
においては、ピストン形粘性ダンパにおける流体の粘性
を部分的に変化させれば、従来の流体の減衰係数が一定
なことから発生する十分な防振効果が得られないという
不合理を解消することが可能となるとの着想に至ったも
のであり、その手段として磁性流体および磁石の利用に
着目したものである。
[Equation 6] Therefore, large vibration will occur depending on the selection of the damping coefficient ratio ζ. Therefore, if the required damping coefficient ratio ζ is selected, there is a drawback that the vibration isolation performance in rated operation is deteriorated. In some cases, the vibration control system ω 0 must be selected in the seismic frequency region, and in such a case, there is a drawback that large vibration occurs during an earthquake. Therefore, the inventor solves the irrational fact that, if the viscosity of the fluid in the piston-type viscous damper is partially changed, the conventional vibration damping effect, which is generated due to the constant damping coefficient of the fluid, cannot be obtained. The idea was that it would be possible to do so, and the focus was on the use of magnetic fluids and magnets as means.

【0018】すなわち、磁性流体の粘性係数は、一般に
磁場内では大きくなることが知られている。これに基づ
き、本発明は上述したように、シリンダ内に収容する流
体を磁性流体とするとともに、シリンダ側壁側に磁石を
配置し、磁石位置の設定により減衰係数を場所により変
化させるようにしたものである。
That is, it is known that the viscosity coefficient of a magnetic fluid generally increases in a magnetic field. Based on this, as described above, the present invention uses a magnetic fluid as the fluid contained in the cylinder, arranges a magnet on the side wall of the cylinder, and changes the damping coefficient depending on the location by setting the magnet position. Is.

【0019】このような構成によれば、同一流体を使用
した粘性ダンパであっても、必要部分の粘性を磁石によ
って大きくすることができるので、定格運転の領域にお
いて十分な防振性能を設定できるとともに、大振動時等
においても十分な防振効果が得られるようになる。
According to this structure, even with the viscous damper using the same fluid, the viscosity of the necessary portion can be increased by the magnet, so that sufficient vibration isolation performance can be set in the rated operation range. At the same time, a sufficient vibration damping effect can be obtained even during a large vibration.

【0020】特に、磁石の位置をピストンの中立位置か
ら遠ざかる位置に配置すれば、ピストンが中立位置に近
い位置でのみ動作する定格運転時における通常作動範囲
での小さい振動が生じるような場合には、粘性係数が小
さいので、減衰係数比ζが小さくなり、良好な振動伝達
率の下で十分な減衰効果が得られる。また、振動が大き
くなった時は、磁石の位置がピストンの中立位置から遠
ざかる位置に配置されていることにより粘性係数が大き
くなって振動の増幅を確実に抑制することができるよう
になる。つまり、防振支持に使用される粘性ダンパの特
性が、振動の大きいときには大きな減衰力がでるように
設定し、過大な振動を防止することができるのである。
また、磁石の位置を軸方向に位置調整可能とすれば、機
器の種類や振動の発生状況等に応じた適切な減衰係数比
ζに設定することができる。
In particular, when the magnet is arranged at a position away from the neutral position of the piston, when a small vibration occurs in the normal operating range during rated operation in which the piston operates only at a position close to the neutral position, Since the viscosity coefficient is small, the damping coefficient ratio ζ becomes small, and a sufficient damping effect can be obtained under a good vibration transmissibility. Further, when the vibration becomes large, the position of the magnet is located away from the neutral position of the piston, so that the viscosity coefficient becomes large and the amplification of the vibration can be surely suppressed. In other words, the characteristic of the viscous damper used for the anti-vibration support can be set so that a large damping force is generated when the vibration is large, and excessive vibration can be prevented.
Further, if the position of the magnet can be adjusted in the axial direction, it is possible to set an appropriate damping coefficient ratio ζ according to the type of device, the occurrence state of vibration, and the like.

【0021】さらに、磁石を永久磁石とすれば、構成が
簡単で、前記の移動式構成等が容易に実現できるもので
あり、さらにまた、磁石を分割構造とすれば、粘性の場
所ごとの変更が一層きめ細かに、かつ容易に行えるよう
になる。
Further, if the magnets are permanent magnets, the structure is simple and the above-mentioned movable structure can be easily realized. Further, if the magnets are divided structures, the viscous parts can be changed at different places. Can be performed more finely and easily.

【0022】[0022]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0023】図1に示すように、本実施例の粘性ダンパ
は、軸心を上下方向に沿う配置とした密閉形のシリンダ
11と、このシリンダ11内に上下方向に摺動可能に挿
入したピストン12とを有する構成とされている。この
ピストン12から下方に一体的に突出したピストンロッ
ド13が、図示しない基礎台等に起立状態で連結固定さ
れるとともに、シリンダ11の上端部から上方に一体的
に突出した連結部材14が、図示しない上方機器に連結
固定される(図2参照)。
As shown in FIG. 1, the viscous damper according to the present embodiment has a hermetically sealed cylinder 11 whose axial center is arranged in the vertical direction, and a piston which is slidably inserted in the cylinder 11 in the vertical direction. 12 is included. A piston rod 13 integrally projecting downward from the piston 12 is coupled and fixed to a not-shown base stand or the like in an upright state, and a coupling member 14 integrally projecting upward from the upper end of the cylinder 11 is shown in the figure. Not connected and fixed to the upper device (see FIG. 2).

【0024】シリンダ11内には、粘性を有する磁性流
体15が収容されており、この磁性流体15は、ピスト
ン14の外周面部に形成した上下方向に沿う溝状の磁性
流体通路16を介して、シリンダ11の上下端側のシリ
ンダ室11a,11bに流動可能とされている。
A viscous magnetic fluid 15 is accommodated in the cylinder 11, and the magnetic fluid 15 passes through a groove-shaped magnetic fluid passage 16 formed on the outer peripheral surface of the piston 14 and extending in the vertical direction. The cylinders 11 are allowed to flow into the cylinder chambers 11a and 11b on the upper and lower ends thereof.

【0025】そして、シリンダ11の外周面側には、ピ
ストン12の中立位置から軸方向に離間した配置で、つ
まり上下端部に位置して、上下各一対のリング状の磁
石、例えば永久磁石17がそれぞれシリンダ11と同軸
的に配設されている。これにより、シリンダ11内の上
下端部近傍で、磁性流体15が磁化されるようになって
いる。なお、各永久磁石17は、それぞれ分割可能に構
成され、シリンダ11の軸方向設置位置を任意に変更し
て組立て設置できるようになっている。
On the outer peripheral surface side of the cylinder 11, a pair of upper and lower ring-shaped magnets, for example, permanent magnets 17 are arranged axially separated from the neutral position of the piston 12, that is, located at the upper and lower ends. Are arranged coaxially with the cylinder 11. As a result, the magnetic fluid 15 is magnetized near the upper and lower ends of the cylinder 11. Each of the permanent magnets 17 is configured to be separable, and can be assembled and installed by arbitrarily changing the axial installation position of the cylinder 11.

【0026】しかして、連結部材14およびピストンロ
ッド12が接続された機器および基礎台等の間で相対振
動が発生した場合、ピストンロッド13がシリンダ11
内で相対振動し、その相対振動に伴う磁性流体15の移
動抵抗によって振動減衰が行われる。
However, when relative vibration occurs between the equipment to which the connecting member 14 and the piston rod 12 are connected, the base, and the like, the piston rod 13 moves the cylinder 11
Relative vibration occurs in the interior, and vibration damping is performed by the movement resistance of the magnetic fluid 15 accompanying the relative vibration.

【0027】この場合、ピストン12の初期位置を図1
に示したように、シリンダ11の軸方向略中央位置とす
れば、ピストンヘッド12aが永久磁石17に達しない
範囲、つまり図1の上方の一定範囲a内で摺動する間
は、ピストン12の流体通路16を流動する磁性流体1
5は、永久磁石17による磁界の範囲外であるため粘性
が特に大きくならず、したがって減衰力は磁性流体15
の通路16の形状と磁性流体15の通常状態の粘性係数
で決定される比較的小さいものとなる。
In this case, the initial position of the piston 12 is shown in FIG.
As shown in FIG. 2, when the cylinder 11 is located at the substantially central position in the axial direction, while the piston head 12a slides within a range where it does not reach the permanent magnet 17, that is, within a certain range a in the upper part of FIG. Magnetic fluid 1 flowing in fluid passage 16
No. 5 is outside the range of the magnetic field generated by the permanent magnet 17, so that the viscosity does not become particularly large, so the damping force is 5
Is relatively small, which is determined by the shape of the passage 16 and the viscosity coefficient of the magnetic fluid 15 in the normal state.

【0028】これに対して振動が大きく、前記の範囲a
を越えて永久磁石17の位置にピストン12が入って振
動する場合には、磁性流体15が永久磁石17による磁
界の領域で通路16を通るようになるため、磁性流体1
5の粘性係数が大きくなり、減衰力は大きくなる。
On the other hand, the vibration is large and the above range a
When the piston 12 enters the position of the permanent magnet 17 beyond the range and vibrates, the magnetic fluid 15 comes to pass through the passage 16 in the region of the magnetic field by the permanent magnet 17.
The viscosity coefficient of 5 becomes large, and the damping force becomes large.

【0029】したがって、従来では振動の振幅に拘らず
粘性ダンパの減衰係数が常に同一であったために共振点
通過時に過大な振動になったり、逆にこれを避けるため
に通常使用時十分な防振が得られなかったのに対し、本
実施例によると、通常使用時は小さい減衰係数で十分な
防振効果が得られる一方、共振点通過あるいは地震等の
大振動の場合には、磁性流体15が磁界により粘性を増
大して確実な減衰力が得られるようになり、いずれの場
合にも振動増大を確実に抑制できるようになる。
Therefore, in the past, the damping coefficient of the viscous damper was always the same regardless of the amplitude of vibration, so excessive vibration occurs when passing through the resonance point, and conversely, in order to avoid this, sufficient vibration isolation during normal use. In contrast to this, according to the present embodiment, a sufficient damping effect can be obtained with a small damping coefficient during normal use, while in the case of a large vibration such as a resonance point passage or an earthquake, the magnetic fluid 15 The magnetic field increases the viscosity to obtain a reliable damping force, and in any case, the vibration increase can be surely suppressed.

【0030】よって以上の本実施例の構成によれば、同
一流体を使用した粘性ダンパであっても、必要部分の粘
性を永久磁石17によって大きくすることにより、定格
運転時および大振動時等のいずれの場合においても十分
な防振効果が得られるようになるという優れた効果が奏
される。
Therefore, according to the configuration of the present embodiment described above, even in the case of the viscous damper using the same fluid, the viscosity of the necessary portion is increased by the permanent magnet 17, so that the rated operation and the large vibration are performed. In any case, there is an excellent effect that a sufficient vibration damping effect can be obtained.

【0031】なお、磁石を永久磁石17としたのは、構
成が簡単で、前記の移動等を容易に行えるようにするた
めであって、電磁石とすることが可能なことは勿論であ
る。電磁石を適用すれば、磁力調整により磁性流体の粘
性を種々に変化できるようになる。また、磁石を分割構
造としたのは、シリンダ11の軸方向に移動可能とし
て、機器の種類や振動の発生状況等に応じて、減衰係数
比ζを適切な位置で変化させることを容易にしたもので
あり、他の移動手段を応用することも可能である。
The permanent magnets 17 are used as the magnets because the structure is simple and the movements described above can be performed easily, and it goes without saying that they can be electromagnets. If an electromagnet is applied, the viscosity of the magnetic fluid can be changed variously by adjusting the magnetic force. Further, the magnet is of a divided structure so that it can be moved in the axial direction of the cylinder 11, and it is easy to change the damping coefficient ratio ζ at an appropriate position according to the type of equipment, the state of occurrence of vibration, and the like. However, it is also possible to apply other means of transportation.

【0032】[0032]

【発明の効果】以上のように、本発明によれば、ピスト
ン形粘性ダンパにおいて、粘性流体を磁性流体とし、か
つシリンダの周壁側に磁界を形成して一定の領域で流体
粘性を変化させるようにしたので、通常使用位置では小
さな減衰係数で、また大振動時等には大きい減衰係数
で、それぞれ十分かつ確実な防振効果を得ることができ
るという効果が奏される。
As described above, according to the present invention, in the piston type viscous damper, the viscous fluid is a magnetic fluid, and a magnetic field is formed on the peripheral wall side of the cylinder to change the fluid viscosity in a certain region. Therefore, it is possible to obtain a sufficient and reliable anti-vibration effect with a small damping coefficient at the normal use position and a large damping coefficient at the time of large vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】防振システムの例を示す概略図。FIG. 2 is a schematic diagram showing an example of a vibration isolation system.

【図3】防振作用を示すグラフ。FIG. 3 is a graph showing a vibration damping effect.

【符号の説明】[Explanation of symbols]

11 シリンダ 12 ピストン 15 磁性流体 17 磁石 11 Cylinder 12 Piston 15 Magnetic Fluid 17 Magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粘性を有する作動流体を収容したシリン
ダと、このシリンダ内で軸方向に摺動するピストンとを
備え、これらシリンダおよびピストンの軸方向に沿う相
対振動を、それに伴う作動流体の移動抵抗によって減衰
させる粘性ダンパにおいて、前記流体を磁性流体とする
とともに、前記シリンダの周壁側に、前記磁性流体を磁
化させる磁石を設けたことを特徴とする粘性ダンパ。
1. A cylinder containing a viscous working fluid, and a piston that slides in the cylinder in the axial direction. Relative vibrations of the cylinder and the piston in the axial direction cause movement of the working fluid. In a viscous damper that is attenuated by resistance, the fluid is a magnetic fluid, and a magnet that magnetizes the magnetic fluid is provided on a peripheral wall side of the cylinder.
JP21177591A 1991-08-23 1991-08-23 Viscous damper Pending JPH0552235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21177591A JPH0552235A (en) 1991-08-23 1991-08-23 Viscous damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21177591A JPH0552235A (en) 1991-08-23 1991-08-23 Viscous damper

Publications (1)

Publication Number Publication Date
JPH0552235A true JPH0552235A (en) 1993-03-02

Family

ID=16611390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21177591A Pending JPH0552235A (en) 1991-08-23 1991-08-23 Viscous damper

Country Status (1)

Country Link
JP (1) JPH0552235A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878574A1 (en) * 1997-05-15 1998-11-18 Electrolux Zanussi S.p.A. Method for providing active damping of the vibrations generated by the washing assembly of washing machines and washing machine implementing said method
US6129185A (en) * 1997-12-30 2000-10-10 Honeywell International Inc. Magnetically destiffened viscous fluid damper
KR100368945B1 (en) * 1998-07-28 2003-04-03 삼성전자 주식회사 Drum Washing Machine
DE10320005B3 (en) * 2003-05-06 2004-10-21 Zf Sachs Ag Vibration damper with adjustable damping force comprises a field force-producing element having a part connected to an electricity supply and arranged outside a cylinder for transmitting the field force through the closed cylinder
JP2009222080A (en) * 2008-03-13 2009-10-01 Kyoto Univ Vibration suppressing device
JP2012177406A (en) * 2011-02-25 2012-09-13 Kyb Co Ltd Magnetic viscous fluid damper
JP2012177405A (en) * 2011-02-25 2012-09-13 Kyb Co Ltd Magnetic viscous fluid damper
WO2012172961A1 (en) * 2011-06-13 2012-12-20 カヤバ工業株式会社 Magnetic viscous damper
WO2012172963A1 (en) * 2011-06-13 2012-12-20 カヤバ工業株式会社 Magnetic viscous damper
JP2013511670A (en) * 2009-11-20 2013-04-04 イーエイーディーエス、ドイチュラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Shock blocking structure
JP2015052351A (en) * 2013-09-06 2015-03-19 住友理工株式会社 Fluid filled type vibration control device
US10113560B2 (en) 2013-06-20 2018-10-30 Mitsubishi Hitachi Power Systems, Ltd. Gas guiding device and facility including the same
JP2020020464A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Eddy current damper
CN114135619A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damping type energy dissipation device repairing device based on magnetic control principle
CN114135620A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damper gain device based on magnetic control principle and use method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0878574A1 (en) * 1997-05-15 1998-11-18 Electrolux Zanussi S.p.A. Method for providing active damping of the vibrations generated by the washing assembly of washing machines and washing machine implementing said method
US6129185A (en) * 1997-12-30 2000-10-10 Honeywell International Inc. Magnetically destiffened viscous fluid damper
KR100368945B1 (en) * 1998-07-28 2003-04-03 삼성전자 주식회사 Drum Washing Machine
DE10320005B3 (en) * 2003-05-06 2004-10-21 Zf Sachs Ag Vibration damper with adjustable damping force comprises a field force-producing element having a part connected to an electricity supply and arranged outside a cylinder for transmitting the field force through the closed cylinder
JP2009222080A (en) * 2008-03-13 2009-10-01 Kyoto Univ Vibration suppressing device
JP2013511670A (en) * 2009-11-20 2013-04-04 イーエイーディーエス、ドイチュラント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Shock blocking structure
JP2012177406A (en) * 2011-02-25 2012-09-13 Kyb Co Ltd Magnetic viscous fluid damper
JP2012177405A (en) * 2011-02-25 2012-09-13 Kyb Co Ltd Magnetic viscous fluid damper
JP2013002471A (en) * 2011-06-13 2013-01-07 Kyb Co Ltd Magnetic viscous fluid damper
JP2013002470A (en) * 2011-06-13 2013-01-07 Kyb Co Ltd Magnetic viscous fluid damper
WO2012172963A1 (en) * 2011-06-13 2012-12-20 カヤバ工業株式会社 Magnetic viscous damper
WO2012172961A1 (en) * 2011-06-13 2012-12-20 カヤバ工業株式会社 Magnetic viscous damper
CN103562591A (en) * 2011-06-13 2014-02-05 萱场工业株式会社 Magnetic viscous damper
CN103597241A (en) * 2011-06-13 2014-02-19 萱场工业株式会社 Magnetic viscous damper
EP2719917A4 (en) * 2011-06-13 2015-07-22 Kayaba Industry Co Ltd Magnetic viscous damper
EP2719918A4 (en) * 2011-06-13 2016-03-30 Kyb Corp Magnetic viscous damper
US10113560B2 (en) 2013-06-20 2018-10-30 Mitsubishi Hitachi Power Systems, Ltd. Gas guiding device and facility including the same
JP2015052351A (en) * 2013-09-06 2015-03-19 住友理工株式会社 Fluid filled type vibration control device
JP2020020464A (en) * 2018-08-03 2020-02-06 日本製鉄株式会社 Eddy current damper
CN114135619A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damping type energy dissipation device repairing device based on magnetic control principle
CN114135620A (en) * 2021-11-13 2022-03-04 安徽工程大学 Damper gain device based on magnetic control principle and use method

Similar Documents

Publication Publication Date Title
JPH0552235A (en) Viscous damper
JPH11351322A (en) Exciter for active damping
JPWO2010070850A1 (en) Fluid filled vibration isolator
CN108223678B (en) Vibration damping device for vehicle
US9212721B2 (en) Hydromount
US5918862A (en) High damping pneumatic isolator
JP2000283214A (en) Vibrator for vibration isolating device and active vibration isolating device using it
JP5100279B2 (en) Anti-vibration mount
US5653427A (en) Liquid filled type vibration isolating device
JP5993658B2 (en) Vibration testing machine
KR101709994B1 (en) Double-stage MR mount using flow mode and shear mode of magneto-rheological fluid
US4699257A (en) Variable frequency vibration isolator
JPH0949541A (en) Fluid filling type vibration proofing device
JPH028528A (en) Vibration damper device
US20110148236A1 (en) Temperature compensation tunable magnetic damping
JPH06129487A (en) Spring constant variable type damping device
JP3595772B2 (en) Liquid filled vibration absorber
KR20210087820A (en) Mr damper having improved assembly and durability
JPH0434245A (en) Vibration removing device
KR100857882B1 (en) A double orifice hydraulic active-type engine mount
KR20170027180A (en) Double-stage MR mount damper using squeeze mode of magneto-rheological fluid
JPS63231031A (en) Damper with variable damping force
JP2008285062A (en) Suspension device for vehicle
JP4906150B2 (en) damper
WO2004067992A1 (en) Liquid-seal vibration isolating device