JPH0551804B2 - - Google Patents

Info

Publication number
JPH0551804B2
JPH0551804B2 JP60238601A JP23860185A JPH0551804B2 JP H0551804 B2 JPH0551804 B2 JP H0551804B2 JP 60238601 A JP60238601 A JP 60238601A JP 23860185 A JP23860185 A JP 23860185A JP H0551804 B2 JPH0551804 B2 JP H0551804B2
Authority
JP
Japan
Prior art keywords
coal
pulverized coal
gas
fuel
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60238601A
Other languages
Japanese (ja)
Other versions
JPS62102006A (en
Inventor
Toshiki Furue
Hiroyuki Kako
Eiji Kida
Kenji Arisaki
Toshuki Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60238601A priority Critical patent/JPS62102006A/en
Publication of JPS62102006A publication Critical patent/JPS62102006A/en
Publication of JPH0551804B2 publication Critical patent/JPH0551804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Solid-Fuel Combustion (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微粉炭焚ボイラに係り、特に微粉炭焚
ボイラの起動時、負荷変動時の微粉炭バーナへの
補助燃料に微粉炭をガス化した石炭ガス化燃料を
用いる微粉炭焚ボイラに関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a pulverized coal-fired boiler, and in particular to a method for gasifying pulverized coal as auxiliary fuel to a pulverized coal burner at the time of startup of the pulverized coal-fired boiler and during load fluctuations. This relates to a pulverized coal-fired boiler that uses coal gasified fuel.

〔発明の背景〕[Background of the invention]

近年、我が国においては重油供給量のひつ迫か
ら、石油依存度の是正を計るために、従来の重油
専焼から石炭専焼へと燃料を変換しつつあり、特
に事業用ボイラにおいては石炭専焼の大容量火力
発電所が建設されている。
In recent years, in Japan, due to the tight supply of heavy oil, in order to correct our dependence on oil, we have been converting the fuel from conventional heavy oil-fired combustion to coal-fired combustion, and in particular, the large capacity of coal-fired boilers is increasing in commercial boilers. A thermal power plant is being built.

ところが、石炭燃料は石油燃料、ガス燃料に比
べて燃料性が悪いので排ガス中に含まれるNOX
及び未燃分が発生しやすく、特にNOXの低減対
策のために火災の分割、排ガスの再循環、二段燃
焼及び炉内脱硝などを採用して緩慢な燃焼を行な
わせてNOXを低減することも行なわれている。
However, coal fuel has poor fuel properties compared to petroleum fuel and gas fuel, so NOx contained in exhaust gas
In particular, in order to reduce NOx , fire division, exhaust gas recirculation, two-stage combustion, and in-furnace denitration are adopted to achieve slow combustion and reduce NOx . It is also being done.

そしてこの石炭専焼火力においては、ボイラ負
荷が常に全負荷で運転されるものは少なく、負荷
を75%負荷、50%負荷、25%負荷へと負荷を上げ
下げして運転したり、一日単位、週単位で運転を
停止するなど、いわゆる毎日起動停止(Daily
Start Stop以下単にDSSという)運転、週末起動
停止(Weekly Start Stop以下単にWSSという)
運転を行なつて中間負荷を担う火力発電プラント
へ移行しつつある。
In these coal-fired thermal power plants, there are few cases in which the boiler load is always operated at full load, and the load is increased or decreased from 75% load to 50% load to 25% load, or the boiler is operated on a daily basis. Daily startup and shutdown, such as stopping operation on a weekly basis,
Weekly Start Stop (hereinafter simply referred to as DSS) operation, Weekly Start Stop (hereinafter simply referred to as WSS)
A transition is being made to thermal power plants that operate and handle intermediate loads.

一方、DSS運転、WSS運転を行なう微粉炭焚
きボイラにおいては、起動時から全負荷に至るま
で微粉炭のみで全負荷を運転するのではなく、微
粉炭焚きボイラといえども起動時、低負荷時には
軽油、重油、LNGなどのガス燃料を起動時に用
いる。
On the other hand, in pulverized coal-fired boilers that perform DSS operation and WSS operation, the entire load is not operated only with pulverized coal from startup to full load. Gas fuels such as light oil, heavy oil, and LNG are used for startup.

それは起動時においてはボイラからミルウオー
ミング用の排ガス、加熱空気が得られず、このた
めにミルを運転することができないからである。
This is because at startup, exhaust gas and heated air for mill warming cannot be obtained from the boiler, and therefore the mill cannot be operated.

また、低負荷時にはミルのターンダウン比がと
れないこと、微粉炭自体の着火性が悪いことなど
の理由によつて軽油、重油、ガス燃料などを用い
る。
In addition, light oil, heavy oil, gas fuel, etc. are used because the turndown ratio of the mill cannot be maintained at low loads, and the ignitability of pulverized coal itself is poor.

例えば起動時に軽油、重油を用いる場合は、起
動時から15%負荷までは軽油を燃料としてボイラ
を焚き上げ、15%負荷から40%負荷までは軽油か
ら重油へ燃料を変更して焚き上げ、40%負荷以上
になると重油と微粉炭を混焼して順次重油燃料を
少なくするとともに微粉炭燃料を多くして微粉炭
の混焼比率を上げて実質的な微粉炭焚きへと移行
する。
For example, when using light oil or heavy oil at startup, the boiler is fired using light oil as fuel from the time of startup until 15% load, and from 15% load to 40% load, the fuel is changed from light oil to heavy oil and fired. When the load exceeds % load, heavy oil and pulverized coal are co-fired, the amount of heavy oil fuel is gradually reduced, and the amount of pulverized coal fuel is increased to increase the co-firing ratio of pulverized coal, thereby transitioning to actual pulverized coal firing.

また、DSS運転、WSS運転で100%負荷からボ
イラ負荷を下げる場合には、ボイラ自体が起動時
とは異なり排ガス温度も上昇しているので100負
荷から30%負荷までは微粉炭を燃焼させて微粉炭
焚きボイラとなり、30%負荷以下では重油、軽油
に燃料を変更して運転される。
In addition, when lowering the boiler load from 100% load in DSS or WSS operation, the exhaust gas temperature is rising, unlike when the boiler itself is started, so pulverized coal must be burned from 100 to 30% load. It is a pulverized coal-fired boiler, and when the load is below 30%, the fuel is switched to heavy oil or light oil.

この様に微粉炭焚ボイラは起動時、負荷変化時
には微粉炭自体の着火性が悪いことから、燃焼容
量の10%程度の軽油、重油、ガス燃料などの補助
燃料を必要とし、この補助燃料の燃料系統も必要
となる。
In this way, pulverized coal-fired boilers require auxiliary fuel such as light oil, heavy oil, gas fuel, etc. of about 10% of the combustion capacity because the pulverized coal itself has poor ignitability during startup and load changes. A fuel system is also required.

第6図は従来の微粉炭焚きボイラの代表的な燃
料系統、煙風道系統を示す概略構成図である。
FIG. 6 is a schematic diagram showing a typical fuel system and flue duct system of a conventional pulverized coal-fired boiler.

空気ダウト1内の燃料様空気は押込通風機2に
て昇圧され、空気予熱器3にて排ガスダクト4の
排ガスによつて加熱された後空気ダウト1、ウイ
ンドボツクス5より微粉炭焚ボイラ6へ供給され
る。
The fuel-like air in the air doubt 1 is pressurized by the forced draft fan 2, heated by the exhaust gas from the exhaust gas duct 4 in the air preheater 3, and then sent from the air doubt 1 and wind box 5 to the pulverized coal-fired boiler 6. Supplied.

一方、微粉炭焚ボイラ6内で燃焼した排ガス
は、空気予熱器3、排ガスダウト4を経て誘引通
風機6で昇圧され、大気へ放出される。
On the other hand, the exhaust gas combusted in the pulverized coal-fired boiler 6 passes through the air preheater 3 and the exhaust gas doubt 4, is pressurized by the induced draft fan 6, and is discharged into the atmosphere.

他方、ミル7は空気ダクト1の押込通風機2出
口の冷却用空気、空気予熱器3出口の高温空気、
あるいは排ガスダクト4の排ガスなどの加熱気体
配管8からの加熱気体によつてウオーミングされ
る。
On the other hand, the mill 7 receives cooling air from the forced draft fan 2 outlet of the air duct 1, high-temperature air from the air preheater 3 outlet,
Alternatively, it is warmed by heated gas from the heated gas pipe 8 such as exhaust gas from the exhaust gas duct 4.

ミル7のウオーミングが完了すると、石炭9が
石炭ホツパ10、給炭機11、ミル7へ供給さ
れ、微粉炭管12より微粉炭バーナ13へ供給さ
れる。
When the warming of the mill 7 is completed, the coal 9 is supplied to the coal hopper 10, the coal feeder 11, and the mill 7, and is supplied to the pulverized coal burner 13 through the pulverized coal pipe 12.

なお、14は微粉炭焚ボイラ6の起動時、低負
荷時は軽油、重油、ガス燃料などの補助燃料を焚
く補助燃料バーナ、15は補助燃料配管、16は
補助燃料の貯蔵タンク、17,18は加熱気体配
管8の温度制御を行なうダンパである。
In addition, 14 is an auxiliary fuel burner that burns auxiliary fuel such as light oil, heavy oil, gas fuel, etc. when starting the pulverized coal-fired boiler 6 and when the load is low, 15 is an auxiliary fuel pipe, 16 is an auxiliary fuel storage tank, 17, 18 is a damper that controls the temperature of the heated gas pipe 8.

ところが、微粉炭焚ボイラ6においてはボイラ
6およびミル7を熱的に定常にするために補助燃
料バーナ14からの補助燃料によつて焚き上げる
必要があり、重油焚、ガス焚ボイラと比べて起動
時間がかかりすぎ、かつ、補助燃料バーナ14、
補助燃料配管15、補助燃料タンク16などの付
層設備に経費がかかる欠点がある。
However, in the pulverized coal-fired boiler 6, it is necessary to heat the boiler 6 and the mill 7 with auxiliary fuel from the auxiliary fuel burner 14 in order to maintain thermal stability, and the startup time is lower than that of heavy oil-fired or gas-fired boilers. It takes too much time and the auxiliary fuel burner 14,
There is a disadvantage that layered equipment such as the auxiliary fuel pipe 15 and the auxiliary fuel tank 16 is expensive.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来の欠点を解消しようとする
もので、その目的とするところは、従来必要であ
つた補助燃料の代替として、微粉炭を原料とする
石炭ガス燃料を補助燃料として用い、微粉炭のみ
で運転できる微粉炭専焼ボイラを提供するにあ
る。
The present invention attempts to eliminate such conventional drawbacks, and its purpose is to use coal gas fuel made from pulverized coal as an auxiliary fuel as a substitute for the auxiliary fuel that was conventionally necessary. Our goal is to provide a pulverized coal-fired boiler that can be operated with only pulverized coal.

〔発明の概要〕[Summary of the invention]

本発明は前述の目的を達成するために、微粉炭
焚ボイラの近傍に微粉炭の一部を空気、酸素等の
ガス化剤でガス化する石炭ガス化装置を設けたも
のである。
In order to achieve the above-mentioned object, the present invention provides a coal gasification device near a pulverized coal-fired boiler for gasifying a part of pulverized coal with a gasifying agent such as air or oxygen.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る微粉炭焚ボイラ
の概略構成図、第2図は酸素をガス化剤にした石
炭ガス化装置の系統図、第3図は空気をガス化剤
にした石炭ガス化装置の系統図、第4図は燃焼触
媒を利用した微粉炭バーナの拡大図、第5図は石
炭ガス化装置の拡大図である。
Fig. 1 is a schematic configuration diagram of a pulverized coal-fired boiler according to an embodiment of the present invention, Fig. 2 is a system diagram of a coal gasifier using oxygen as the gasifying agent, and Fig. 3 is a system diagram of a coal gasifier using air as the gasifying agent. A system diagram of a coal gasifier, FIG. 4 is an enlarged view of a pulverized coal burner using a combustion catalyst, and FIG. 5 is an enlarged view of the coal gasifier.

第1図において、符号1から18までは従来の
ものと同一のものを示す。
In FIG. 1, numerals 1 to 18 indicate the same parts as the conventional one.

19はミル7より微粉炭を供給するガス化用微
粉炭管、20は石炭ガス化装置、21はガス化剤
配管、22は石炭ガス化装置20から微粉炭バー
ナ13へ石炭ガス補助燃料を供給する石炭ガス化
補助燃料配管、23は石炭灰スラグ配管である。
19 is a pulverized coal pipe for gasification that supplies pulverized coal from the mill 7, 20 is a coal gasifier, 21 is a gasifier pipe, and 22 is a pulverized coal gas auxiliary fuel that is supplied from the coal gasifier 20 to the pulverized coal burner 13. The coal gasification auxiliary fuel pipe 23 is a coal ash slag pipe.

第1図において、微粉炭ボイラ6の燃料である
石炭9は石炭供給ラインよりミル7に供給され、
微粉炭バーナ13で燃料可能な粒経の微粉炭に粉
砕される。この場合粉炭の粒径は、200メツシユ
パス70%以上が必要である。この微粉炭は、微粉
炭ボイラ6の空気予熱器3からの予熱空気の一部
を加熱気体配管8から気流輸送空気として、微粉
炭焚ボイラ6へ送られ、微粉炭バーナ13へ送ら
れる。この微粉炭の一部を石炭ガス化用微粉炭管
19より石炭ガス化装置20へ導びき、ガス化剤
配管21からの酸素あるいは空気等のガス化剤を
用いて、部分酸化により微粉炭をガス化させて補
助燃料を生成させ、石炭ガス化補助燃料配管22
から微粉炭バーナ13へ供給する。尚、この際、
微粉炭中の灰分は、石炭灰スラグ配管23から石
炭灰スラグとして、石炭ガス化装置20より排出
される。一方、石炭ガス化装置20で生成する石
炭ガスは、H2とCOを主成分とするガスである
が、この石炭ガスは石炭ガス化補助燃料配管22
を通じて、微粉炭バーナ13への補助燃料として
供給する。
In FIG. 1, coal 9, which is the fuel for the pulverized coal boiler 6, is supplied to the mill 7 from a coal supply line,
The pulverized coal is pulverized by a pulverized coal burner 13 into pulverized coal having a grain size suitable for fuel. In this case, the particle size of the powdered coal must be 70% or more of 200 mesh pass. This pulverized coal is sent to the pulverized coal-fired boiler 6 by using a part of the preheated air from the air preheater 3 of the pulverized coal boiler 6 as pneumatic transport air from the heated gas pipe 8, and then sent to the pulverized coal burner 13. A part of this pulverized coal is led to a coal gasifier 20 through a pulverized coal pipe 19 for coal gasification, and is pulverized by partial oxidation using a gasifying agent such as oxygen or air from a gasifying agent pipe 21. The coal is gasified to generate auxiliary fuel, and the coal gasification auxiliary fuel pipe 22
The pulverized coal is supplied to the pulverized coal burner 13 from the pulverized coal. Furthermore, at this time,
The ash content in the pulverized coal is discharged from the coal gasifier 20 as coal ash slag through the coal ash slag pipe 23 . On the other hand, the coal gas generated by the coal gasifier 20 is a gas whose main components are H 2 and CO.
The pulverized coal is supplied as auxiliary fuel to the pulverized coal burner 13 through the pulverized coal burner 13.

この様に本発明の微粉炭焚ボイラ6は石炭ガス
化装置20からの微粉炭をガス化した石炭ガスを
石炭ガス化補助燃料配管22より微粉炭バーナ1
3へ供給することによつて微粉炭焚ボイラ6は微
粉炭のみによつて起動することができる。
In this manner, the pulverized coal-fired boiler 6 of the present invention supplies coal gas obtained by gasifying pulverized coal from the coal gasifier 20 to the pulverized coal burner 1 through the coal gasification auxiliary fuel pipe 22.
By supplying the pulverized coal to the pulverized coal 3, the pulverized coal-fired boiler 6 can be started using only pulverized coal.

また、微粉炭のみで起動することができるの
で、油、ガス等の補助燃料配管15、補助燃料タ
ンク16を撤廃することができ、微粉炭以外の補
助燃料を節約することができる。
Furthermore, since the engine can be started using only pulverized coal, the auxiliary fuel piping 15 and auxiliary fuel tank 16 for oil, gas, etc. can be eliminated, and auxiliary fuel other than pulverized coal can be saved.

第2図に酸素をガス化剤にした石炭ガス化装置
の系統図を示す。第2図に示すものはガス化剤と
して、酸素を使用する場合で、この酸素は、火力
発電所で容易に得られる電力を利用して、大型の
場合は深冷分離法、中・小型では、プレツシヤー
スウイング法にて、容易に得ることが出来る。
Figure 2 shows a system diagram of a coal gasifier using oxygen as the gasifying agent. The case shown in Figure 2 is when oxygen is used as the gasifying agent. This oxygen is produced using electric power that can be easily obtained from thermal power plants. , can be easily obtained by the pressure swing method.

この酸素は特に、高純度のものと必要とするも
のではなく、分離コストとの兼合でその純度を決
めれば良い。第1図に示したミル7からの石炭ガ
ス化用の微粉炭は、ガス化用微粉管19より微粉
炭ホツパー24に、貯留され、下部の定量供給器
25より一定量、石炭ガス化装置20に供給され
る。この微粉炭の石炭ガス化装置20への供給
は、生成ガスの貯留タンク26からのガスリサイ
クルライン33のリサイクルガスにより、気流輸
送され石炭ガス化装置20へ吹込まれる。この気
流輸送用ガスとして、N2、スチーム等の使用も
可能であるが、N2では、生成ガスの発熱量の低
下、スチームでは、冷却時のドレン処理等が必要
であり、このリサイクルガス方式が好ましい。
This oxygen does not need to be particularly highly purified, and its purity may be determined in consideration of separation cost. Pulverized coal for coal gasification from the mill 7 shown in FIG. is supplied to This pulverized coal is supplied to the coal gasifier 20 by airflow transport and blown into the coal gasifier 20 by the recycled gas from the gas recycle line 33 from the generated gas storage tank 26 . It is also possible to use N 2 , steam, etc. as the gas for this airflow transport, but N 2 requires a reduction in the calorific value of the generated gas, and steam requires drainage treatment during cooling, so this recycled gas method is not suitable. is preferred.

又、この石炭ガスは、微粉炭と共に、微粉炭バ
ーナ13に供給されるので、石炭ガス化装置20
の起動用の燃料として使用され、他から起動用の
燃料あるいは熱源を必要としない。石炭ガス化装
置20の起動は、電気によるイグナイター等の従
来の点火装置27による着火で良い。石炭ガス化
装置20に吹込まれた微粉炭とリサイクルガス
は、石炭ガス化装置20内で同時に吹込まれる酸
化剤O2により、一部燃焼し、石炭種により異な
るが、大略、1200℃〜1400℃で石炭ガスを生成す
る。その反応は 石 炭 CaH2OcSa熱分解 ―――→ C+H2+CnHn(ガス)+H2O+吸熱 C+O2→CO2+発熱 C+1/2O2→CO+発熱 ガ ス (H2+CO+H2O)+O2→H2O+CO2+発熱 等種々の反応があるが、最終的なガスの組成は CO+H2OCO2+H2 の平衝反応により、温度および物質のバランスに
より決定され、H2、COを主成分とする石炭ガス
が得られる。このため、リサイクルしたガスはほ
ぼ不活性ガスと同等の働きであり、反応ガス組成
への影響は少ない。
Moreover, this coal gas is supplied to the pulverized coal burner 13 together with pulverized coal, so that the coal gasifier 20
It is used as a starting fuel for the engine and does not require any other starting fuel or heat source. The coal gasifier 20 may be started by ignition using a conventional ignition device 27 such as an electric igniter. The pulverized coal and recycled gas injected into the coal gasifier 20 are partially combusted by the oxidizing agent O 2 that is simultaneously injected into the coal gasifier 20, and the temperature varies depending on the type of coal, but is approximately 1200°C to 1400°C. Produce coal gas at °C. The reaction is coal CaH 2 OcSa thermal decomposition ---→ C + H 2 + CnHn (gas) + H 2 O + endothermic C + O 2 → CO 2 + exothermic C + 1/2O 2 → CO + exothermic gas (H 2 + CO + H 2 O) + O 2 → There are various reactions such as H 2 O + CO 2 + exothermic reaction, but the final gas composition is determined by the balance of temperature and substances due to the equilibrium reaction of CO + H 2 OCO 2 + H 2 , with H 2 and CO as the main components. coal gas is obtained. Therefore, the recycled gas has almost the same function as an inert gas, and has little effect on the reaction gas composition.

上記反応による組成以外は石炭中のS分、N分
からの生成ガスとして、H2S、COS、NH3が微
量含まれる。
In addition to the composition resulting from the above reaction, trace amounts of H 2 S, COS, and NH 3 are included as gases produced from the S and N components in the coal.

バーズロツク炭を使用した場合の石炭生成ガス
の組成の一例を下記に示す。
An example of the composition of coal-generated gas when using Bird's Rock coal is shown below.

CO 59.8Vol% H2 25.6Vol% CO2 5.3Vol% H2O 4.5Vol% その他(N2他) 4.8Vol% 発熱量は約2500kcal/Nm3である。CO 59.8Vol% H 2 25.6Vol% CO 2 5.3Vol% H 2 O 4.5Vol% Others (N 2, etc.) 4.8Vol% The calorific value is approximately 2500 kcal/Nm 3 .

この石炭ガスは、石炭ガス化装置20の炉頂よ
り、抜出され、熱回収ボイラ28に送られて大略
200〜250℃に冷却され、マルチサイクロン等の脱
塵装置29により、未反応の石炭チヤーを捕集
後、ガス冷却器30に入り、冷却水により常温ま
で冷却後昇圧装置31に入り、ミスト分離器32
を通り、ガス貯留タンク26に貯留される。貯塵
装置29で捕集されたチヤーは、石炭ガス化装置
20へガスリサイクルライン33のリサイクルガ
スによつてリサイクルされる。一方、石炭中の灰
分は、石炭ガス化装置20で溶融状態となり、石
炭ガス化装置20の炉下部で冷却、固化し、底部
より抜出され、スラグホツパー34に入る。
This coal gas is extracted from the furnace top of the coal gasifier 20 and sent to the heat recovery boiler 28.
After being cooled to 200 to 250°C, unreacted coal coal is collected by a dust removing device 29 such as a multi-cyclone, and then enters a gas cooler 30, cooled to room temperature with cooling water, and then enters a pressure booster 31 to separate the mist. Vessel 32
The gas passes through and is stored in the gas storage tank 26. The dust collected by the dust storage device 29 is recycled to the coal gasification device 20 by the recycled gas in the gas recycling line 33. On the other hand, the ash in the coal becomes molten in the coal gasifier 20, cools and solidifies in the lower part of the furnace of the coal gasifier 20, is extracted from the bottom, and enters the slag hopper 34.

ガス貯留タンク26には、圧力検出器35が取
付けられ、このガス貯留タンク26内の圧力の上
限値および下限値により、石炭ガス化装置20の
起動、停止を行なわせ、常にガス貯留タンク26
内には、微粉炭焚ボイラ6起動に必要な石炭ガス
の圧力を保持させてある。すなわち、上限値はガ
ス貯留タンク26の設計圧力であり、下限値は、
微粉炭焚ボイラ6の起動に必要な石炭ガス量と、
ガス圧力が保持されるように設定され、この下限
値により石炭ガス化装置20を起動させ、上限値
により停止させる。この方式をとることにより、
微粉炭焚ボイラ6の起動性が容易になると共に、
石炭ガス化装置20を一定容量で運転すれば良
く、石炭ガス化装置20の運転操作も簡単にな
る。
A pressure detector 35 is attached to the gas storage tank 26, and the coal gasifier 20 is started and stopped according to the upper and lower limits of the pressure in the gas storage tank 26, so that the gas storage tank 26 is always maintained.
Inside, the pressure of coal gas necessary for starting the pulverized coal-fired boiler 6 is maintained. That is, the upper limit value is the design pressure of the gas storage tank 26, and the lower limit value is:
The amount of coal gas required to start the pulverized coal-fired boiler 6,
The gas pressure is set to be maintained, and the coal gasifier 20 is started at this lower limit value and stopped at the upper limit value. By taking this method,
The start-up of the pulverized coal-fired boiler 6 becomes easier, and
It is sufficient to operate the coal gasifier 20 at a constant capacity, and the operation of the coal gasifier 20 is also simplified.

なお、この方式を用いると、発熱量は約
2500kcal/Nm3のガスを石炭から生成することが
出来る。
Note that when this method is used, the amount of heat generated is approximately
2500 kcal/Nm 3 of gas can be produced from coal.

本発明を実施する際の他の例として、酸化剤と
して空気を使用する場合を第3図に、又、その際
に使用する微粉炭焚ボイラ6の微粉炭バーナ13
エルメロ炭を使用した場合の生成ガスの組成の一
例を下記に示す。
As another example of carrying out the present invention, a case where air is used as an oxidizing agent is shown in FIG.
An example of the composition of the generated gas when Ermelo coal is used is shown below.

表−2 CO 19.1Vol% H2 8.0Vol% CO2 6.7Vol% H2O 5.7Vol% H2 60.4Vol% その他(H2S他) 0.1Vol% 発熱量は約800kcl/Nm3である。 Table 2 CO 19.1Vol% H 2 8.0Vol% CO 2 6.7Vol% H 2 O 5.7Vol% H 2 60.4Vol% Others (H 2 S, etc.) 0.1Vol% The calorific value is approximately 800 kcl/Nm 3 .

この方式では単位熱量当りガス容積が大きくな
り、生成ガスを貯留するのは経済的ではない。こ
のため、発明者等は、触媒燃焼式微粉炭バーナ1
3を考慮し、この微粉炭バーナ13と空気酸化方
式の石炭ガス化装置20を組合わせて空気をガス
化剤として使用する場合のボイラ起動用石炭ガス
燃料の供給を可能とした。
In this method, the gas volume per unit of heat becomes large, and it is not economical to store the generated gas. For this reason, the inventors developed a catalytic combustion pulverized coal burner 1.
3, this pulverized coal burner 13 and an air oxidation type coal gasifier 20 are combined to make it possible to supply coal gas fuel for starting a boiler when air is used as a gasifying agent.

すなわち、石炭ガス化装置20から出たガス
は、熱回収ボイラ28および空気予熱器37を通
り、大略250℃〜350℃に冷却され脱塵装置29で
脱塵後そのまま微粉炭焚ボイラ6の微粉炭バーナ
13に供給する。この微粉炭バーナ13の前流に
ガス空気混合器39が設置され、燃焼に必要な空
気と混合される。燃焼空気量は大略燃料ガスと同
等の量であり、混合後のガス温度は150℃〜200℃
となる。又、混合後のガスは、CO、H2温度が約
半分となりCOは10%より少なく、H2は4.0%より
少なく各成分に対する爆発範囲外とすることがで
きる。
That is, the gas emitted from the coal gasifier 20 passes through a heat recovery boiler 28 and an air preheater 37, is cooled to approximately 250°C to 350°C, is removed by a dust remover 29, and is then sent to the pulverized coal-fired boiler 6 as fine powder. It is supplied to the charcoal burner 13. A gas-air mixer 39 is installed upstream of this pulverized coal burner 13, and is mixed with air necessary for combustion. The amount of combustion air is roughly equivalent to that of fuel gas, and the gas temperature after mixing is 150℃ to 200℃.
becomes. In addition, the gas after mixing has CO and H 2 temperatures approximately half, and CO is less than 10% and H 2 is less than 4.0%, which can be outside the explosive range for each component.

このガス空気混合気は、第4図に示す燃焼触媒
微粉炭バーナ13の燃料ガスノズル40に供給さ
れ、先端に設置された燃焼触媒41により自然着
火し、1200℃〜1400℃の燃焼ガスを発生し、微粉
炭着用火災42を生成する。一方、微粉炭ノズル
43より供給される微粉炭と空気の混合気は、着
火用火炎42と接触して着火し、主火炎災44を
生成する。この燃焼触媒式微粉炭バーナ13は、
起動用のみならず、燃焼安定用あるいは、負荷変
動に対応するバーナとして常時燃焼を行なわせて
もよい。この場合、石炭ガス化装置20は、起
動、停止を頻ぱんに行なう必要はなく、微粉炭焚
ボイラ6の稼働条件に合せて運転される。尚、燃
焼触媒41は、H2ガスで大略80℃〜100℃、CO
ガスで200〜250℃であり、混合気体の場合H2
着火温度に支配され150℃〜200℃で充分着火す
る。
This gas-air mixture is supplied to the fuel gas nozzle 40 of the combustion catalyst pulverized coal burner 13 shown in Fig. 4, and is spontaneously ignited by the combustion catalyst 41 installed at the tip, generating combustion gas at 1200°C to 1400°C. , a pulverized coal fire 42 is generated. On the other hand, the mixture of pulverized coal and air supplied from the pulverized coal nozzle 43 comes into contact with the ignition flame 42 and ignites, producing a main flame 44. This combustion catalyst type pulverized coal burner 13 is
Not only for starting, but also for stabilizing combustion or as a burner for responding to load fluctuations, combustion may be performed constantly. In this case, the coal gasifier 20 does not need to be started and stopped frequently, and is operated in accordance with the operating conditions of the pulverized coal-fired boiler 6. Incidentally, the combustion catalyst 41 is heated at approximately 80°C to 100°C with H2 gas and CO2 gas.
For gas, it is 200-250℃, and for mixed gas, it is controlled by the ignition temperature of H2 , and ignites sufficiently at 150℃-200℃.

第5図に本発明の石炭ガス化装置の構造の一例
を示す。
FIG. 5 shows an example of the structure of the coal gasifier of the present invention.

石炭ガス化装置20は耐火材45で内張りされ
た構造で、ガス化部46とスラグ冷却部47を構
築している。ガス化部46には、微粉炭供給ノズ
ル48、リサイクルライン33のチヤーノズル4
9が複数本設置されている。又、スラグ冷却部4
7には、スタートアツプ用バーナ50と点火装置
27が取付けられ、ガス化の際生成する溶融スラ
グ51を冷却して固化するためのスラグ冷却ノズ
ル52を内蔵している。
The coal gasifier 20 has a structure lined with a refractory material 45, and includes a gasification section 46 and a slag cooling section 47. The gasification section 46 includes a pulverized coal supply nozzle 48 and a chia nozzle 4 of the recycling line 33.
9 are installed. In addition, the slag cooling section 4
7 is attached with a start-up burner 50 and an ignition device 27, and has a built-in slag cooling nozzle 52 for cooling and solidifying molten slag 51 produced during gasification.

起動用の燃料あるいは、ガス貯蔵タンク26よ
りのリサイクルガスを用いて、スタートアツプバ
ーナ50で、所定の温度まで昇温された石炭ガス
化装置20に、気流輸送により送られて来た微粉
炭、ガス混合気体は微粉炭ノズル48よりガス化
剤の酸素、あるいは空気と共にガス化部46に供
給され、石炭ガス化装置20内の温度により、着
火する。ガス化部46において微粉炭は前述の反
応により石炭ガスとなり、炉頂部のガス出口ノズ
ル53より未反応チヤーを同伴し、抜出され後続
プロセスへ行く。一方、石炭中の灰分に溶融温度
以上に加熱され、溶融スラグとなり、ガス化部4
6の下部のスラグタツプ部54より、スラグ冷却
部47に入る。この石炭灰の溶融温度は、石炭の
種類によつて異なるが、1200℃〜1600℃の範囲で
ある。石炭ガス化装置20の温度はこの石炭の溶
融温度により設定され、大略、溶融温度より150
℃〜200℃高く設定する。この温度は酸素あるい
は空気量で調整される。
Pulverized coal is sent by pneumatic transport to the coal gasifier 20, which is heated to a predetermined temperature by the start-up burner 50 using startup fuel or recycled gas from the gas storage tank 26; The gas mixture is supplied from the pulverized coal nozzle 48 to the gasification unit 46 together with the gasifying agent oxygen or air, and is ignited by the temperature inside the coal gasifier 20 . In the gasification section 46, the pulverized coal becomes coal gas through the above-mentioned reaction, and is extracted from the gas outlet nozzle 53 at the top of the furnace, accompanied by unreacted coal, to proceed to the subsequent process. On the other hand, the ash content in the coal is heated above the melting temperature and becomes molten slag, which is produced in the gasification section 4.
It enters the slag cooling section 47 from the slag tap section 54 at the bottom of the slag 6. The melting temperature of this coal ash varies depending on the type of coal, but is in the range of 1200°C to 1600°C. The temperature of the coal gasifier 20 is set by the melting temperature of this coal, and is approximately 150% lower than the melting temperature.
Set the temperature higher by ℃~200℃. This temperature is regulated by the amount of oxygen or air.

スラグタツプ部54からの溶融スラグは、従来
のガス化装置では、スラグ冷却部47の下部に水
を張り、その中は滴下、水砕スラグとして水との
混合物として取出されている。このため、水中へ
アンモニア、微細スラグ等が混入するため、大が
かりなスラグ分離装置、排水処理装置を設置して
いる。本発明では、このスラグタツプ部54の下
部へ流下する溶融スラグへ、冷却ガス(スチー
ム、N2、空気等)ライン55からの冷却水を噴
霧して吹きつけることにより、スラグを吹き飛ば
して冷却を行ない、固化スラグとして乾式冷却方
式により冷却するので、システムの簡素化を行な
つている。この乾式冷却方式を採用したのは、ス
ラグの固化が溶融スラグが1200℃以上と非常に高
温であり、かつ、固化スラグとするための冷却温
度差が150℃〜200℃と小さく、ほぼ瞬時に表面固
化が出来、気流中で固体スラグ化することができ
るので、飛散スラグが壁面へ付着するトラブルを
防止できる。又、従来のガス化装置20で本方式
を採用出来なかつたのは、ガス化炉圧が高圧であ
り、固体粒子の取出しが、水中に混合し抜出す方
法がとられたためであり、かつ、この冷却用ガス
がスラグタツプを冷却し、タツプ部で固化、閉そ
くを起すことを懸念したためである。本装置の場
合、比較的低圧の操業で、かつ低圧であれば、ス
タートアツプバーナをスラグタツプ部の加温に使
用することが出来、これらの問題を解決すること
が出来る。
In the conventional gasifier, the molten slag from the slag tap section 54 is dripped into the lower part of the slag cooling section 47 filled with water, and is taken out as granulated slag as a mixture with water. For this reason, ammonia, fine slag, etc. get mixed into the water, so large-scale slag separation equipment and wastewater treatment equipment are installed. In the present invention, cooling water from a cooling gas (steam, N 2 , air, etc.) line 55 is sprayed onto the molten slag flowing down to the lower part of the slag tap portion 54 to blow the slag out and cool it. Since the solidified slag is cooled using a dry cooling method, the system is simplified. This dry cooling method was adopted because the molten slag solidifies at a very high temperature of 1200℃ or higher, and the cooling temperature difference to solidify slag is small at 150℃ to 200℃, so it is almost instantaneous. Since it can solidify on the surface and turn into solid slag in airflow, it is possible to prevent the problem of scattered slag adhering to the wall surface. In addition, the reason why this method could not be adopted in the conventional gasifier 20 is that the gasifier pressure was high and the solid particles were extracted by mixing them in water and extracting them. This was because we were concerned that this cooling gas would cool the slug tap, causing solidification and blockage at the tap. In the case of this apparatus, these problems can be solved by operating at a relatively low pressure, and if the pressure is low, the start-up burner can be used to heat the slug tap section.

以上述べた様に微粉炭焚ボイラの近傍に石炭ガ
ス化装置を設置することにより、発電用の主燃料
である石炭から、発電所内で容易に得られる電
力、冷却水等のユーテイリテイのみで、外部より
余分のユーテイリテイを用意することなく、石炭
ガス燃料を得ることが出来るので、従来、総燃焼
熱量の10%を示めていた油、LNGなどの補助燃
料が不要となる。
As mentioned above, by installing a coal gasification device near a pulverized coal-fired boiler, it is possible to use only utilities such as electricity and cooling water that can be easily obtained within the power plant from coal, which is the main fuel for power generation. Since coal gas fuel can be obtained without providing additional utilities, auxiliary fuels such as oil and LNG, which conventionally accounted for 10% of the total combustion heat, are no longer needed.

また、補助燃料のための貯蔵タンク、補助燃料
燃焼系統の装置が不要となる。
Further, a storage tank for auxiliary fuel and an auxiliary fuel combustion system device are not required.

なお、石炭ガス化装置は従来の石炭のガス化装
置をそのまま適用することができるので、貯留タ
ンクを設置するのみで、このタンク中の圧力によ
つて、石炭ガス化装置を起動、停止することなく
石炭ガス化装置を定量運転することが出来、か
つ、ボイラー起動操作も簡単になる。又、この貯
留タンク中の生成ガスを、石炭ガス化装置の起動
用燃料として使用することが出来、他燃料を必要
としない。
Furthermore, since conventional coal gasification equipment can be applied to the coal gasification equipment as is, by simply installing a storage tank, the coal gasification equipment can be started and stopped by the pressure in this tank. The coal gasifier can be operated at a constant rate without any problems, and the boiler startup operation is also simplified. Furthermore, the generated gas in this storage tank can be used as a starting fuel for the coal gasifier, and no other fuel is required.

なお、触媒燃料式微粉炭バーナを適用し生成ガ
スを高温のまま、微粉炭焚ボイラの補助燃料とす
ることによりボイラの着火装置が不要となり、負
荷変動に対応できる。
In addition, by applying a catalytic fuel type pulverized coal burner and using the generated gas at a high temperature as auxiliary fuel for the pulverized coal-fired boiler, an ignition device for the boiler is not required and it is possible to respond to load fluctuations.

また、スラブ乾式冷却方式を適用することによ
り廃水処理装置が不要となり、装置が簡単にな
る。
Furthermore, by applying the slab dry cooling method, a waste water treatment device is not required, and the device becomes simpler.

〔発明の効果〕〔Effect of the invention〕

本発明は微粉炭焚ボイラの近傍に微粉炭をガス
化する石炭ガス化装置を設けたので、微粉炭のみ
で起動時から全負荷時まで運転することができ、
起動時、負荷変化時のための油、LNGなどの補
助燃料が不要になる。
The present invention has a coal gasifier that gasifies pulverized coal near the pulverized coal-fired boiler, so it can be operated from startup to full load using only pulverized coal.
There is no need for auxiliary fuel such as oil or LNG for startup or load changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は本発明の実施例を示すもの
で、第1図は本発明の実施例に係る微粉炭焚ボイ
ラの燃料系統、煙風道系統を示す概略構成図、第
2図は酸素をガス化剤にした石炭ガス化装置の系
統図、第3図は空気をガス化剤にした石炭ガス化
装置の系統図、第4図は燃焼触媒を利用した微粉
炭バーナの拡大図、第5図は石炭ガス化装置の拡
大図、第6図は従来の微粉炭焚ボイラにおける燃
料系統と煙風道系統を示す概略構成図である。 6……微粉炭焚ボイラ、7……ミル、9……石
炭、12……微粉炭管、13……微粉炭バーナ、
19……ガス化用微粉炭管、20……石炭ガス化
装置、21……ガス化剤配管。
1 to 5 show embodiments of the present invention, and FIG. 1 is a schematic configuration diagram showing the fuel system and flue duct system of a pulverized coal-fired boiler according to the embodiment of the present invention, and FIG. 2 Figure 3 is a system diagram of a coal gasifier that uses oxygen as a gasifier, Figure 3 is a diagram of a coal gasifier that uses air as a gasifier, and Figure 4 is an enlarged view of a pulverized coal burner that uses a combustion catalyst. , FIG. 5 is an enlarged view of a coal gasifier, and FIG. 6 is a schematic configuration diagram showing a fuel system and a flue system in a conventional pulverized coal-fired boiler. 6...pulverized coal-fired boiler, 7...mill, 9...coal, 12...pulverized coal pipe, 13...pulverized coal burner,
19...Pulverized coal pipe for gasification, 20...Coal gasifier, 21...Gasifying agent piping.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭をミルで粉砕して微粉炭にし、この微粉
炭をミルより微粉炭管を経てボイラの微粉炭バー
ナへ供給し燃焼させるものにおいて、前記微粉炭
焚ボイラの近傍に微粉炭の一部を空気、酸素等の
ガス化剤でガス化する石炭ガス化装置を設けたこ
とを特徴とする微粉炭焚きボイラ。
1 Coal is crushed into pulverized coal in a mill, and this pulverized coal is supplied from the mill through a pulverized coal pipe to a pulverized coal burner of a boiler for combustion, in which a part of the pulverized coal is placed near the pulverized coal-fired boiler. A pulverized coal-fired boiler characterized by being equipped with a coal gasifier that gasifies with a gasifying agent such as air or oxygen.
JP60238601A 1985-10-26 1985-10-26 Pulverized coal-fired boiler Granted JPS62102006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238601A JPS62102006A (en) 1985-10-26 1985-10-26 Pulverized coal-fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238601A JPS62102006A (en) 1985-10-26 1985-10-26 Pulverized coal-fired boiler

Publications (2)

Publication Number Publication Date
JPS62102006A JPS62102006A (en) 1987-05-12
JPH0551804B2 true JPH0551804B2 (en) 1993-08-03

Family

ID=17032611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238601A Granted JPS62102006A (en) 1985-10-26 1985-10-26 Pulverized coal-fired boiler

Country Status (1)

Country Link
JP (1) JPS62102006A (en)

Also Published As

Publication number Publication date
JPS62102006A (en) 1987-05-12

Similar Documents

Publication Publication Date Title
CA1092821A (en) Method of operating a coal gasifier
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
US5725614A (en) Apparatus for fluidized-bed gasification and melt combustion
CA1224974A (en) Method for destroying refuse
CA1182290A (en) Coal gasification method and apparatus using coal powder
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
JP4150937B2 (en) Coal gasifier and coal gasification method
JP2010285564A (en) Coal gasification furnace, method and program for controlling the same, and coal gasification combined power generator equipped with the furnace
US6167691B1 (en) Gasification power generation system using preheated gasifying-agent to gasify fuel
US5224338A (en) Gasifying combustion method and gasifying power generation method
CN105164386B (en) The control method of the control device of gasification power generation plant, gasification power generation plant and gasification power generation plant
US4097217A (en) Method for converting combustor from hydrocarbonaceous fuel to carbonaceous fuel
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
JPH08104882A (en) Coal gasifying furnace of entrained layer and method for gasifying coal
JPH0551804B2 (en)
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4051329B2 (en) Waste gasification and melting treatment method
WO2020066459A1 (en) Gas turbine device, gas turbine facility, and method for operating gasification facility and gas turbine device
JPS63264696A (en) Operation control method of coal gasifier oven
JP2986901B2 (en) Working fluid supply method and combustion equipment
JP2006028211A (en) Waste gasifier
JPS6032672B2 (en) Method for producing electrical energy and gas from pulverized caking coal
JP3788149B2 (en) Combined power generation system
JPH06330058A (en) Jet flow bed coal gasification furnace