JPH055165A - Method for heat treatment of aluminum-lithium alloy - Google Patents

Method for heat treatment of aluminum-lithium alloy

Info

Publication number
JPH055165A
JPH055165A JP3022077A JP2207791A JPH055165A JP H055165 A JPH055165 A JP H055165A JP 3022077 A JP3022077 A JP 3022077A JP 2207791 A JP2207791 A JP 2207791A JP H055165 A JPH055165 A JP H055165A
Authority
JP
Japan
Prior art keywords
aluminum
heat treatment
alloy
lithium alloy
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3022077A
Other languages
Japanese (ja)
Other versions
JPH0647710B2 (en
Inventor
Myong-Chol Shin
明▲ちゆる▼ 申
Kun-Yong Son
根▲よん▼ 孫
Young H Chung
榮勲 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Publication of JPH055165A publication Critical patent/JPH055165A/en
Publication of JPH0647710B2 publication Critical patent/JPH0647710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To improve the drawing rate of an aluminum - lithium alloy.
CONSTITUTION: The aluminum - lithium alloy having a compsn. of Al-1.9 to 2, 6, Li-2.4 to 3.0, Cu-0.08 to 0.15 and Zr is subjected to cold aging after a soln. heat treatment and is then subjected to cold rolling or stretching. The alloy is further subjected to one-stage low-temp. aging, then to a reverting treatment for a resolutionization of a δ' phase and, thereafter, the alloy is subjected to two-stage aging treatments.
COPYRIGHT: (C)1993,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム−リチウ
ム合金の延伸率を向上させる為の熱処理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for improving the draw ratio of an aluminum-lithium alloy.

【0002】[0002]

【従来の技術】金属リチウム(Li)は、その比重が0.53
g/cm3 で金属中で最も軽く延性がとても優秀な反面、化
学的に活性がとても強くリチウム金属単独では利用価値
が高くないが、アルミニウムに添加されアルミニウム−
リチウム合金と成る場合には、アルミニウムの強度を非
常に向上させるのは勿論、アルミニウム合金自体の重量
を相当に減少させる役割をする。
2. Description of the Related Art Lithium (Li) has a specific gravity of 0.53.
It is the lightest of all metals at g / cm 3 and has excellent ductility, but it is also chemically active and not very useful when used alone with lithium metal.
When it becomes a lithium alloy, it not only greatly improves the strength of aluminum, but also serves to considerably reduce the weight of the aluminum alloy itself.

【0003】特に、アルミニウム−リチウム合金は密度
が低い一方、強度が高く弾性率の高い特性を持つため、
航空、宇宙産業分野を始めとする超軽量構造体材料とし
ての利用だけでなく上記の特性を要する各種産業分野へ
の利用が期待されている。これをより具体的に説明すれ
ば、現在一般的に使用されている航空機構造用高力アル
ミニウム合金をアルミニウム−リチウム合金で代替する
場合、7〜9%程度の重量軽減が可能であり、航空機の
速度、航続距離の増加は勿論、輸送能力の向上を図る事
ができ、又、高強度及び高硬度の要求される既存のアル
ミニウム装甲材と同等水準の防護力を持たせる場合に、
10%程度の軽量構造物の製作が可能で装甲板材とかミサ
イル分野に適合した素材としての有用性が期待されてい
る。
In particular, aluminum-lithium alloy has a low density, but has a high strength and a high elastic modulus.
It is expected to be used not only as an ultralight structural material in the fields of aerospace and space, but also in various industrial fields that require the above characteristics. Explaining this more specifically, when the aluminum-lithium alloy replaces the high strength aluminum alloys for aircraft structures that are commonly used at present, it is possible to reduce the weight by about 7 to 9%. In addition to increasing the speed and cruising range, it is possible to improve the transportation capacity, and to provide the same level of protection as the existing aluminum armored material that requires high strength and hardness,
It is possible to manufacture a lightweight structure of about 10%, and it is expected to be useful as a material suitable for armor plate materials and missile fields.

【0004】ところで、アルミニウム−リチウム合金は
既存の2×××系及び7×××系高力アルミニウム合金
に比べ延伸率及び破壊靱性がとても低いという材質特性
上の問題点を持っている。このように、アルミニウム−
リチウム合金で延伸率及び破壊靱性の低い原因として
は、主にアルミニウム−リチウム系合金の主析出相であ
るδ′相(Al3Li) に因る平面スリップ(planar slip) の
発生とこれに因る粒界無析出帯(grain boundary precip
itate free zone)での優先変形に伴う粒界脆化に起因す
るものと知られている。
By the way, the aluminum-lithium alloy has a problem in terms of material properties that the draw ratio and fracture toughness are very low as compared with the existing 2xxx and 7xxx high strength aluminum alloys. Thus, aluminum
The causes of low elongation and fracture toughness in lithium alloys are mainly the occurrence of planar slip due to the δ ′ phase (Al 3 Li), which is the main precipitation phase of aluminum-lithium alloys, and the reason for this. Grain boundary precipitation zone
It is known to be due to grain boundary embrittlement due to preferential deformation in the itate free zone.

【0005】従って、アルミニウム−リチウム合金の延
伸率及び破壊靱性を高める為の方法として、δ′相に因
る転位の平面スリップを抑制する為に、基地内にδ′相
以外の他の不整合析出物を析出させ転位の平面スリップ
を分散させる事で粒界脆化を防止することが考えられ
る。このように、アルミニウム−リチウム合金内にδ′
相以外の不整合析出物を析出させた形態の合金として20
90アルミニウム合金を挙げる事が出来るが、この2090ア
ルミニウム合金はアルミニウム−リチウム二元合金に銅
(Cu)及びジルコニウム(Zr)が添加された合金である。
Therefore, as a method for increasing the draw ratio and fracture toughness of aluminum-lithium alloys, in order to suppress the plane slip of dislocations due to the δ'phase, other inconsistencies other than the δ'phase are present in the matrix. It is considered to prevent grain boundary embrittlement by depositing precipitates and dispersing plane slips of dislocations. Thus, in the aluminum-lithium alloy, δ ′
As an alloy in the form of incoherent precipitates other than the phase 20
90 aluminum alloy can be mentioned, but this 2090 aluminum alloy is aluminum-lithium binary alloy with copper
It is an alloy to which (Cu) and zirconium (Zr) are added.

【0006】ここで、銅は強化元素として添加され板状
のT1 相(Al2CuLi) を形成し基地と不整合を成し析出さ
れ転位の平面スリップを効果的に底止させる事で合金の
強化に寄与する。そして、ジルコニウムは鋳造組織を微
細化させる一方で球形のβ相(Al3Zr) を形成し粒界移動
を底止させ再結晶を抑制する。ところが、現在知られて
いるAl−Li−Cu系の2090合金は、銅とリチウムの含量比
によってその析出挙動が異なるものと報告されている為
に、2090合金範囲のあらゆる銅及びリチウムの含量変化
条件に対し同一な熱処理を適用するには困難が伴い、
又、現在に至る迄各組成範囲に対する具体的な熱処理条
件が明らかに規格化されてはいない。
[0006] Here, copper is added as a strengthening element to form a plate-like T 1 phase (Al 2 CuLi) which is inconsistent with the matrix and is precipitated to effectively stop the plane slip of dislocations, thereby forming an alloy. Contribute to strengthening. Then, zirconium refines the cast structure while forming a spherical β phase (Al 3 Zr) to stop the grain boundary migration and suppress recrystallization. However, the currently known Al-Li-Cu-based 2090 alloy is reported to have different precipitation behavior depending on the content ratio of copper and lithium, so that any change in the content of copper and lithium in the 2090 alloy range. It is difficult to apply the same heat treatment to the conditions,
Moreover, until now, specific heat treatment conditions for each composition range have not been clearly standardized.

【0007】このようなAl−Li−Cu系2090合金の熱処理
方法として一般的に使用されている方法の例としては、
最高強度を得る為に溶体化処理後、190 ℃で最高強度条
件に至る迄時効をさせる方法と、溶体化処理後、1〜5
%ストレッチング(stretchi-ng) 或いは冷間圧延(cold
rolling)した後、190 ℃で時効させる方法等を挙げる事
が出来る。
An example of a method generally used as a heat treatment method for such an Al--Li--Cu type 2090 alloy is as follows:
After solution heat treatment to obtain the highest strength, a method of aging at 190 ℃ until reaching the highest strength condition, and 1 to 5 after solution heat treatment.
% Stretching (stretchi-ng) or cold rolling (cold
After rolling, a method of aging at 190 ° C can be mentioned.

【0008】[0008]

【発明が解決しようとする課題】しかし、このような従
来の熱処理方法による延伸率の向上には限界があり、特
に、Al−2.3 〜2.5 Li−2.7 〜3.0 Cu−0.08〜0.15Zr範
囲の2090合金はリチウムが比較的多く含有されていて延
伸率がより低下する傾向を見せ、大気溶解で得た試料に
対し実験した結果、下の表1のように溶体化処理後スト
レッチングをした場合でさえ1%以下のとても低い延伸
率を示しているのを知る事が出来る。
However, there is a limit to the improvement of the draw ratio by such a conventional heat treatment method, and in particular, it is 2090 in the range of Al-2.3 to 2.5 Li-2.7 to 3.0 Cu-0.08 to 0.15Zr. The alloy contains a relatively large amount of lithium and tends to have a lower draw ratio. As a result of an experiment conducted on a sample obtained by atmospheric melting, as shown in Table 1 below, when stretching was performed after solution treatment, stretching was performed. It can even be seen that it shows a very low draw ratio of less than 1%.

【0009】[0009]

【表1】 [Table 1]

【0010】従って、Al−Li−Cu系2090合金の延伸率を
向上させる為には新しい熱処理方法の開発が要求されて
いる。本発明は上記の事情に鑑みなされたもので、2090
アルミニウム−リチウム合金の延伸率向上の為の新しい
熱処理方法を提供するのにその目的がある。
Therefore, development of a new heat treatment method is required to improve the elongation of the Al-Li-Cu system 2090 alloy. The present invention has been made in view of the above circumstances.
It is an object to provide a new heat treatment method for improving the draw ratio of aluminum-lithium alloy.

【0011】[0011]

【課題を解決するための手段及び作用】この様な目的を
達成する為に本発明の熱処理方法は、図1の流れ図に示
すように、Al−1.9 〜2.6 Li−2.4 〜3.0 Cu−0.08〜0.
15Zr組成範囲のアルミニウム−リチウム合金を溶体化処
理後、常温時効を行った後、冷間圧延又はストレッチン
グを行い、更に1段階低温時効をし、続いてδ′相の再
固溶の為のリバーティング(reverting) 処理をした後、
2段階時効処理を遂行してδ′相を再析出させるように
した。
[Means and Actions for Solving the Problems] In order to achieve such an object, the heat treatment method of the present invention is, as shown in the flow chart of FIG. 1, Al-1.9 to 2.6 Li-2.4 to 3.0 Cu-0.08 to 0.
After solution treatment of an aluminum-lithium alloy having a composition range of 15 Zr, aging at room temperature, cold rolling or stretching, further one-step low temperature aging, followed by re-dissolution of the δ'phase After performing reverting processing,
A two-step aging treatment was performed to reprecipitate the δ'phase.

【0012】即ち、2090アルミニウム−リチウム合金の
強化効果がδ′(Al3Li) 相とT1(Al 2CuLi)相の2つの析
出物に起因し、これらのうち、δ′相は転位の平面スリ
ップを誘導し粒界破壊を誘発するが、T1 相は転位の移
動を停止し分散させると言う点を勘案し、析出速度の遅
いT1相を充分に析出させる一方で過時効したδ′相を選
択的に再固溶させた後、再び析出させる熱処理方法を遂
行する。
That is, 2090 aluminum-lithium alloy
Strengthening effect is δ '(Al3Li) Phase and T1(Al 2CuLi) phase two analysis
Of these, the δ ′ phase is the plane slip of dislocation.
And induces grain boundary destruction, but T1Phase is dislocation shift
In consideration of the fact that the motion is stopped and dispersed, the precipitation rate is slow.
I T1Phase is sufficiently precipitated while over-aging δ'phase is selected.
Selectively re-dissolve and then re-precipitate heat treatment method.
To go.

【0013】そして、本発明では熱処理の温度が高く成
るに従い粗大な粒界析出物が発生するのを防止する為に
溶体化処理後常温時効を経た後ストレッチング或いは冷
間圧延と1段階低温時効を行う事でT1 相の均一な析出
を誘導するようにしている。この様な本発明の熱処理方
法を通じ得られた2090アルミニウム−リチウム合金は、
合金本来の強度を殆どそのまま維持したまま延伸率を5
〜6%まで向上させる事が出来るようになる。
In the present invention, in order to prevent the generation of coarse grain boundary precipitates as the temperature of heat treatment increases, the solution treatment is followed by room temperature aging, followed by stretching or cold rolling and one-step low temperature aging. Is carried out so as to induce uniform precipitation of the T 1 phase. The 2090 aluminum-lithium alloy obtained through such a heat treatment method of the present invention is
The draw ratio is 5 while maintaining the original strength of the alloy as it is.
It will be possible to improve up to ~ 6%.

【0014】また、リバーティング処理は、230 ℃〜30
0 ℃で1分間行うようにし、2段階時効処理は、200 ℃
〜250 ℃で20分間行うようにしている。これは、Al−Li
2元合金では粒界で不連続析出(DP:discontinuous
preci-pitation) が起こるものと知られているが、この
ように粒界で不連続析出が起こるように成れば粒界が脆
弱になり脆性破壊の要因に作用するように成る( 参照:
D.B Williams 及び J.W.Edington,ACTA METAL.,Vol.24,
P323,1976) 。
The reverting treatment is carried out at 230 ° C. to 30 ° C.
Perform 1 minute at 0 ℃, and the two-step aging treatment is 200 ℃
I try to do it for 20 minutes at ~ 250 ℃. This is Al-Li
In binary alloys, discontinuous precipitation (DP) at grain boundaries
It is known that preci-pitation) occurs, but if discontinuous precipitation occurs at grain boundaries in this way, the grain boundaries become fragile and act on factors of brittle fracture (see:
DB Williams and JW Edington, ACTA METAL., Vol.24,
P323, 1976).

【0015】このため、Al−Li−Cu系及びAl−Li−Cu−
Mg系の実用合金で不連続析出が観察された例は殆ど無い
が、本発明は上述の脆性破壊の要因として作用する不連
続析出を排除する為に、図2のδ,δ′状のソルバスラ
イン(solvus line) を示した状態図で観察される不連続
析出範囲を避けるように上記の温度範囲で熱処理を行
う。
Therefore, the Al-Li-Cu system and Al-Li-Cu-
Although there are almost no examples in which discontinuous precipitation was observed in a Mg-based practical alloy, the present invention eliminates the discontinuous precipitation acting as a factor of the brittle fracture described above, so that the δ, δ′-shaped sol of FIG. The heat treatment is performed in the above temperature range so as to avoid the discontinuous precipitation range observed in the phase diagram showing the bath line.

【0016】[0016]

【実施例】以下に本発明の実施例について説明する。 実施例 本出願人に依り先に出願した韓国特許出願第90−8873号
の大気溶解に依るアルミニウム−リチウム合金の製造方
法を通じAl−2.33Li−2.54Cu−0.09Zr組成のアルミニウ
ム−リチウム合金を製造した後、この試料に対し均質化
処理を遂行し押出した後、450 ℃で熱間圧延し2.2 mm厚
さの板材を製作した。
EXAMPLES Examples of the present invention will be described below. Example An aluminum-lithium alloy having an Al-2.33Li-2.54Cu-0.09Zr composition was manufactured through a method for manufacturing an aluminum-lithium alloy by melting in the atmosphere of Korean Patent Application No. 90-8873 filed earlier by the applicant. After that, the sample was homogenized, extruded, and hot-rolled at 450 ° C. to manufacture a plate material having a thickness of 2.2 mm.

【0017】この様な板材の試料を図3の熱処理過程説
明図に示すように570 ℃で1時間溶体化処理した後、24
時間常温時効をさせてから、5%冷間圧延と120 ℃で24
時間に亘る低温時効を行い、析出したδ′相を再固溶さ
せる為に270 ℃で1分間リバーティング処理をし、230
℃で20分間時効処理しδ′相を再析出させることで試片
1を製作した。
As shown in the heat treatment process explanatory diagram of FIG. 3, a sample of such a plate material was subjected to solution treatment at 570 ° C. for 1 hour, and then 24
After aging at room temperature for 24 hours, cold rolling at 5% and 24 at 120 ° C
After aging at low temperature for a long time, reverting treatment was carried out at 270 ° C for 1 minute to re-dissolve the precipitated δ'phase.
Specimen 1 was manufactured by aging treatment at 20 ° C. for 20 minutes and reprecipitating the δ ′ phase.

【0018】次に、上記試片1と同一な熱処理過程を遂
行するが、但し、5%の冷間圧延の代わりに5%のスト
レッチングを行い試片2を製作した。又、上記試片1と
同一な熱処理過程を遂行するが、リバーティング処理温
度を250 ℃に変更し、δ′状の再析出の為の2段階時効
処理を250 ℃に変更し試片3を製作した。この様な本実
施例の熱処理方法を通じて得た各試片に対する強度及び
延伸率の測定結果は下の表2の通りである。
Next, the same heat treatment process as that of the sample 1 was performed, except that the sample 2 was prepared by stretching 5% instead of cold rolling 5%. Also, the same heat treatment process as in the above-mentioned sample 1 is performed, but the reverting treatment temperature is changed to 250 ° C., and the two-step aging treatment for redeposition of δ ′ is changed to 250 ° C. I made it. The measurement results of the strength and the stretching ratio for each sample obtained through the heat treatment method of this example are shown in Table 2 below.

【0019】[0019]

【表2】 [Table 2]

【0020】上の表2から明らかなように、本実施例の
熱処理方法を通じて得た各試片は表1に示された3%ス
トレッチングを行う従来の熱処理方法により製作された
材料に比べ、強度は多少劣るが延伸率の面で格段に増加
しているのを知る事が出来る。以上のように、かかる熱
処理方法を通じて得られた2090アルミニウム−リチウム
合金は、従来の合金本来の強度を殆ど維持したまま延伸
率を5〜6%まで向上させる事が出来る。
As can be seen from Table 2 above, each of the test pieces obtained by the heat treatment method of the present embodiment has a higher thermal conductivity than the materials produced by the conventional heat treatment method of 3% stretching shown in Table 1. Although the strength is somewhat inferior, it can be seen that the drawing rate is remarkably increased. As described above, the 2090 aluminum-lithium alloy obtained by the heat treatment method can improve the draw ratio to 5 to 6% while maintaining the original strength of the conventional alloy.

【0021】尚、本発明の熱処理方法において、リチウ
ムの組成が変化するに従い図2のδ′相及びδ相のソル
バスラインに対する条件から、リバーティング温度を23
0 ℃〜300 ℃まで変化させることが可能で、δ′相の再
析出処理の為の2段階時効処理も200 ℃〜250 ℃の範囲
内で変化が可能である。
In the heat treatment method of the present invention, as the lithium composition changes, the reverting temperature is set to 23 from the conditions for the δ'phase and δ phase solvus lines in FIG.
The temperature can be changed from 0 ° C to 300 ° C, and the two-step aging treatment for reprecipitation treatment of the δ'phase can also be changed within the range of 200 ° C to 250 ° C.

【0022】[0022]

【発明の効果】以上説明したように本発明の熱処理方法
によれば、アルミニウム−リチウム合金の強度を低下さ
せることなく延伸率を大幅に向上させることができる。
そして、他の組成範囲のアルミニウム−リチウム合金に
対しても本発明を適用する場合に比較的高い強度と共に
延伸率の向上を期待する事が出来る。
As described above, according to the heat treatment method of the present invention, the draw ratio can be greatly improved without lowering the strength of the aluminum-lithium alloy.
Further, when the present invention is applied to an aluminum-lithium alloy having another composition range, it can be expected to have a relatively high strength and an improved draw ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理方法を概略的に示した流れ図FIG. 1 is a flow chart schematically showing a heat treatment method of the present invention.

【図2】Al−Li合金中のδ, δ′相のソルバスラインを
示した状態図
FIG. 2 is a state diagram showing solvus lines of δ and δ ′ phases in an Al-Li alloy.

【図3】本発明の熱処理方法の一実施例の熱処理過程を
示した説明図
FIG. 3 is an explanatory view showing a heat treatment process of one embodiment of the heat treatment method of the present invention.

Claims (1)

【特許請求の範囲】 【請求項1】Al−1.9 〜2.6 Li−2.4 〜3.0 Cu−0.08〜
0.15Zr組成のアルミニウム−リチウム合金を溶体化処理
後、常温時効を行った後、冷間圧延又はストレッチング
を行い、更に1段階低温時効をし、δ′相の再固溶の為
のリバーティング処理をした後、2段階時効処理を遂行
することを特徴とするアルミニウム−リチウム合金の熱
処理方法。 【請求項2】リバーティング処理は、230 ℃〜300 ℃で
1分間行うことを特徴とする請求項1記載のアルミニウ
ム−リチウム合金の熱処理方法。 【請求項3】2段階時効処理は、200 ℃〜250 ℃で20分
間行うことを特徴とする請求項1記載のアルミニウム−
リチウム合金の熱処理方法。
[Claims] [Claim 1] Al-1.9 to 2.6 Li-2.4 to 3.0 Cu-0.08 to
After solution heat treatment of aluminum-lithium alloy of 0.15Zr composition, aging at room temperature, cold rolling or stretching, then one step low temperature aging, reverting for re-dissolution of δ'phase A heat treatment method for an aluminum-lithium alloy, which comprises performing a two-step aging treatment after the treatment. 2. The heat treatment method for an aluminum-lithium alloy according to claim 1, wherein the reverting treatment is performed at 230 ° C. to 300 ° C. for 1 minute. 3. The aluminum according to claim 1, wherein the two-step aging treatment is carried out at 200 ° C. to 250 ° C. for 20 minutes.
Method for heat treatment of lithium alloy.
JP3022077A 1990-07-27 1991-02-15 Heat treatment method for aluminum-lithium alloy Expired - Lifetime JPH0647710B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019900011491A KR920007926B1 (en) 1990-07-27 1990-07-27 Process for heat treatment of al-li alloy
KR11491/1990 1990-07-27

Publications (2)

Publication Number Publication Date
JPH055165A true JPH055165A (en) 1993-01-14
JPH0647710B2 JPH0647710B2 (en) 1994-06-22

Family

ID=19301730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022077A Expired - Lifetime JPH0647710B2 (en) 1990-07-27 1991-02-15 Heat treatment method for aluminum-lithium alloy

Country Status (2)

Country Link
JP (1) JPH0647710B2 (en)
KR (1) KR920007926B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090047A (en) * 2002-05-21 2003-11-28 현대자동차주식회사 Heat treatment method for reduction of surface roughness of aluminum alloy sheet
CN105369170A (en) * 2015-12-18 2016-03-02 西南铝业(集团)有限责任公司 Aluminum lithium alloy profile black and white spot controlling method
CN109385588A (en) * 2018-12-05 2019-02-26 湖南恒佳新材料科技有限公司 A kind of preparation method of 2050 Aluminum Alloy Plate of high tenacity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542320A (en) 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 6XXX aluminum alloy and method for producing the same
CN105441654A (en) * 2015-11-20 2016-03-30 沈阳黎明航空发动机(集团)有限责任公司 Precise cold-rolling manufacturing method for GH2787 alloy blade

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030090047A (en) * 2002-05-21 2003-11-28 현대자동차주식회사 Heat treatment method for reduction of surface roughness of aluminum alloy sheet
CN105369170A (en) * 2015-12-18 2016-03-02 西南铝业(集团)有限责任公司 Aluminum lithium alloy profile black and white spot controlling method
CN109385588A (en) * 2018-12-05 2019-02-26 湖南恒佳新材料科技有限公司 A kind of preparation method of 2050 Aluminum Alloy Plate of high tenacity

Also Published As

Publication number Publication date
KR920007926B1 (en) 1992-09-19
KR920002803A (en) 1992-02-28
JPH0647710B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
Polmear et al. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures
Knipling et al. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 C
Grimes et al. Superplastic aluminium-based alloys
Ünlü et al. The effect of cold work on the precipitation of Ω and θ′ in a ternary Al-Cu-Mg alloy
Banerjee et al. Effect of trace additions of Sn on microstructure and mechanical properties of Al–Cu–Mg alloys
Zhang et al. Quantifying the effects of Sc and Ag on the microstructure and mechanical properties of Al–Cu alloys
Cassada et al. The effect of germanium on the precipitation and deformation behavior of Al 2Li alloys
Katgerman et al. Hardening, annealing, and aging
Wu et al. Microstructure and mechanical properties of spray-deposited Al-17Si-4.5 Cu-0.6 Mg wrought alloy
MacKenzie Metallurgy of heat treatable aluminum alloys
Feng et al. The effect of minor alloying elements on the mechanical properties of Al-Cu-Li alloys
Liu et al. Microstructure and mechanical properties of Al–Cu–Mg–Mn–Zr alloy with trace amounts of Ag
US3827917A (en) Aluminum electrical conductor and process for making the same
Mukhopadhyay Compositional characterization of Cu-rich phase particles present in as-cast Al-Cu-Mg (-Li) alloys containing Ag
Mondal et al. Effects of different modes of hot cross-rolling in 7010 aluminum alloy: Part I. Evolution of microstructure and texture
JPH055165A (en) Method for heat treatment of aluminum-lithium alloy
Chen et al. Alloying effect of Mg on microstructure and mechanical properties at 300° C of Al–5Cu–1Mn–0.5 Ni heat-resistant alloy
Henriksen The microstructure of squeezecast SiCw-reinforced Al4Cu base alloy with Mg and Ni additions
Li et al. Analysis on the hot deformation flow stress curves of novel 6082 aluminium alloys with Mn addition
Song et al. Effect of Ce on the thermal stability of the Ω phase in an Al-Cu-Mg-Ag alloy
Suárez Mechanical properties of a novel aluminum matrix composite containing boron
US4842822A (en) Aluminum-lithium alloy and method of investment casting an aluminum-lithium alloy
Vignesh et al. Effect of thermal and thermo-mechanical processing on Mg-Sn-Zn alloy and understanding structure-property correlation
Himuro et al. Precipitation behaviour of zirconium compounds in Zr-bearing Al-Mg-Si alloy
JPH03183750A (en) Production of superplastic aluminum alloy having high strength