JPH0551588A - Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing - Google Patents

Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing

Info

Publication number
JPH0551588A
JPH0551588A JP21198991A JP21198991A JPH0551588A JP H0551588 A JPH0551588 A JP H0551588A JP 21198991 A JP21198991 A JP 21198991A JP 21198991 A JP21198991 A JP 21198991A JP H0551588 A JPH0551588 A JP H0551588A
Authority
JP
Japan
Prior art keywords
oil
bearing
impregnated
powder
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21198991A
Other languages
Japanese (ja)
Inventor
Shigetaka Iwata
重剛 岩田
Katsuzo Okada
勝蔵 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIRIKU BOEKI KK
Original Assignee
TAIRIKU BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIRIKU BOEKI KK filed Critical TAIRIKU BOEKI KK
Priority to JP21198991A priority Critical patent/JPH0551588A/en
Publication of JPH0551588A publication Critical patent/JPH0551588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To provide an oil-retaining bearing which reduces friction and prevents abrasion by impregnating a porous bearing member, which supports a metal member in such a manner as to allow the metal member to freely slide, with a lubricating oil contg. a superfine powder having a higher hardness than the metal member. CONSTITUTION:An oil-retaining bearing is produced by impregnating a porous bearing member, which supports a metal member in such a manner as to allow the metal member to freely slide, with a lubricating oil contg. a high-hardness superfine powder having a mean particle diameter of 1mum or smaller and a higher hardness than the metal member (e. g. a diamond powder having a mean particle diameter of 20-100Angstrom ). The bearing, effectively utilizing the effect of the powder on lubrication mechanism, reduces friction and prevents abrasion to such an extent as to be formerly unexpected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含油軸受を特殊な潤滑
油によって潤滑する方法、および特殊潤滑油を含浸され
た含油軸受、ならびに含油軸受用の特殊な潤滑油に関す
るものである。本発明において軸受とは広義のものであ
って、回転軸を回転の周方向の摺動自在に支承する狭義
の軸受に限られず、軸を長さ方向の摺動自在に支承する
軸受、および、被支承部材の面を摺動自在に支承する所
謂面軸受を含む意である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for lubricating an oil-impregnated bearing with a special lubricating oil, an oil-impregnated bearing impregnated with the special lubricating oil, and a special lubricating oil for the oil-impregnated bearing. In the present invention, the bearing is in a broad sense, and is not limited to a bearing in a narrow sense that supports the rotating shaft slidably in the circumferential direction of rotation, but a bearing that supports the shaft so as to be slidable in the longitudinal direction, and It is intended to include a so-called surface bearing that slidably supports the surface of the supported member.

【0002】[0002]

【従来の技術】多孔質の軸受部材に潤滑用の油脂類を含
浸した含油軸受は広く用いられており、潤滑油を循環給
油したりグリースを注脂したりする手数を要しないので
便利である。この多孔質軸受部材に含浸される潤滑油は
一般に清浄な液状ないし粘液状の油脂が用いられている
が、二硫化モリブデンや黒鉛などのような固体潤滑剤を
微粉末にして混合することも行なわれている。説明の便
宜上、本発明においてはミクロンオーダの微粒状固体を
微粉末と呼び、オングストロームオーダーの微粒状固体
を超微粉末と呼ぶことにする。
2. Description of the Related Art Oil-impregnated bearings in which a porous bearing member is impregnated with oils and fats for lubrication are widely used, and are convenient because they do not require the trouble of circulating lubrication oil or lubricating grease. .. The lubricating oil impregnated into the porous bearing member is generally a clean liquid or viscous liquid oil and fat, but solid lubricants such as molybdenum disulfide and graphite are also finely mixed and mixed. Has been. For the sake of convenience of explanation, in the present invention, a finely divided solid of the order of microns is referred to as a fine powder, and a finely divided solid of the angstrom order is referred to as an ultrafine powder.

【0003】[0003]

【発明が解決しようとする課題】従来例の含油軸受用潤
滑油脂に混合された二硫化モリブデンや黒鉛は、それ自
体が固体潤滑剤としての機能を有しているので、その微
粉末を潤滑油脂中に混合することは格別の着想力を要せ
ずして行われていたが、これらの固体潤滑剤は何れも被
支承部材(例えば鋼製の回転軸)に比して硬度の低い材
料であった。被支承部材よりも硬度の高い微粉末が潤滑
油中に混入すると、この微粉末が研磨材として作用し、
被支承部材の摩擦面を早期に摩耗させたり、甚だしい時
は焼付を招いたりする。このため、潤滑油中に高硬度の
微粉末(例えば空中を浮遊していた砂塵や、被支承部材
の摩耗粉など)が混入することは禁忌されていた。
The molybdenum disulfide and graphite mixed with the lubricating oil and grease for oil-impregnated bearings of the conventional example have a function as a solid lubricant by themselves, and therefore fine powder thereof is used as the lubricating oil and fat. Mixing in was done without requiring any particular imagination, but all of these solid lubricants are materials with a hardness lower than that of the supported member (for example, steel rotating shaft). there were. When fine powder having a hardness higher than that of the supported member is mixed in the lubricating oil, this fine powder acts as an abrasive,
The friction surface of the supported member may be abraded early, or in extreme cases, seizure may occur. For this reason, it has been contraindicated that fine powder of high hardness (for example, sand dust floating in the air, abrasion powder of the supported member, etc.) is mixed in the lubricating oil.

【0004】本発明者は、上記の高硬度微粉末の平均粒
径を更に極度に微粉化してオングストロームオーダーの
超微粉末にすると、潤滑−摩耗に関与する態様が変化す
ることを予想して実験を行い、潤滑油中の高硬度超微粉
末が条件如何によっては潤滑状態を改善し得ることを理
論的に発見,確認した。
The inventors of the present invention have conducted experiments in anticipation that if the average particle size of the above-mentioned high hardness fine powder is further extremely finely pulverized into an ultrafine powder of angstrom order, the mode involved in lubrication-wear will change. It was theoretically discovered and confirmed that high hardness ultrafine powder in lubricating oil can improve the lubrication state depending on the conditions.

【0005】本発明は上記の発見に基づいて、これを実
用面に応用して、従来予想し得なかった潤滑機能が得ら
れる含油軸受の潤滑方法、および同含油軸受、ならびに
含油軸受用の潤滑油を提供することを目的とする。
Based on the above findings, the present invention is applied to practical use to provide a lubrication method for oil-impregnated bearings, and a lubrication method for oil-impregnated bearings, which can obtain a lubricating function that has not been predicted in the past. Intended to provide oil.

【0006】[0006]

【課題を解決するための手段】前述の高硬度超微粉末に
よる潤滑状態の改善を実用面に適用するため本発明に係
る潤滑方法は、金属部材を摺動自在に支承する多孔質の
軸受部材に、固体微粉末を混合した潤滑油を含浸せしめ
る潤滑方法において、上記の固体微粉末として、前記軸
受部材によって支承される金属部材よりも硬度の高い物
質の、平均粒径1ミクロン以下の超微粉末を用いること
を特徴とする。
In order to apply the above-mentioned improvement of the lubrication condition by the ultra-hard ultrafine powder to the practical use, the lubrication method according to the present invention is a porous bearing member for slidably supporting a metal member. In the lubrication method of impregnating a lubricating oil mixed with solid fine powder, as the solid fine powder, an ultrafine particle having an average particle diameter of 1 micron or less of a substance having a hardness higher than that of the metal member supported by the bearing member is used. It is characterized by using powder.

【0007】また、前述した潤滑状態の改善を実地に適
用する具体的構成として本発明に係る含油軸受は、潤滑
油を含浸した多孔質の軸受部材によって金属部材を摺動
自在に支承した含油軸受において、前記の潤滑油中に、
前記金属部材よりも硬度の高い物質の、平均粒径1ミク
ロン以下の超微粉末が混合されていることを特徴とす
る。
Further, the oil-impregnated bearing according to the present invention as a concrete constitution for practically applying the above-mentioned improvement of lubrication condition is an oil-impregnated bearing in which a metal member is slidably supported by a porous bearing member impregnated with lubricating oil. In the above lubricating oil,
It is characterized in that ultrafine powder of a substance having a hardness higher than that of the metal member and having an average particle diameter of 1 micron or less is mixed.

【0008】[0008]

【作用】含油軸受の潤滑油中に、例えばダイヤモンドな
どのように被支承部材よりも硬度の高い超微粉末を混合
すると、すべり摩擦面のなじみ期間が短縮される。さら
に、前記ダイヤモンド超微粉末の潤滑油中濃度や軸受面
圧力などの条件を適宜に選ぶと摩擦係数が減少し、摩耗
の進行が抑制される。
When the ultrafine powder having a hardness higher than that of the supported member, such as diamond, is mixed in the lubricating oil of the oil-impregnated bearing, the period during which the sliding friction surface becomes familiar is shortened. Further, when the conditions such as the concentration of the ultrafine diamond powder in the lubricating oil and the pressure on the bearing surface are appropriately selected, the friction coefficient is reduced and the progress of wear is suppressed.

【0009】[0009]

【実施例】次に本発明に係る3種類の実施例について、
比較例と対照しつつ説明する。上記3種類の実施例およ
び比較例においては、平均粒度100番の銅,錫粉末の
加圧成形物を焼結して多孔質の軸受部材を構成し、被支
承部材を炭素鋼(S45C)で構成して、鈴木式摩擦試
験機を用いて円筒端面同志の回転すべり試験を行った。
前記多孔質の軸受部材を焼結して構成した作業の主要諸
元は次の如くである。 組成: 銅90Wt%,錫10Wt% 焼結工程: 第1工程は400℃×30分間 第2工程は790℃で30分間 焼結雰囲気: アルゴンガス中 空孔率: 13% 硬度: 44Hv この実施例を実施する場合、前記の組成,空孔率および
硬度は、ほぼ1桁の精度で上記の値とすれば良い。すな
わち銅85〜94Wt%,錫6〜15Wt%の範囲内で
ほぼ同様の効果が得られ、空孔率5〜30%でほぼ同様
の効果が得られ、硬度40〜45(Hv)でほぼ同様の
効果が得られる。
EXAMPLES Next, three types of examples according to the present invention will be described.
The description will be made in comparison with the comparative example. In the above-mentioned three kinds of examples and comparative examples, a pressure-formed product of copper and tin powder having an average grain size of 100 is sintered to form a porous bearing member, and the supported member is made of carbon steel (S45C). Then, a rolling slip test was performed on the cylindrical end faces of each other using a Suzuki type friction tester.
The main specifications of the work of sintering the porous bearing member are as follows. Composition: Copper 90 Wt%, tin 10 Wt% Sintering step: First step is 400 ° C. × 30 minutes Second step is 790 ° C. for 30 minutes Sintering atmosphere: Argon gas porosity: 13% Hardness: 44 Hv When carrying out, the above composition, porosity, and hardness may be set to the above values with an accuracy of about one digit. That is, almost the same effect is obtained within the range of 85 to 94 Wt% of copper and 6 to 15 Wt% of tin, almost the same effect is obtained at a porosity of 5 to 30%, and almost the same at a hardness of 40 to 45 (Hv). The effect of is obtained.

【0010】図2は前記鈴木式摩擦試験機によって本実
施例および比較例の潤滑−摩擦状態を試験するために構
成したテストピースの外観を示し、1は軸受材(多孔
質)、2は被支承部材である炭素鋼(S45C)であ
る。図示の寸法はそれぞれ次の如くである。a=17
φ、b=10mm、c=15mm、d=6φ、e=5φ 上述の多孔性の軸受部材1を4個構成し、それぞれに対
して表1に示す4種類の潤滑油A,B,C,Dを含浸せ
しめる。
FIG. 2 shows the appearance of a test piece configured to test the lubrication-friction state of the present example and comparative example by the Suzuki type friction tester, where 1 is a bearing material (porous) and 2 is a coated material. It is carbon steel (S45C) which is a supporting member. The illustrated dimensions are as follows. a = 17
φ, b = 10 mm, c = 15 mm, d = 6 φ, e = 5 φ The above-mentioned four porous bearing members 1 are configured, and four types of lubricating oils A, B, C shown in Table 1 are shown for each of them. Impregnate D.

【0011】[0011]

【表1】 [Table 1]

【0012】Aは比較例の潤滑油であって、ISO22
0の高純度鉱油である。ソ連製オイル中に、粒径20〜
100オングストロームのダイヤモンド超微粉末を0.
5Wt%混合した添加剤を用い、この添加剤を前記高純
度鉱油で1000倍に希釈して実施例の潤滑油Bを調製
した。同様に、100倍に希釈して潤滑油Cを、10倍
に希釈して潤滑油Dをそれぞれ調製した。これら4種の
潤滑油A〜Dのそれぞれを前記4個の軸受部材1に含浸
せしめて4組のテストピースを作成して試験を行った結
果につき、以下に説明する。
A is a lubricating oil of a comparative example, ISO22
High purity mineral oil of 0. Particle size 20-in Soviet oil
100 angstroms of diamond ultrafine powder were added.
Lubricating oil B of the example was prepared by using the additive mixed at 5 Wt% and diluting the additive 1000 times with the high-purity mineral oil. Similarly, the lubricating oil C was diluted 100 times and the lubricating oil D was prepared 10 times. The results of conducting tests by making four sets of test pieces by impregnating the four bearing members 1 with each of these four types of lubricating oils A to D will be described below.

【0013】潤滑油A(純鉱油)を含浸せしめた比較例
の軸受部材を用いて、すべり開始4秒後の2秒間におけ
る摩擦係数の経時変化を図3に示す。摩擦係数は約0.
1秒の周期で変動しているが、その算術平均は0.15
である。上記のようにして2秒間の算術平均値を求め、
同様にして1分間間隔で摩擦係数を測定し、120分間
の経過を図表として示すと図1のカーブ4Aの如くであ
る。同様に、実施例の潤滑油B(0.0005Wt%)
を含浸せしめた軸受部材の摩擦係数の120分間の経過
は図1のカーブ4Bの如くであり、実施例の潤滑油D
(0.05Wt%)を含浸せしめた軸受部材の120分
間の経過はカーブ4Dの如くである。各カーブ4A,4
B,4Dともに、なじみの進行によって摩擦係数が経時
的に減少し、次第に一定値に近づいている。比較的(カ
ーブ4A)に比して実施例(カーブ4B,4D)は、な
じみ完成後の摩擦係数が少なくなっている。このように
してテスト開始からなじみ完成までの所要時間を調べた
結果は図4の如くである。5Aは比較例(純鉱油)のな
じみ所要時間、5B,5C,5Dはそれぞれ実施例にお
ける潤滑油B,C,Dを含浸せしめた場合のなじみ所要
時間である。ダイヤモンド超微粉末の混合によってなじ
み所要時間が減少していること、および、混合濃度0.
0005〜0.05Wt%の間において、濃度の差によ
るなじみ所要時間の差が認められないことが解る。
Using a bearing member of a comparative example impregnated with lubricating oil A (pure mineral oil), FIG. 3 shows the change over time in the friction coefficient for 2 seconds 4 seconds after the start of sliding. The coefficient of friction is about 0.
It fluctuates in a cycle of 1 second, but its arithmetic average is 0.15.
Is. Calculate the arithmetic mean value for 2 seconds as above,
Similarly, the friction coefficient was measured at intervals of 1 minute, and the progress of 120 minutes is shown in a chart as shown by a curve 4A in FIG. Similarly, lubricating oil B of the example (0.0005 Wt%)
The course of the friction coefficient of the bearing member impregnated with 120 minutes as shown by curve 4B in FIG.
The course of 120 minutes of the bearing member impregnated with (0.05 Wt%) is as shown by curve 4D. Each curve 4A, 4
In both B and 4D, the coefficient of friction decreases with the progress of familiarity and gradually approaches a constant value. In comparison with (curve 4A), the examples (curves 4B and 4D) have a smaller friction coefficient after the fitting is completed. In this way, the result of examining the time required from the start of the test to the completion of familiarization is as shown in FIG. 5A is the familiarization time required for the comparative example (pure mineral oil), and 5B, 5C, 5D are the familiarization times required for impregnating the lubricating oils B, C, D in the examples, respectively. The familiarization time is reduced by mixing the ultrafine diamond powder, and the mixing concentration is 0.
It can be seen that between 0005 and 0.05 Wt%, no difference in familiarization time due to a difference in concentration is observed.

【0014】次に、なじみ完成後におけるダイヤモンド
超微粉末の混合濃度と摩擦係数との関係を図5に示す。
混合濃度0.0005〜0.05Wt%の範囲内におい
て、濃度が高いほど摩擦係数(なじみ完了後)が小さく
なっている。6B,6Dはそれぞれ実施例の潤滑油B,
Dを含浸させた場合の摩擦係数を表わしている。6Cは
実施例Cの潤滑油を含浸させた場合の摩擦係数である
が、何らかの事情によって異常値を示したものと判断さ
れるので、カーブ6を描くについては除外した。
Next, FIG. 5 shows the relationship between the mixing concentration of the ultrafine diamond powder and the friction coefficient after the fitting is completed.
In the mixed concentration range of 0.0005 to 0.05 Wt%, the higher the concentration, the smaller the friction coefficient (after the familiarization is completed). 6B and 6D are lubricating oil B of the embodiment,
The coefficient of friction when D is impregnated is shown. 6C is the coefficient of friction when the lubricating oil of Example C is impregnated, but it is judged that an abnormal value was shown for some reason, so the curve 6 is omitted.

【0015】図6は、ダイヤモンド濃度と比摩耗率との
関係を示した図表である。6Aは比較例の純鉱油を含浸
させた軸受部材の比摩耗率、7Aはこれと組み合わせて
テストした炭素鋼の比摩耗率である。6B,6C,6D
はそれぞれ実施例の潤滑油B,C,Dを含浸させた軸受
部材の比摩耗率、7B,7C,7Dはそれぞれ上記軸受
部材と組み合わせてテストした炭素鋼の比摩耗率であ
る。ダイヤモンド混合濃度0.0005Wt%付近に比
摩耗率の最小値が有り、0.0002〜0.005Wt
%の間に適正範囲が有ると認められる。
FIG. 6 is a chart showing the relationship between the diamond concentration and the specific wear rate. 6A is the specific wear rate of the bearing member impregnated with pure mineral oil of the comparative example, and 7A is the specific wear rate of the carbon steel tested in combination with it. 6B, 6C, 6D
Are the specific wear rates of the bearing members impregnated with the lubricating oils B, C, and D of the examples, and 7B, 7C, and 7D are the specific wear rates of the carbon steels tested in combination with the bearing members. There is a minimum specific wear rate near the diamond mixture concentration of 0.0005 Wt%, which is 0.0002 to 0.005 Wt.
It is recognized that there is a proper range between%.

【0016】図7(b)は実施例Bの潤滑油を含浸させ
た軸受部材と組み合わせてテストした炭素鋼の表面あら
さを描いたカーブ8Bを示す。同図(c),(d)は実
施例C,Dにおける炭素鋼の表面あらさを描いたカーブ
8C,8Dを示す。ダイヤモンド混合濃度が大きくなる
につれて表面あらさが粗になっている。図8は混合濃度
と最大高さあらさとの関係を示す図表である。ダイヤモ
ンド混合濃度が大きいほど摩擦面の荒れ方が著しくなる
ことは摩擦面の光学顕微鏡による検鏡所見によっても確
かめられた。
FIG. 7 (b) shows a curve 8B depicting the surface roughness of carbon steel tested in combination with the lubricating oil impregnated bearing member of Example B. FIGS. 8C and 8D show curves 8C and 8D that depict the surface roughness of carbon steels in Examples C and D, respectively. The surface roughness becomes rougher as the diamond mixture concentration increases. FIG. 8 is a chart showing the relationship between the mixed concentration and the maximum height roughness. It was also confirmed by microscopic observation of the friction surface with an optical microscope that the roughness of the friction surface increased as the diamond concentration increased.

【0017】図9はテスト後における摩擦面の硬度とダ
イヤモンド超微粉末混合濃度との関係を示す図表であ
る。点10は比較例における軸受部材の摩擦面硬度を示
し、点11は上記軸受部材によって支承された炭素鋼の
摩擦面硬度を示す。カーブ12は実施例における軸受部
材の摩擦面硬度を示し、カーブ13は炭素鋼の摩擦面硬
度を示す。被支承部材である炭素鋼の摩擦面硬度は、ダ
イヤモンド超微粉末混合濃度0.0005Wt%付近に
最高値が有る。この混合濃度(0.0005Wt%)
は、図6について説明した最小摩耗に対応する混合濃度
(0.0005Wt%)と同一である。このように摩擦
面の硬度が上昇して摩耗の進行が抑制される原因は、
(イ)加工硬化、および(ロ)摩擦面へのダイヤモンド
超微粉末の埋め込みと考えられる。上記(イ),(ロ)
に因る摩擦面の硬化以外に、ダイヤモンド超微粉末によ
る切削(アブレシブ)も進行するものと考えられる。従
って、ダイヤモンド超微粉末の混合濃度を過大にしても
比摩耗率は却って増加する(図6について述べたごとく
である)。図10は、軸受部材と炭素鋼との接触圧力を
比較的高くして67kg/cm2としたときの、実施例
Bの潤滑油を用いたときの摩擦係数の経時的変化を示す
カーブ14Bと、比較例(純鉱油)を用いたときのカー
ブ14Aとを示す図表であり、カーブ14Bが110分
を過ぎて急上昇しているのは焼付の発生を表わしてい
る。これにより、この実施例の含油軸受においては、使
用に適する接触圧力の上限値が比較例(純鉱油)よりも
低いことが解る。
FIG. 9 is a chart showing the relationship between the hardness of the friction surface and the diamond ultrafine powder mixture concentration after the test. Point 10 indicates the friction surface hardness of the bearing member in the comparative example, and point 11 indicates the friction surface hardness of the carbon steel supported by the bearing member. Curve 12 shows the friction surface hardness of the bearing member in the example, and curve 13 shows the friction surface hardness of carbon steel. The friction surface hardness of carbon steel, which is the supported member, has a maximum value in the vicinity of the diamond ultrafine powder mixture concentration of 0.0005 Wt%. This mixed concentration (0.0005Wt%)
Is the same as the mixed concentration (0.0005 Wt%) corresponding to the minimum wear described with reference to FIG. The reason why the hardness of the friction surface increases and the progress of wear is suppressed is as follows.
It is considered to be (a) work hardening and (b) embedding ultrafine diamond powder on the friction surface. Above (a), (b)
In addition to the hardening of the friction surface due to, it is considered that cutting (abrasive) with ultrafine diamond powder also progresses. Therefore, even if the mixing concentration of the ultrafine diamond powder is excessively large, the specific wear rate is rather increased (as described with reference to FIG. 6). FIG. 10 is a curve 14B showing a change over time in the coefficient of friction when the lubricating oil of Example B was used, when the contact pressure between the bearing member and carbon steel was set relatively high to 67 kg / cm 2. FIG. 14 is a chart showing a curve 14A when a comparative example (pure mineral oil) is used, and the curve 14B sharply rising after 110 minutes indicates the occurrence of seizure. This shows that in the oil-impregnated bearing of this example, the upper limit value of the contact pressure suitable for use is lower than that of the comparative example (pure mineral oil).

【0018】図11は摩擦係数と接触圧との関係を示す
図表であって、実線で描いたカーブ15Aは純鉱油の場
合を表わし、破線で描いたカーブ15Bは実施例Bの潤
滑油(混合率0.0005Wt%)の場合を示してい
る。カーブ15Bの右上端の上向き矢印は、図10で説
明した焼付きの発生を示している。摩擦係数は接触圧力
が40kg/cm2のときに同じとなり、これよりも高
い接触圧力においては実施例の摩擦係数(カーブ15
B)の方が比較例(純鉱油)よりも大きくなっている。
FIG. 11 is a table showing the relationship between the friction coefficient and the contact pressure. The curve 15A drawn by the solid line shows the case of pure mineral oil, and the curve 15B drawn by the broken line shows the lubricating oil of Example B (mixed). The rate is 0.0005 Wt%). The upward arrow in the upper right corner of the curve 15B indicates the occurrence of the image sticking described in FIG. The friction coefficient is the same when the contact pressure is 40 kg / cm 2, and at a contact pressure higher than this, the friction coefficient of the embodiment (curve 15).
B) is larger than the comparative example (pure mineral oil).

【0019】図12は軸受部材の比摩耗率と接触圧力と
の関係を示し、カーブ16Aは比較例(純鉱油)を表わ
し、カーブ16B,16Cはそれぞれ実施例B,実施例
Cの潤滑油を用いた場合を表わしている。図13は炭素
鋼の比摩耗率を示し、図12におけると同様にカーブ1
7Aは比較例(純鉱油)、カーブ17B,17Cは実施
例B,Cである。接触圧力30kg/cm2以下におい
ては比較例の比摩耗率カーブ16A,17Aはほぼ水平
(一定値)であり、50kg/cm2を越えると漸次上
昇している。これに比して実施例のカーブ16B,16
C,17B,17Cは比較例よりも急勾配で上昇してい
る。8kg/cm2以下における実施例の比摩耗率は比
較例(従来例)よりも小さく、67kg/cm2以上に
おける実施例の比摩耗率は比較例よりも大きい。テスト
後の炭素鋼の摩擦面を光学顕微鏡で検鏡すると、実施例
の場合は疲労によって破壊したと推定される数ミクロン
程度の小さいピットが多数認められ、かつ、上記ピット
の分布密度が接触圧力の増加に伴って増大する傾向が認
められる。この事は、図13に表われているように実施
例の比摩耗率が接触圧力の増加に伴って上昇しているこ
とと符合している。こうした現象の原因は、ダイヤモン
ド超微粉末の混合濃度が大きい場合、ダイヤモンド超微
粉末の埋め込みで硬化した炭素鋼の表面が潤滑油中のダ
イヤモンド超微粉末の衝撃を受けて剥離除去されること
であると考えられる。
FIG. 12 shows the relationship between the specific wear rate of the bearing member and the contact pressure. Curve 16A represents the comparative example (pure mineral oil), and curves 16B and 16C represent the lubricating oils of Examples B and C, respectively. Shows the case when used. FIG. 13 shows the specific wear rate of carbon steel, which is the same as in FIG.
7A is a comparative example (pure mineral oil), and curves 17B and 17C are Examples B and C. When the contact pressure is 30 kg / cm 2 or less, the specific wear rate curves 16A and 17A of the comparative example are substantially horizontal (constant value), and gradually increase above 50 kg / cm 2 . In contrast to this, the curves 16B and 16 of the embodiment
C, 17B, and 17C are rising steeper than the comparative example. The specific wear rate of the example at 8 kg / cm 2 or less is smaller than that of the comparative example (conventional example), and the specific wear rate of the example at 67 kg / cm 2 or more is greater than that of the comparative example. When the friction surface of the carbon steel after the test is examined with an optical microscope, many small pits of about several microns which are presumed to have been destroyed by fatigue are observed in the case of the example, and the distribution density of the pits is the contact pressure. The tendency is to increase with the increase of. This is consistent with the fact that the specific wear rate of the example increases as the contact pressure increases, as shown in FIG. The cause of such a phenomenon is that when the concentration of ultrafine diamond powder is high, the surface of carbon steel hardened by embedding ultrafine diamond powder is removed by the impact of ultrafine diamond powder in lubricating oil. It is believed that there is.

【0020】炭素鋼の比摩耗率が1/107mm3/mm・kg
になる接触圧力を算定してこの接触圧力(算定値)を限
界接触圧力であると仮定した場合の軸受の限界PV値を
表2に示す。
Specific wear rate of carbon steel is 1/10 7 mm 3 / mm ・ kg
Table 2 shows the limit PV value of the bearing when the contact pressure is calculated and the contact pressure (calculated value) is assumed to be the limit contact pressure.

【0021】[0021]

【表2】 [Table 2]

【0022】これにより、本実施例の含油軸受は比較的
接触圧力の低い使用条件では摩擦の減少および摩耗の抑
制に著しい効果を奏するが、比較的接触圧力の高い使用
条件(例えば内燃機関のクランク軸受や車両の走行軸軸
受など)には適しない。接触圧力30kg/cm2未満
で使用することが望ましい。本発明を実施する場合の軸
受部材は多孔質であることを絶対必要条件とするが、実
施例に示したような銅−錫系の非鉄金属よりなる焼結メ
タルであることが望ましい。また、この軸受部材によっ
て支承される部材は金属製であれば足りるが鋼ないし合
金鋼であることが望ましい。
As a result, the oil-impregnated bearing of this embodiment exerts a remarkable effect on the reduction of friction and the suppression of wear under the use condition of relatively low contact pressure, but the use condition of relatively high contact pressure (for example, the crank of an internal combustion engine). It is not suitable for bearings, vehicle running shaft bearings, etc.). It is desirable to use the contact pressure of less than 30 kg / cm 2 . In the case of carrying out the present invention, it is absolutely necessary that the bearing member is porous, but it is desirable that the bearing metal be a sintered metal made of a copper-tin based non-ferrous metal as shown in the examples. The member supported by the bearing member may be made of metal, but is preferably steel or alloy steel.

【0023】また、本発明を実施する場合の超微粉末
は、被支承部材である金属部材よりも高硬度の材料であ
ることを必要条件とするが、何物よりも硬いダイヤモン
ドであることが最も好適である。そして、その平均粒径
は1ミクロン以下であることを必要条件とするが、20
〜100オングストロームであることが望ましい。
Further, the ultrafine powder for carrying out the present invention is required to be a material having a hardness higher than that of the metal member which is a supported member, but is a diamond harder than anything. Most suitable. And the average particle size is required to be 1 micron or less.
It is preferably -100 Angstroms.

【0024】また、本発明に係る潤滑方法を実際面にお
いて容易に実施するには、ダイヤモンド超微粉末を混合
した潤滑油を市場に供給することも有効である。
Further, in order to easily carry out the lubrication method according to the present invention in practice, it is also effective to supply a lubricating oil mixed with ultrafine diamond powder to the market.

【0025】[0025]

【発明の効果】以上に説明したごとく、本発明を含油軸
受に適用すると、高硬度超微粉末の潤滑メカニズムに及
ぼす影響を有効に利用して、従来予想し得なかった減摩
効果と摩耗抑制効果とを奏する。
As described above, when the present invention is applied to the oil-impregnated bearing, the effect of the high-hardness ultrafine powder on the lubrication mechanism is effectively utilized, and the anti-friction effect and wear control which have not been predicted in the past can be effectively utilized. Play an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例と比較例とを対比して示した摩
擦係数の経時変化図表
FIG. 1 is a diagram showing a change with time of a friction coefficient showing a comparison between an example of the present invention and a comparative example.

【図2】本発明の効果を実測するためのテストピースの
外観図
FIG. 2 is an external view of a test piece for actually measuring the effect of the present invention.

【図3】比較例における摩擦係数の経時変化を示す図表FIG. 3 is a chart showing a change with time of a friction coefficient in a comparative example.

【図4】含油軸受のなじみ時間と超微粉末との関係を示
す図表
FIG. 4 is a chart showing the relationship between the running-in time of oil-impregnated bearings and ultrafine powder.

【図5】含油軸受の摩擦係数と超微粉末濃度との関係を
示す図表
FIG. 5 is a chart showing the relationship between the friction coefficient of oil-impregnated bearings and the concentration of ultrafine powder.

【図6】含油軸受の比摩耗率と超微粉末濃度との関係を
示す図表
FIG. 6 is a chart showing the relationship between the specific wear rate of oil-impregnated bearings and the concentration of ultrafine powder.

【図7】含油軸受で支承された部材の摩耗面の表面あら
さ図表
[Fig. 7] Surface roughness diagram of wear surface of member supported by oil-impregnated bearing

【図8】含油軸受で支承された部材の最大高さあらさと
超微粉末濃度との関係を示す図表
FIG. 8 is a chart showing the relationship between the maximum height roughness of the member supported by the oil-impregnated bearing and the ultrafine powder concentration.

【図9】含油軸受の摩擦面の硬度と超微粉末濃度との関
係を示す図表
FIG. 9 is a chart showing the relationship between the hardness of the friction surface of an oil-impregnated bearing and the ultrafine powder concentration.

【図10】含油軸受の摩擦係数の経時変化を示す図表FIG. 10 is a chart showing changes over time in the friction coefficient of oil-impregnated bearings.

【図11】含油軸受の摩擦係数と接触圧力との関係を示
す図表
FIG. 11 is a chart showing the relationship between the friction coefficient and contact pressure of oil-impregnated bearings.

【図12】含油軸受の軸受部材の比摩耗率と接触圧力と
の関係を示す図表
FIG. 12 is a chart showing the relationship between the specific wear rate of the bearing member of the oil-impregnated bearing and the contact pressure.

【図13】含油軸受によって支承された部材の比摩耗率
と接触圧力との関係を示す図表
FIG. 13 is a chart showing a relationship between a specific wear rate of a member supported by an oil-impregnated bearing and a contact pressure.

【符号の説明】[Explanation of symbols]

1…軸受材、2…炭素鋼。 1 ... Bearing material, 2 ... Carbon steel.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 金属部材を摺動自在に支承する多孔質の
軸受部材に、固体微粉末を混合した潤滑油を含浸せしめ
る潤滑方法において、 上記の固体微粉末として、前記軸受部材によって支承さ
れる金属部材よりも硬度の高い物質の、平均粒径1ミク
ロン以下の超微粉末を用いることを特徴とする、含油軸
受の潤滑方法。
1. A lubrication method in which a porous bearing member that slidably supports a metal member is impregnated with a lubricating oil in which solid fine powder is mixed, and the bearing member supports the solid fine powder as the solid fine powder. A lubrication method for oil-impregnated bearings, which uses ultrafine powder having a hardness higher than that of a metal member and having an average particle diameter of 1 micron or less.
【請求項2】 前記の硬度の高い超微粉末として、ダイ
ヤモンドの超微粉末を用いることを特徴とする、請求項
1に記載した含油軸受の潤滑方法。
2. The lubrication method for oil-impregnated bearings according to claim 1, wherein ultrafine powder of diamond is used as the ultrafine powder having high hardness.
【請求項3】 前記の超微粉末は、平均粒径が20ない
し100オングストロームであることを特徴とする、請
求項1に記載した含油軸受の潤滑方法。
3. The method for lubricating an oil-impregnated bearing according to claim 1, wherein the ultrafine powder has an average particle size of 20 to 100 angstroms.
【請求項4】 前記超微粉末の、潤滑油中の濃度は、重
量百分率0.0002ないし0.005であることを特
徴とする、請求項1に記載した含油軸受の潤滑方法。
4. The method for lubricating an oil-impregnated bearing according to claim 1, wherein the concentration of the ultrafine powder in the lubricating oil is 0.0002 to 0.005 by weight.
【請求項5】 前記軸受部材による金属部材の支承は、
接触圧力30kg/cm2未満で支承することを特徴と
する、請求項1に記載した含油軸受の潤滑方法。
5. The bearing of the metal member by the bearing member comprises:
The method for lubricating an oil-impregnated bearing according to claim 1, wherein the bearing is supported at a contact pressure of less than 30 kg / cm 2 .
【請求項6】 前記多孔質の軸受部材は合金であり、か
つ、これによって支承される金属部材は鋼ないし合金鋼
であることを特徴とする、請求項1に記載した含油軸受
の潤滑方法。
6. The lubrication method for an oil-impregnated bearing according to claim 1, wherein the porous bearing member is an alloy, and the metal member supported by the porous bearing member is steel or alloy steel.
【請求項7】 前記非鉄合金製の多孔質の軸受部材は、
平均粒度100番の銅粉末85〜94Wt%と、平均粒
度100番の錫粉末6〜15Wt%とを加圧成形して焼
結したものであることを特徴とする、請求項1に記載し
た含油軸受の潤滑方法。
7. The non-ferrous alloy porous bearing member comprises:
The oil-impregnated oil according to claim 1, which is obtained by press-molding 85 to 94 wt% of copper powder having an average particle size of 100 and 6 to 15 wt% of tin powder having an average particle size of 100. Bearing lubrication method.
【請求項8】 潤滑油を含浸した多孔質の軸受部材によ
って金属部材を摺動自在に支承した含油軸受において、 前記の潤滑油中に、前記金属部材よりも硬度の高い物質
の、平均粒径1ミクロン以下の超微粉末が混合されてい
ることを特徴とする含油軸受。
8. An oil-impregnated bearing in which a metal member is slidably supported by a porous bearing member impregnated with lubricating oil, wherein an average particle diameter of a substance having a hardness higher than that of the metal member is contained in the lubricating oil. An oil-impregnated bearing characterized in that ultrafine powder of 1 micron or less is mixed.
【請求項9】 前記の金属部材よりも硬度の高い超微粉
末はダイヤモンドの超微粉末であることを特徴とする、
請求項8に記載の含油軸受。
9. The ultrafine powder having a hardness higher than that of the metal member is an ultrafine powder of diamond,
The oil-impregnated bearing according to claim 8.
【請求項10】 前記の超微粉末は、平均粒径が20な
いし100オングストロームであることを特徴とする、
請求項8に記載の含油軸受。
10. The ultrafine powder has an average particle size of 20 to 100 angstroms.
The oil-impregnated bearing according to claim 8.
【請求項11】 前記の超微粉末の潤滑油中濃度は、重
量百分率0.0002ないし0.005であることを特
徴とする、請求項8に記載の含油軸受。
11. The oil-impregnated bearing according to claim 8, wherein the concentration of the ultrafine powder in the lubricating oil is 0.0002 to 0.005 by weight.
【請求項12】 前記の軸受部材による金属部材の支承
圧力は30kg/cm2未満であることを特徴とする、
請求項8に記載の含油軸受。
12. The bearing pressure of the metal member by the bearing member is less than 30 kg / cm 2 .
The oil-impregnated bearing according to claim 8.
【請求項13】 前記多孔質の軸受部材は合金であり、
かつ、これによって支承されている金属部材は鋼ないし
合金鋼であることを特徴とする、請求項8に記載の含油
軸受。
13. The porous bearing member is an alloy,
9. The oil-impregnated bearing according to claim 8, wherein the metal member supported thereby is steel or alloy steel.
【請求項14】 前記合金製の多孔質の軸受部材は、平
均粒度100番の銅粉末85〜94Wt%と、平均粒度
100番の錫粉末6〜15Wt%とを加圧成形して焼結
されたものであることを特徴とする、請求項13に記載
の含油軸受。
14. The porous bearing member made of an alloy is sintered by press-molding 85 to 94 Wt% of copper powder having an average grain size of 100 and 6 to 15 Wt% of tin powder having an average grain size of 100. The oil-impregnated bearing according to claim 13, characterized in that
【請求項15】 前記合金製の多孔質の軸受部材は、空
孔率5〜30%,硬度Hv40〜50であることを特徴
とする、請求項13に記載の含油軸受。
15. The oil-impregnated bearing according to claim 13, wherein the porous bearing member made of the alloy has a porosity of 5 to 30% and a hardness of Hv 40 to 50.
【請求項16】 潤滑油中に、平均粒径1ミクロン以下
のダイヤモンドの超微粉末が混合されていることを特徴
とする含油軸受用潤滑油。
16. A lubricating oil for oil-impregnated bearings, characterized in that ultrafine diamond powder having an average particle size of 1 micron or less is mixed in the lubricating oil.
【請求項17】 前記ダイヤモンドの超微粉末は、平均
粒径が20ないし100オングストロームであることを
特徴とする、請求項16に記載の含油軸受用潤滑油。
17. The lubricating oil for oil-impregnated bearings according to claim 16, wherein the ultrafine diamond powder has an average particle size of 20 to 100 angstroms.
JP21198991A 1991-08-23 1991-08-23 Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing Pending JPH0551588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21198991A JPH0551588A (en) 1991-08-23 1991-08-23 Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21198991A JPH0551588A (en) 1991-08-23 1991-08-23 Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing

Publications (1)

Publication Number Publication Date
JPH0551588A true JPH0551588A (en) 1993-03-02

Family

ID=16615053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21198991A Pending JPH0551588A (en) 1991-08-23 1991-08-23 Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing

Country Status (1)

Country Link
JP (1) JPH0551588A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174905A (en) * 2009-04-06 2011-09-08 Seiko Epson Corp Timepiece wheel train and timepiece
JP2016180465A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member
WO2018186381A1 (en) * 2017-04-05 2018-10-11 株式会社ダイセル Lubricant composition and lubricating system
WO2020054523A1 (en) * 2018-09-11 2020-03-19 株式会社ダイセル Lubricant composition for initial conformation, sliding member, and sliding member manufacturing method
JP2020076044A (en) * 2018-09-11 2020-05-21 株式会社ダイセル Lubricant composition for initial conformation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174905A (en) * 2009-04-06 2011-09-08 Seiko Epson Corp Timepiece wheel train and timepiece
EP2239637A3 (en) * 2009-04-06 2016-11-30 Seiko Epson Corporation Timepiece wheel train and timepiece
JP2016180465A (en) * 2015-03-24 2016-10-13 三菱マテリアル株式会社 Oil retaining slide member, oil retaining bearing, and manufacturing method of oil retaining slide member
WO2018186381A1 (en) * 2017-04-05 2018-10-11 株式会社ダイセル Lubricant composition and lubricating system
JPWO2018186381A1 (en) * 2017-04-05 2020-04-23 株式会社ダイセル Lubricant composition and lubrication system
US11124731B2 (en) 2017-04-05 2021-09-21 Daicel Corporation Lubricant composition and lubricating system
WO2020054523A1 (en) * 2018-09-11 2020-03-19 株式会社ダイセル Lubricant composition for initial conformation, sliding member, and sliding member manufacturing method
JP2020076044A (en) * 2018-09-11 2020-05-21 株式会社ダイセル Lubricant composition for initial conformation
JP2020076143A (en) * 2018-09-11 2020-05-21 株式会社ダイセル Slide member, and manufacturing method of slide member
US11739279B2 (en) 2018-09-11 2023-08-29 Daicel Corporation Lubricant composition for initial break-in, sliding member, and sliding member manufacturing method

Similar Documents

Publication Publication Date Title
Moazami-Goudarzi et al. Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy
Xu et al. Study on the tribological properties of ultradispersed diamond containing soot as an oil additive©
Lancaster The influence of substrate hardness on the formation and endurance of molybdenum disulphide films
JP2001240925A (en) Copper series sliding material
JP5202307B2 (en) Slide bearings for joints of construction machines or article transfer robots
EP2714814B1 (en) Surface conditioning nanolubricant
JP2003222133A (en) Sintered oilless sliding bearing
US3297571A (en) Lubricant composition and articles and process of preparing and using the same
Dolmatov Detonation nanodiamonds in oils and lubricants
JPH0244875B2 (en)
Mushtaq et al. Tribological characterization of Fe-Cu-Sn alloy with graphite as solid lubricant
US3127224A (en) Bearing
JPH0551588A (en) Method of lubricating oil-retaining bearing, oil-retaining bearing, and lubricating oil for oil-retaining bearing
US5173202A (en) Lubricant coating material: its characteristics and method of manufacture
JPH10246230A (en) Sliding bearing and its using method
JPH05171169A (en) Lubricant
JPH07118683A (en) Lubricant for ball and roller bearing
US4233071A (en) Bearing having iron sulfur matrix
Montgomery Friction and wear of some bronzes under lubricated reciprocating sliding
CN101793291B (en) Sintered oil-retaining bearing
Sviridenok et al. Tribological properties of lubricants modified by complexes of hard micro-and nanoparticles
JP2001107106A (en) Coppery sintered sliding material
JP4714977B2 (en) Lubrication method for rolling bearings
Davies Influence of Roughness and Oxidation on Wear of Lubricated Sliding Metal Surfaces
JP2001107162A (en) Bronze series sintered alloy, bearing using the same and their producing method