JPH0551040B2 - - Google Patents

Info

Publication number
JPH0551040B2
JPH0551040B2 JP60048589A JP4858985A JPH0551040B2 JP H0551040 B2 JPH0551040 B2 JP H0551040B2 JP 60048589 A JP60048589 A JP 60048589A JP 4858985 A JP4858985 A JP 4858985A JP H0551040 B2 JPH0551040 B2 JP H0551040B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
tower
adsorbent
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60048589A
Other languages
Japanese (ja)
Other versions
JPS61207494A (en
Inventor
Hiromitsu Shibuya
Tsutomu Toida
Sho Hashimoto
Takeshi Oohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP60048589A priority Critical patent/JPS61207494A/en
Publication of JPS61207494A publication Critical patent/JPS61207494A/en
Publication of JPH0551040B2 publication Critical patent/JPH0551040B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 本発明はH2S及びCO2を含有するガスを、固体
吸着剤にて脱硫する方法の改良に関するものであ
つて、特に吸着剤の再生時に脱離するH2Sの処理
が容易な脱硫法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for desulfurizing a gas containing H 2 S and CO 2 using a solid adsorbent. This relates to a desulfurization method that is easy to process.

石灰のガス化ガスや重質油の部分酸化ガスは、
水素及び/又はメタンなどの有用成分に加えて、
CO、CO2、H2Sなどを一般に含有するので、吸
着剤を利用した吸着分離法によつてCO、CO2
H2Sを除去し、水素及び/又はメタンなどの有用
ガスに精製することが、当業界で広く実施されて
いる。しかしながら、従来採用されている吸着分
離法は、CO、CO2、H2Sなどを同一吸着層に吸
着させている関係で、吸着剤の再生時にはこれら
が混合状態で脱離するため、特にH2Sの後処理に
費用がかかる不都合があつた。
Lime gasification gas and heavy oil partial oxidation gas are
In addition to useful components such as hydrogen and/or methane,
Since it generally contains CO, CO 2 , H 2 S, etc., CO, CO 2 ,
Removal and purification of H 2 S to useful gases such as hydrogen and/or methane is widely practiced in the industry. However, in the conventional adsorption separation method, CO, CO 2 , H 2 S, etc. are adsorbed in the same adsorption layer, and when the adsorbent is regenerated, these are desorbed in a mixed state. 2 There was an inconvenience that post-processing of S was expensive.

すなわち、脱離ガス中のH2Sは公害防止上、こ
れをクラウス反応器に供給して単体イオウに転化
させるのが通例であるが、前記脱離ガス中のH2S
は比較的多量のCO2と共存するため、補助燃料な
しではクラウス反応維持することができない。モ
ノエタノールアミン、炭酸カリの如きアルカリ吸
収液を用いてH2S及びCO2を吸収除去して脱硫す
る場合でも、吸収液の再生時にH2SとCO2の混合
ガスが排出されるので、同様の問題が生ずる。
In other words, for the purpose of preventing pollution, H 2 S in the desorption gas is normally supplied to a Claus reactor and converted into elemental sulfur; however, H 2 S in the desorption gas
coexists with a relatively large amount of CO 2 , the Claus reaction cannot be maintained without auxiliary fuel. Even when desulfurization is performed by absorbing and removing H 2 S and CO 2 using an alkaline absorption liquid such as monoethanolamine or potassium carbonate, a mixed gas of H 2 S and CO 2 is emitted when the absorption liquid is regenerated. A similar problem arises.

また、従来の吸着分離法では、吸着能が比較的
大きいH2Sと、比較的小さいCO2を同じ吸着剤に
一緒に吸着させているため、吸着剤の再生に際し
ては、吸着能の大きいH2Sを脱離させるのに必要
な再生エネルギーを吸着剤全体に付与しなければ
ならない不利もあつた。ちなみに、CO2の脱離に
はH2Sほどの高エネルギーを要しない。
In addition, in conventional adsorption separation methods, H 2 S, which has a relatively large adsorption capacity, and CO 2 , which has a relatively small adsorption capacity, are adsorbed together on the same adsorbent. Another disadvantage was that the regeneration energy required to desorb 2S had to be applied to the entire adsorbent. By the way, desorption of CO 2 does not require as much energy as H 2 S.

ところで、H2、CH4、H2S、CO2及びCOから
なる混合ガスを、例えばモノキユラーシーブを充
填した吸着塔に通過させると、各成分はそれぞれ
の吸着能の差に原因して、第2図に示す通り、ガ
ス供給側から見て、H2O/H2S/CO2/CH4
COの順に吸着され、各成分毎の吸着帯はかなり
明確に区分される。この現象は水素及び/又はメ
タンのガス精製技術で慣用されるモノキユラーシ
ーブ以外の吸着剤を用いた場合にも同様に生起す
る。従つて、直列に接続された二つの吸着塔を用
いて、上流側の吸着塔にH2Sを、下流側の吸着塔
にCO2をそれぞれ吸着せしめれば、吸着塔の再生
に際してはCO2の混入の少ないH2Sを得ることが
できる。
By the way, when a mixed gas consisting of H 2 , CH 4 , H 2 S, CO 2 and CO is passed through an adsorption tower filled with monocular sieves, each component is absorbed due to the difference in their adsorption capacity. , as shown in Figure 2, as seen from the gas supply side, H 2 O / H 2 S / CO 2 / CH 4 /
It is adsorbed in the order of CO, and the adsorption zones for each component are quite clearly divided. This phenomenon similarly occurs when adsorbents other than monocular sieves, which are commonly used in hydrogen and/or methane gas purification technology, are used. Therefore, if two adsorption towers are connected in series and the upstream adsorption tower adsorbs H 2 S and the downstream adsorption tower adsorbs CO 2 , CO 2 will be released when the adsorption tower is regenerated. It is possible to obtain H 2 S with less contamination.

而して本発明は、H2S及びCO2を含有する供給
ガスを吸着塔に通し、H2S及びCO2を吸着分離し
て供給ガスを脱硫する方法に於て、前記の吸着塔
を直列に接続された二つの吸着塔で構成され、上
流にH2S吸着塔、下流にCO2吸着塔を配置し、
H2S及びCO2を含有する供給ガスをこれら吸着塔
に順次通過させることにより、上流の吸着塔で
H2Sを、下流の吸着塔でCO2をそれぞれ優先的に
吸着させ、両方の吸着塔を並列に吸着剤の再生を
行うことを特徴とする前記供給ガスの脱硫法を提
供する。
Therefore, the present invention provides a method for desulfurizing the feed gas by passing a feed gas containing H 2 S and CO 2 through an adsorption tower to adsorb and separate H 2 S and CO 2 . It consists of two adsorption towers connected in series, with an H 2 S adsorption tower upstream and a CO 2 adsorption tower downstream.
By passing the feed gas containing H 2 S and CO 2 through these adsorption towers in sequence, the upstream adsorption tower
The present invention provides a method for desulfurizing a feed gas, characterized in that H 2 S and CO 2 are preferentially adsorbed in a downstream adsorption tower, respectively, and the adsorbent is regenerated in both adsorption towers in parallel.

以下、第1図にそつて本発明の吸着脱硫法を説
明する。第1図Aは本発明の吸着工程を、第1図
Bは本発明の再生工程を示すが、本発明の方法に
よれば、H2S及びCO2を含有する供給ガスは、直
列に接続された二つの吸着塔で順次処理される。
まず供給ガスは上流側の吸着塔1に供給され、こ
こで供給ガス中のH2Sは吸着能の差に起因して優
先的に吸着剤に吸着される。尚、供給ガス中に
H2Sより吸着能が大きいH2Oが多量に含まれてい
る場合には、H2Sの吸着が阻害されるので、そう
した場合には吸着塔1の上流側に、例えば別の吸
着塔を設けるなどの手段により、予め供給ガスを
除湿しておくことを可とする。
The adsorption desulfurization method of the present invention will be explained below with reference to FIG. 1A shows the adsorption step of the present invention, and FIG. 1B shows the regeneration step of the present invention, according to the method of the invention, the feed gases containing H 2 S and CO 2 are connected in series. It is sequentially processed in two adsorption towers.
First, the feed gas is fed to the adsorption tower 1 on the upstream side, where H 2 S in the feed gas is preferentially adsorbed by the adsorbent due to the difference in adsorption capacity. In addition, in the supplied gas
If a large amount of H 2 O, which has a higher adsorption capacity than H 2 S, is contained, the adsorption of H 2 S will be inhibited. It is possible to dehumidify the supplied gas in advance by means such as providing a

吸着塔1の吸着剤量は供給ガス中のH2S濃度に
応じて決定され、H2Sが破過ししない範囲に選ば
れるが、吸着塔2のCO2等の吸着能力とのバラン
スを考えず余り多量の吸着剤を使用して塔1の吸
着能力を高めると、CO2まで吸着されてしまう結
果を招くので、塔1の吸着剤量はH2Sが破過しな
い範囲の最少量とするが理想的である。しかしな
がら、塔1の再生工程でここから脱離するH2S
は、多少のCO2を含んでいても補助燃料なしにク
ラウス反応に供することができるので、塔1の吸
着塔剤量はH2Sが破過しない限り、前記した最少
量を厳守する必要はない。ちなみに、塔1の再生
工程で脱離するH2Sは、共存CO2量が50%程度以
下であれば、これをクラウス反応器に供給し、補
助燃料なしに単体イオウに転化させることができ
る。
The amount of adsorbent in adsorption tower 1 is determined according to the H 2 S concentration in the supplied gas, and is selected within a range that does not allow H 2 S to break through. If you increase the adsorption capacity of column 1 by using too much adsorbent without thinking, it will result in CO 2 being adsorbed, so the amount of adsorbent in column 1 should be the minimum amount that does not allow H 2 S to break through. Ideally, However, H 2 S desorbed from column 1 during the regeneration process.
can be subjected to the Claus reaction without auxiliary fuel even if it contains some CO 2 , so it is not necessary to strictly adhere to the minimum amount of adsorption agent in column 1 as long as H 2 S does not break through. do not have. By the way, if the amount of coexisting CO2 is about 50% or less, the H2S desorbed in the regeneration process in column 1 can be supplied to the Claus reactor and converted to elemental sulfur without the need for auxiliary fuel. .

塔1でH2Sが吸着除去された供給ガスは、次い
で吸着塔2に導入されて処理される。吸着塔2の
吸着剤量は、この塔に導入されるガスの組成と、
この塔で吸着除去せんとする成分の種類によつ
て、適宜決定することができるが、この吸着剤量
をCO2が破過しない範囲の最少量とすれば、ガス
組成の如何にかかわらず、CO2のみを選択的に吸
着除去することができる。また、CO2のみならず
COをも塔2で吸着分離したい場合には、塔2の
吸着剤量をCO2及びCOが破過しない範囲に設定
することにより、その目的を達成することができ
る。但し、供給ガス中にCH4が含まれていると、
第2図に示す通り、CH4はCOより吸着能が高い
ため、COに先立つてCH4が吸着される。従つて、
供給ガスの組成、個々のガス成分の吸着能の大
小、さらには如何なるガス成分を塔2で吸着除去
するかを勘案して、塔2の吸着剤を決めることが
好ましい。
The feed gas from which H 2 S has been adsorbed and removed in column 1 is then introduced into adsorption column 2 and treated. The amount of adsorbent in the adsorption tower 2 depends on the composition of the gas introduced into this tower, and
The amount of adsorbent can be determined as appropriate depending on the type of component to be adsorbed and removed in this column, but if the amount of adsorbent is the minimum amount within the range where CO 2 does not break through, regardless of the gas composition, Only CO 2 can be selectively adsorbed and removed. In addition, not only CO 2
If it is desired to adsorb and separate CO in the column 2, this purpose can be achieved by setting the amount of adsorbent in the column 2 within a range where CO 2 and CO do not break through. However, if CH 4 is included in the supplied gas,
As shown in Figure 2, CH 4 has a higher adsorption capacity than CO, so CH 4 is adsorbed before CO. Therefore,
It is preferable to decide the adsorbent for the column 2 by taking into consideration the composition of the supplied gas, the adsorption capacity of each gas component, and what kind of gas component is to be adsorbed and removed by the column 2.

いずれにしても、本発明吸着工程では吸着塔1
及び2吸着剤量を調節することによつて、供給ガ
ス中のH2S及びCO2をそれぞれ個別に吸着除去す
ることができる。例えば供給ガスが水素を主成分
とし、H2S及びCO2を含有している場合には、こ
の供給ガスを本発明の方法で処理すれば、H2S及
びCO2はそれぞれ塔1及び2で吸着分離され、塔
2の出口からは高純度水素を回収することができ
るのであつて、この状況は第1図Aに示す通りで
ある。
In any case, in the adsorption process of the present invention, the adsorption tower 1
By adjusting the amount of adsorbent 2 and 2, H 2 S and CO 2 in the supplied gas can be individually adsorbed and removed. For example, if the feed gas is mainly hydrogen and contains H 2 S and CO 2 , if this feed gas is treated with the method of the present invention, H 2 S and CO 2 will be removed from columns 1 and 2, respectively. High purity hydrogen can be recovered from the outlet of column 2, as shown in FIG. 1A.

本発明の再生工程は第1図Bに示される。吸着
剤の再生はパージガスとして例えば過熱スチーを
使用し、これを吸着塔1及び2にそれぞれ供給す
ることによつて行なわれる。前述した通り、吸着
塔1にはH2Sが吸着され、CO2が吸着されている
場合でもその量は僅かであるので、塔1を過剰ス
チームでパージすることにより、CO2を全く又は
殆んど含まないH2Sを脱離させることができる。
従つてこの脱離H2Sはクラウス反応器に供給し、
補助燃料なしに単体イオウを回収することができ
るである。一方、吸着塔2にはCO2が吸着されて
おり、場合によつてはCH4、COなども吸着され
ているが、これらは過熱スチームによつてパージ
され、吸着塔1と同様再生される。そして再生さ
れた各吸着塔は、再度本発明の方法に使用できる
ことはもちろんである。
The regeneration process of the present invention is illustrated in FIG. 1B. The regeneration of the adsorbent is carried out by using, for example, superheated steam as a purge gas and supplying it to the adsorption towers 1 and 2, respectively. As mentioned above, H 2 S is adsorbed in the adsorption tower 1, and even if CO 2 is adsorbed, the amount is small, so by purging the tower 1 with excess steam, no or almost no CO 2 can be removed. It is possible to eliminate H 2 S that is not present in most cases.
Therefore, this desorbed H 2 S is fed to the Claus reactor,
It is possible to recover elemental sulfur without supplementary fuel. On the other hand, CO 2 is adsorbed in adsorption tower 2, and in some cases CH 4 and CO are also adsorbed, but these are purged with superheated steam and regenerated in the same way as adsorption tower 1. . Of course, each regenerated adsorption tower can be used again in the method of the present invention.

以上の通り、H2S及びCO2を含有する供給ガス
を、本発明の吸着脱硫法で処理すれば、補助燃料
なしでクラウス反応を遂行させることができる。
従つて、H2Sの後処理を従来よりも簡素に、且つ
低コストで行なえる利点がある。また、供給ガス
中に多量のH2Oが含まれている場合には、例え
ばH2O専用吸着塔を別途設けて、供給ガスを予
め除湿しておく必要があるが、本発明の方法では
各吸着塔の再生に際し、各塔に見合つたエネルー
で各塔毎に再生できるため、従来吸着脱硫法に比
較して、再生エネルーの節減を図ることもでき
る。
As described above, if the feed gas containing H 2 S and CO 2 is treated by the adsorption desulfurization method of the present invention, the Claus reaction can be carried out without auxiliary fuel.
Therefore, there is an advantage that post-processing of H 2 S can be performed more simply and at lower cost than in the past. Furthermore, if the supplied gas contains a large amount of H 2 O, it is necessary to dehumidify the supplied gas in advance, for example by separately installing an adsorption tower exclusively for H 2 O. However, the method of the present invention When regenerating each adsorption tower, each tower can be regenerated with energy appropriate for each tower, so it is also possible to save regeneration energy compared to conventional adsorption desulfurization methods.

比較例 CH483.3%、CO215.7%、H2S1.0%の模擬天然
ガスを吸収装置(モノエタノールアミン)にて処
理し、CO2+H2S≦1%のCH4を得た。次に吸収
装置の吸収液を再生し、CO294%、H2S6%、
CH4微量なる組成の排ガスを得た。
Comparative Example A simulated natural gas containing 83.3% CH 4 , 15.7% CO 2 , and 1.0% H 2 S was treated with an absorption device (monoethanolamine) to obtain CH 4 with CO 2 +H 2 S≦1%. Next, the absorption liquid of the absorption device is regenerated, CO 2 94%, H 2 S 6%,
Exhaust gas with a trace amount of CH 4 composition was obtained.

この排ガス1200Nl/hrに対し、空気120Nl/hr
を混合し、クラウス反応器に供給して燃焼を試む
たが、補助燃料なしでは燃焼させることができ
る。
For this exhaust gas 1200Nl/hr, air 120Nl/hr
Attempts were made to mix the mixture and feed it to a Claus reactor for combustion, but combustion can be achieved without auxiliary fuel.

実施例 第1図に示す如き吸着塔1及び2(両塔とも塔
径150mm、塔長600mm)の塔1に活性炭を、塔2に
モレキユラーシーブ5Aを充填し、比較例と同一
組成の模擬天然ガスを流量7Nm3/hr、圧力10
Kg/cm2Gで40分間供給した。しかる後、各吸着塔
を降圧し、塔1に過熱スチームを送入して130〜
140℃で吸着成分をパージし、CO226.1%、
H2S71.9%、CH42.0%のガスを得た。
Example Adsorption towers 1 and 2 as shown in Fig. 1 (both towers have a diameter of 150 mm and a length of 600 mm) were filled with activated carbon in tower 1 and molecular sieve 5A in tower 2, with the same composition as in the comparative example. Simulated natural gas flow rate 7Nm3 /hr, pressure 10
Kg/cm 2 G was supplied for 40 minutes. After that, the pressure in each adsorption tower is lowered, and superheated steam is sent to tower 1 to reach a temperature of 130~
Purge adsorbed components at 140℃, CO2 26.1%,
A gas containing 71.9% H2S and 2.0% CH4 was obtained.

このガス100Nl/hrに対し、空気120Nl/hrを
混合してクラウス反応器に供給したところ、全く
補助燃料を使用しなくても、ガスの燃焼を維持す
ることができ、クラウス反応を遂行することがで
きた。
When this gas (100 Nl/hr) was mixed with air (120 Nl/hr) and supplied to the Claus reactor, the combustion of the gas could be maintained without using any auxiliary fuel, and the Claus reaction could be carried out. was completed.

H2SはO2又はSO2が共存する場合、吸着剤上で
元素硫黄を生成し、降圧しただけでは、元素硫黄
が取れぬおそれがあるため、本実施例ではスチー
ムにて加熱再生を行つたが、元素硫黄の蓄積のお
それがない場合は、降圧とパージガスだけで吸着
塔の再生が可能である。
When H 2 S coexists with O 2 or SO 2 , elemental sulfur is generated on the adsorbent, and elemental sulfur may not be removed just by lowering the pressure. Therefore, in this example, heating regeneration with steam was performed. If the ivy is not at risk of accumulating elemental sulfur, it is possible to regenerate the adsorption column using only pressure reduction and purge gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A及び第1図Bは、それぞれ本発明の吸
着工程及び再生工程を示す説明図である。第2図
はガス成分の吸着状況を示す説明図である。 1,2…吸着塔。
FIG. 1A and FIG. 1B are explanatory views showing the adsorption step and regeneration step of the present invention, respectively. FIG. 2 is an explanatory diagram showing the state of adsorption of gas components. 1, 2...Adsorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 H2S及びCO2を含有する供給ガスを吸着塔に
通し、H2S及びCO2を吸着分離して供給ガスを脱
硫する方法に於て、前記の吸着塔を直列に接続さ
れた二つの吸着塔で構成され、上流にH2S吸着
塔、下流にCO2吸着塔を配置し、H2S及びCO2
含有する供給ガスをこれら吸着塔に順次通過させ
ることにより、上流の吸着塔でH2Sを、下流の吸
着塔でCO2をそれぞれ優先的に吸着させ両方の吸
着塔を並列に吸着剤の再生を行うことを特徴とす
る前記供給ガスの脱硫法。
1 In a method of passing a feed gas containing H 2 S and CO 2 through an adsorption tower, adsorbing and separating H 2 S and CO 2 and desulfurizing the feed gas, two adsorption towers are connected in series. It consists of two adsorption towers, with an H 2 S adsorption tower upstream and a CO 2 adsorption tower downstream, and by passing the feed gas containing H 2 S and CO 2 sequentially through these adsorption towers, the upstream adsorption The desulfurization method for the feed gas described above, characterized in that H 2 S is preferentially adsorbed in the tower and CO 2 is preferentially adsorbed in the downstream adsorption tower, and the adsorbent is regenerated in both adsorption towers in parallel.
JP60048589A 1985-03-12 1985-03-12 Method of desulfurizing gas containing h2s and co2 Granted JPS61207494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048589A JPS61207494A (en) 1985-03-12 1985-03-12 Method of desulfurizing gas containing h2s and co2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048589A JPS61207494A (en) 1985-03-12 1985-03-12 Method of desulfurizing gas containing h2s and co2

Publications (2)

Publication Number Publication Date
JPS61207494A JPS61207494A (en) 1986-09-13
JPH0551040B2 true JPH0551040B2 (en) 1993-07-30

Family

ID=12807588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048589A Granted JPS61207494A (en) 1985-03-12 1985-03-12 Method of desulfurizing gas containing h2s and co2

Country Status (1)

Country Link
JP (1) JPS61207494A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964569A (en) * 1972-07-26 1974-06-22
JPS57209627A (en) * 1981-06-15 1982-12-23 Shell Int Research Method of removing h2s and co2 from gas mixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4964569A (en) * 1972-07-26 1974-06-22
JPS57209627A (en) * 1981-06-15 1982-12-23 Shell Int Research Method of removing h2s and co2 from gas mixture

Also Published As

Publication number Publication date
JPS61207494A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
EP0166013B1 (en) Improved product recovery in pressure swing adsorption process and system
CA1202576A (en) Process for separating carbonic acid gas from methane- rich gas
CA2059703C (en) Simultaneous removal of residual impurities and moisture from a gas
EP0324224A1 (en) An integrated process for the removal of sulfur compounds from fluid streams
EP0060199B1 (en) Two-feed pressure swing adsorption process for enhancing the recovery of hydrogen in a feed gas
US6521020B2 (en) Claus feed gas hydrocarbon removal
JP2003246606A (en) Syngas purifying method
KR880010811A (en) Chemical treatment with process steps sensitive to feed fluid composition
JP2001300244A (en) Adsorption column for pressure fluctuation adsorption device for manufacturing hydrogen
CA1070249A (en) Suppression of cos formation in molecular sieve purification of hydrocarbon streams
EP2561916A1 (en) Method for naphthalene removal
JPS58159830A (en) Method for removing carbon dioxide in natural gas
JPS6137970B2 (en)
JPH0551040B2 (en)
CN1107876A (en) Process for removing nitrogen compounds from synthesis gas
JPS59116115A (en) Method for recovering carbon monoxide
JPS63147805A (en) Process for producing co2, ar, and n2 from waste combustion gas
JP2002284510A (en) Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
US20230331550A1 (en) Process and apparatus for producing low-nitrogen synthesis gas from nitrogen-containing natural gas
JPH0569566B2 (en)
JPH1025102A (en) Chlorine removal apparatus and oxygen separation by pressure swing adsorption
JPS6259041B2 (en)
JPS61114712A (en) Purification of gaseous mixture
JPS58168689A (en) Prepurification of coke oven gas
KR850000252A (en) Safe Adsorption Process for Separation of Hydrocarbons from Oxygen-Containing Gases