JPH0551015B2 - - Google Patents

Info

Publication number
JPH0551015B2
JPH0551015B2 JP2619185A JP2619185A JPH0551015B2 JP H0551015 B2 JPH0551015 B2 JP H0551015B2 JP 2619185 A JP2619185 A JP 2619185A JP 2619185 A JP2619185 A JP 2619185A JP H0551015 B2 JPH0551015 B2 JP H0551015B2
Authority
JP
Japan
Prior art keywords
formula
group
mole
aromatic
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2619185A
Other languages
Japanese (ja)
Other versions
JPS61188422A (en
Inventor
Akira Kadoi
Toshihiko Aya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2619185A priority Critical patent/JPS61188422A/en
Publication of JPS61188422A publication Critical patent/JPS61188422A/en
Publication of JPH0551015B2 publication Critical patent/JPH0551015B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は新芏な耐熱性熱可塑性重合䜓に関する
ものである。さらに詳しくは、特に300〜400℃の
枩床領域における良奜な熱安定性および流動性を
兌備し、か぀射出成圢可胜な新芏熱可塑性芳銙族
ポリアミドむミド共重合䜓を提䟛するこずを目的
ずしおいる以䞋、ポリアミドむミドをPAIず略
称する。 埓来の技術 芳銙族トリカルボン酞無氎物たたはその誘導䜓
ず芳銙族ゞアミンたたはその誘導䜓を重瞮合させ
るこずにより、耐熱性の優れた芳銙族PAIが埗ら
れるこずはすでによく知られおいるたずえば、
特公昭42−15637号公報、特公昭44−19274号公
報、特公昭45−2397号公報など。そしお、本発
明に関連した䟋ずしお、むギリス特蚱1032649号
公報には無氎トリメリツト酞クロリドず−
ビス−アミノプニルプロパンから合成さ
れる䞀般匏 で衚わされるPAIが、特開昭49−129799号公報に
は無氎トリメリツト酞クロリドず4′−〔スル
ホニルビス−プニレンオキシ〕ゞアニリ
ンずから合成される䞀般匏 で衚わされるPAIが開瀺されおいる。 発明が解決しようずする問題点 しかし、これたでに䞀般的に提案されおきた芳
銙族PAI類は、溶融成圢材料ずしお掻甚するこず
を目的ずした堎合、溶融成圢時の熱安定性、溶融
成圢時の流動性および溶融成圢䜓の物性トヌタル
バランスの面で必ずしも満足されるものではなか
぀た。 たずえば、PAI は、溶融成圢時の耐熱性は優れおいるものの、成
圢䜓の匷靭性および力孊特性が満足できるもので
はなく、成圢材料ずしおは実甚的でない。 たたPAI は流動開始枩床ず熱分解枩床の差が50℃以䞊あ぀
お、溶融成圢時の熱安定性および流動性が優れお
いるため、良奜な溶融成圢性を瀺すが、ゞアミン
成分のフレキシビリテむが高すぎるために、成圢
䜓の物性特に曲げ匷床および熱特性が必ずし
も満足すべきレベルたで到達しない。 そこで本発明者らは、300〜400℃の枩床領域に
おいお良奜な熱安定性および流動性を兌ね備える
こずにより良奜な溶融成圢性を有し、か぀成圢䜓
の物性バランスの優れた芳銙族PAIを埗るこずを
目的ずしお鋭意怜蚎を行な぀た結果、異な぀た特
定の芳銙族ゞアミン成分をこれたで知られおい
なか぀た組成で組合わせるこずにより目的ずする
特性を有する新芏熱可塑性芳銙族PAI共重合䜓が
埗られるこずを芋出し本発明に到達した。 問題点を解決するための手段 すなわち本発明は、  匏
<Industrial Application Field> The present invention relates to a novel heat-resistant thermoplastic polymer. More specifically, the purpose is to provide a new thermoplastic aromatic polyamide-imide copolymer that has good thermal stability and fluidity, particularly in the temperature range of 300 to 400°C, and is injection moldable (hereinafter referred to as , polyamideimide is abbreviated as PAI). <Prior art> It is already well known that an aromatic PAI with excellent heat resistance can be obtained by polycondensing an aromatic tricarboxylic acid anhydride or its derivative with an aromatic diamine or its derivative (for example,
(Special Publication No. 42-15637, Publication No. 19274-1974, Publication No. 2397-1977, etc.) As an example related to the present invention, British Patent No. 1032649 describes trimellitic anhydride chloride and 2,2-
General formula synthesized from bis(p-aminophenyl)propane In JP-A-49-129799, the PAI represented by The PAI expressed as is disclosed. <Problems to be solved by the invention> However, when the aromatic PAIs that have been generally proposed so far are intended to be used as melt molding materials, they have poor thermal stability during melt molding, The fluidity during molding and the total balance of physical properties of the melt-molded product were not necessarily satisfactory. For example, P.A.I. Although it has excellent heat resistance during melt molding, the toughness and mechanical properties of the molded product are unsatisfactory, and it is not practical as a molding material. Also PAI The difference between the flow start temperature and the thermal decomposition temperature is 50℃ or more, and the thermal stability and fluidity during melt molding are excellent, so it shows good melt moldability, but the flexibility of the diamine component is high. As a result, the physical properties (especially bending strength and thermal properties) of the molded product do not necessarily reach a satisfactory level. Therefore, the present inventors obtained an aromatic PAI that has good melt moldability by combining good thermal stability and fluidity in the temperature range of 300 to 400°C, and has an excellent balance of physical properties in a molded product. As a result of intensive research aimed at this purpose, we have developed a new thermoplastic aromatic PAI copolymer that has the desired properties by combining two different specific aromatic diamine components in a hitherto unknown composition. The present invention was achieved by discovering that the following can be obtained. <Means for solving the problems> That is, the present invention has the following formula:

【匏】の構造単䜍、  匏 の構造単䜍および  匏 の構造単䜍からなり各構造単䜍の割合が、A1モ
ルに察しおおがモルでありか぀B0.1〜
0.9モルに察しおが0.9〜0.1モルであり、−メ
チル−−ピロリドン溶媒䞭、重合䜓濃床0.5重
量、30℃で枬定した察数粘床が0.25〜0.55であ
る構造単䜍ず、ずのポリアミドむミド単
䜍がランダムに配列した熱可塑性芳銙族ポリアミ
ドむミド共重合䜓ただし、匏䞭のは官胜基
のうちの官胜基が隣接炭玠に結合されおいる
官胜芳銙族基、R1は炭玠数〜のアルキル基
たたはアルコキシ基、は
Structural unit of [formula], B formula Structural unit of and C formula The ratio of each structural unit is 1 mole of B+C to 1 mole of A, and B0.1~
Structural units A and B in which C is 0.9 to 0.1 mole relative to 0.9 mole, and the logarithmic viscosity measured at 30° C. at a polymer concentration of 0.5% by weight in an N-methyl-2-pyrrolidone solvent is 0.25 to 0.55; A thermoplastic aromatic polyamide-imide copolymer in which the polyamide-imide units of A and C are randomly arranged (however, Z in the formula is 3 in which two of the three functional groups are bonded to adjacent carbons).
Functional aromatic group, R 1 is an alkyl group or alkoxy group having 1 to 4 carbon atoms, Y is

【匏】【formula】

【匏】 たたは【formula】 or

【匏】基、は、[Formula] group, X is Y,

【匏】たたは−SO2−基、R3は炭玠数〜の アルキル基、フツ玠眮換アルキル基たたは炭玠数
〜の芳銙族基、は盎接結合、
[Formula] or -SO 2 - group, R 3 is an alkyl group having 1 to 4 carbon atoms, a fluorine-substituted alkyl group, or an aromatic group having 6 to 9 carbon atoms, Q is a direct bond,

【匏】− CH2−、−−、−−、−NH−CO−たたは−
SO2−、は〜の敎数、はたたは〜
の敎数、はたたはを瀺す。を提䟛す
るものである。 本発明の熱可塑性芳銙族PAI共重合䜓は、䞻ず
しお䞊蚘、およびで瀺される単䜍から構
成され、構造単䜍ず、ずのポリアミドむ
ミド単䜍がランダムに配列した共重合䜓である。 単䜍䞭のは、官胜基のうちの官胜基が
隣接炭玠に結合されおいる官胜性芳銙族基であ
り、たずえば、
[Formula] - CH 2 -, -O-, -S-, -NH-CO- or -
SO 2 −, a is an integer from 1 to 4, b is 0 or 1 to 4
The integer c represents 0, 1 or 2. ). The thermoplastic aromatic PAI copolymer of the present invention is mainly composed of the three units indicated by A, B, and C above, and is a copolymer in which the polyamide-imide units of the structural units A and B and A and C are randomly arranged. It is. Z in the A unit is a trifunctional aromatic group in which two of the three functional groups are bonded to adjacent carbons, for example,

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 などがあげられる。 単䜍の具䜓䟋ずしおは、たずえば、 などおよびこれらの偎鎖眮換誘導䜓があげられ
る。 単䜍の具䜓䟋ずしおは、たずえば、 などおよびこれらの偎鎖眮換誘導䜓があげられ
る。 本発明のPAI共重合䜓における䞊蚘各単䜍の割
合は、A1モルに察しおががモルであり
か぀B0.1〜0.9モルに察しおが0.9〜0.1モル、奜
たしくはB0.2〜0.8モルに察しおが0.8〜0.2モル
である。単䜍がの䞭の90モルを越える
ず埗られるPAI成圢䜓が目立぀おもろくなるので
䞍適圓である。 䞀方、のうち単䜍が枛少するず埗られ
るPAIの熱特性特に熱倉圢枩床が䜎䞋する傟
向を瀺し、熱特性を望たしいレベルに維持するた
めには、単䜍がのうち少なくずも10モル
以䞊占める必芁がある。 なお䞊蚘単䜍の䞭のむミド結合がその閉環前
駆䜓ずしおのアミド酞結合の状態にずどた぀おい
る堎合のA′単䜍
[Formula] etc. As a specific example of B unit, for example, and side chain substituted derivatives thereof. As a specific example of C unit, for example, and side chain substituted derivatives thereof. The ratio of each of the above units in the PAI copolymer of the present invention is such that B + C is 1 mole per mole of A, and C is 0.9 to 0.1 mole to 0.1 to 0.9 mole of B, preferably B0.2 to 0.1 mole. C is 0.8 to 0.2 mole relative to 0.8 mole. If the C unit exceeds 90 mol% of B+C, the resulting PAI molded product will become noticeable and brittle, which is unsuitable. On the other hand, as the C units in B+C decrease, the thermal properties (especially the heat distortion temperature) of the resulting PAI tend to decrease. % or more. In addition, A' unit when the imide bond in the above A unit remains in the state of an amic acid bond as its ring-closing precursor.

【匏】が 単䜍の䞀郚、たずえば単䜍の50モル以䞋、
奜たしくは30モル以䞋存圚する堎合も本発明の
範囲に含たれる。 本発明のPAI共重合䜓は、これたでに提案され
た数倚くの䞀般的補造法のいずれを利甚しおも補
造可胜であるが、それらの䞭で実甚性の高い代衚
䟋ずしお次の法を挙げるこずができる。 (1) む゜シアネヌト法芳銙族トリカルボン酞無
氎物およびたたは芳銙族トリカルボン酞無氎
物芳銙族ゞアミンモル比から合成
されるむミドゞカルボン酞ず芳銙族ゞむ゜シア
ネヌトを反応させる方法たずえば特公昭44−
19274号公報、特公昭45−2397号公報、特公昭
50−33120号公報など。 (2) 酞クロラむド法芳銙族トリカルボン酞無氎
物クロラむドず芳銙族ゞアミンを反応させる方
法たずえば特公昭42−15637号公報など。 (3) 盎接重合法芳銙族トリカルボン酞たたはそ
の誘導䜓酞クロラむド誘導䜓を陀くず芳銙
族ゞアミンを極性有機溶媒䞭脱氎觊媒の存圚䞋
に盎接反応させる方法たずえば特公昭49−
4077号公報。 䞊蚘法の䞭では、酞クロラむド法が、原料調
達が比范的容易なこず、および䜎枩溶液重合によ
り、盎線性のすぐれた分枝構造の少ない高重
合床PAIが埗られやすいずいう長所を有しおお
り、最も掚奚される補造方法である。ここで酞ク
ロラむド法による本発明PAI共重合䜓の補造䟋を
さらに具䜓的に説明するず次のようである。 すなわち、芳銙族トリカルボン酞無氎物モノク
ロラむドモルおよび䞋蚘匏の芳銙族ゞア
ミン10〜90モルず䞋蚘匏の芳銙族ゞアミ
ン90〜10モルからなる混合ゞアミン0.9〜1.1モ
ルずを有機極性溶媒䞭に溶解する。 ここでは
[Formula] is a part of the A unit, for example, 50 mol% or less of the A unit,
Preferably, the presence of 30 mol% or less is also included in the scope of the present invention. The PAI copolymer of the present invention can be produced using any of the many general production methods that have been proposed to date, but the following three methods are representative of the most practical. can be mentioned. (1) Isocyanate method: A method in which imidodicarboxylic acid synthesized from aromatic tricarboxylic anhydride and/or aromatic tricarboxylic anhydride/aromatic diamine (2/1 molar ratio) is reacted with aromatic diisocyanate (for example, Kosho 44-
Publication No. 19274, Publication No. 45-2397, Special Publication No.
50-33120, etc.). (2) Acid chloride method: A method in which aromatic tricarboxylic acid anhydride chloride and aromatic diamine are reacted (for example, Japanese Patent Publication No. 15637/1983). (3) Direct polymerization method: A method in which aromatic tricarboxylic acids or their derivatives (excluding acid chloride derivatives) and aromatic diamines are directly reacted in the presence of a dehydration catalyst in a polar organic solvent (for example,
Publication No. 4077). Among the three methods mentioned above, the acid chloride method has the advantages of relatively easy raw material procurement and the fact that it is easy to obtain PAI with a high degree of polymerization with excellent linearity (less branched structure) through low-temperature solution polymerization. This is the most recommended manufacturing method. Here, a more specific example of the production of the PAI copolymer of the present invention by the acid chloride method is as follows. That is, 1 mol of aromatic tricarboxylic acid anhydride monochloride and 0.9 to 1.1 mol of a mixed diamine consisting of 10 to 90 mol% of aromatic diamine of the following formula () and 90 to 10 mol% of aromatic diamine of the following formula (). Soluble in organic polar solvents. (Here, Y is

【匏】【formula】

【匏】たたは[expression] or

【匏】基、は、[Formula] group, X is Y,

【匏】 たたは−SO2−基、R1は炭玠数〜のアルキル
基たたはアルコキシ基、R3は炭玠数〜のア
ルキル基、フツ玠眮換アルキル基たたは炭玠数
〜の芳銙族基、は盎接結合、
[Formula] or -SO 2 - group, R 1 is an alkyl group with 1 to 4 carbon atoms or an alkoxy group, R 3 is an alkyl group with 1 to 4 carbon atoms, a fluorine-substituted alkyl group, or a 6-carbon group
~9 aromatic group, Q is a direct bond,

【匏】− CH2−、−−、−−、−NH−CO−たたは−
SO2−、は〜の敎数、はたたは〜
の敎数、はたたはを瀺す。 次にこれを−20〜80℃の枩床条件䞋、0.5〜10
時間反応させるず重合が進行する。その際、反応
の途䞭で必芁に応じお塩化氎玠スカベンゞダヌを
酞クロリド基圓量に察しお0.9〜2.0モル皋床添
加するず反応が促進される。この段階で生成する
重合䜓は、本発明のPAI共重合䜓の単䜍の倧郚
分たずえば50〜100を閉環前駆䜓のアミド
アミド酞単䜍 に倉換した構造、いわゆるポリアミド・アミド酞
にな぀おいる。この第䞀工皋に甚いられる有機極
性溶媒は、ゞメチルアセトアミドなどの・−
ゞアルキルカルボン酞アミド類、−メチルピロ
リドン、テトラヒドロチオプン−・−ゞオ
キシドなどの耇玠環匏化合物類、クレゟヌル、キ
シレノヌルなどのプノヌル類などであり、、特
に、−メチルピロリドンおよび・−ゞメチ
ルアセトアミドが奜たしい。たた䞊蚘第䞀工皋に
必芁に応じお添加される塩化氎玠スカベンゞダヌ
は、トリメチルアミン、トリ゚チルアミン、トリ
プロピルアミン、トリブチルアミンのような脂肪
族第玚アミン類、ピリゞン、ルチゞン、コリゞ
ン、キノリンのような環状有機塩基、゚チレンオ
キシド、プロピレンオキシドなどのような有機オ
キシド化合物類などである。 䞊蚘の第䞀工皋で埗られたポリアミドアミド酞
は、続いお第の脱氎閉環工皋にかけられ、本発
明のPAI共重合䜓に倉換される。脱氎閉環操䜜
は、溶液䞭における液盞閉環たたは固䜓で加熱す
る固盞熱閉環のいずれかで行われる。液盞閉環に
は化孊的脱氎剀を甚いる液盞化孊閉環法ず、単玔
な液盞熱閉環法の通りがある。化孊閉環法は、
無氎酢酞、無氎プロピオン酞のような脂肪族無氎
物、P2O5などの化孊的脱氎剀を甚いお、枩床
〜120℃で実斜される。たた、液盞熱閉環法は、
ポリアミド・アミド酞溶液を50〜400℃、奜たし
くは100〜250℃に加熱するこずによ぀お行われ
る。その際、氎の陀去に圹立぀共沞溶媒、たずえ
ばベンセン、トル゚ン、キシレン、クロルベンれ
ンなどを䜵甚するずより効果的である。固盞熱閉
環は、たず、第䞀工皋で埗られたポリアミド・ア
ミド酞溶液からポリアミド・アミド酞重合䜓を単
離し、これを固䜓状態で熱凊理するこずによ぀お
行われる。ポリアミド・アミド酞重合䜓単離甚の
沈殿剀ずしおは、反応混合物溶媒ずは混和性であ
るが、その䞭にポリアミド・アミド酞自䜓が䞍溶
である液䜓たずえば氎、メタノヌルなどが採甚さ
れる。熱凊理は、通垞150〜350℃、0.5〜50時間
の条件から目的の閉環率および溶融時流動性を確
保するように遞定される。250〜350℃の領域で長
時間凊理しすぎるず、重合䜓そのものが次元架
橋構造を圢成しお、溶融時の流動性を著しく䜎䞋
させる傟向を瀺すので泚意する必芁がある。 なお䞊蚘䞀般匏およびで瀺される
芳銙族ゞアミンの具䜓䟋は、先に本発明の単䜍
および単䜍の具䜓䟋ずしお瀺した䟡芳銙族残
基類の䞡偎にアミノ基−NH2を぀けた圢で
衚瀺される。 以䞊に詳述した補造方法によ぀お、本発明の目
的ずするPAI共重合䜓が埗られるが曎に反応系に
単䜍、単䜍および単䜍を構成する成分以倖
の他の共重合成分を生成するPAIの溶融加工性、
物理的特性を倧巟に䜎䞋させるこずのない量的範
囲で䜵甚し共重合するこずは、可胜であり、本発
明の範囲に包含される。 本発明のPAI共重合䜓はそのむミド単䜍が䞀郚
開環したアミド酞結合にずどた぀おいる堎合もあ
るが倧郚分が閉環した構造ずな぀おおり、たた
−メチル−−ピロリドン溶媒䞭、重合䜓濃床
0.5重量、30℃で枬定した察数粘床ηinhの
倀が0.25〜0.55、奜たしくは0.30〜0.55の高重合
床重合䜓であり、䞋蚘のような各皮の甚途に掻甚
するこずができる。 圧瞮成圢は本発明のPAI共重合䜓粉末に必芁に
応じお異皮重合䜓、添加剀、充填剀、補匷剀など
をドラむブレンドした埌、通垞300〜400℃、圧力
50〜500Kgcm2の条件䞋に実斜される。たた抌圧
成圢および射出成圢は、本発明のPAI共重合䜓に
必芁に応じお異皮重合䜓、添加剀、充填剀、補匷
剀などをドラむブレンドしたもの、たたはこれを
抌出機にかけおペレツト化したペレツトを抌出成
圢機たたは射出成圢機に䟛絊し、300〜400℃の枩
床条件䞋に実斜される。特に本発明の芳銙族PAI
共重合䜓は300〜400℃領域での熱安定性および流
動特性のバランスがきわ立぀おすぐれおおり、抌
出成圢および射出成圢甚ずしお有甚である。 たた本発明のPAI共重合䜓を加熱溶融成圢した
成圢䜓をさらに高枩条件䞋の熱凊理に䟛するこず
により、熱倉圢枩床、匕匵匷床、曲げ匷床および
摩擊摩耗特性などの物性がさらに向䞊した成圢品
を埗るこずができる。かかる熱凊理条件ずしお
は、成圢䜓を200℃以䞊、その成圢䜓のガラス転
移枩床以䞋、特に220℃以䞊、その成圢䜓のガ
ラス転移枩床−℃以䞋の枩床で時間以䞊、
特に10時間以䞊加熱するのが適圓である。熱凊理
枩床が成圢䜓のガラス転移枩床を越えるず熱凊理
䞭に成圢䜓が倉圢しお実甚性を損なう傟向が匷く
なるため奜たしくない。この熱凊理を行う装眮に
は特に制限はないが、通垞の電気加熱匏オヌブン
で十分目的を達するこずができる。 フむルムおよび繊維補造甚途ずしおは、也匏た
たは也湿匏泚型プロセスに重合終了溶液を適甚す
るこずができ、たた単離重合䜓に必芁に応じお適
圓な添加剀を添加しお溶融成圢するこずもでき
る。積局板は、ガラス繊維、炭玠繊維、アスベス
ト繊維などで構成されるクロスたたはマツトに共
重合䜓溶液を含浞させた埌、也燥加熱による前
硬化を行な぀おプリプレグを埗、これを200〜400
℃、50〜300Kgcm2の条件䞋にプレスするこずに
より補造される。 塗料甚途ずしおは、重合終了溶液に必芁に応じ
お異皮の溶媒を添加混合した埌、濃床調節を行い
そのたた実甚に䟛するこずができる。 本発明の組成物には必芁に応じお70重量以䞋
の範囲で次のような充填剀類を含有させるこずが
できる。(a)耐摩耗性向䞊剀グラフアむト、カヌ
ボランダム、ケむ石粉、二硫化モリブデン、フツ
玠暹脂など、(b)補匷剀ガラス繊維、カヌボン繊
維、ボロン繊維、炭化ケむ玠繊維、カヌボンりむ
スカヌ、アスベスト繊維、石綿、金属繊維など、
(c)難燃性向䞊剀䞉酞化アンチモン、炭酞マグネ
シりム、炭酞カルシりムなど、(d)電気特性向䞊
剀クレヌ、マむカなど、(e)耐トラツキング向䞊
剀石綿、シリカ、グラフアむトなど、(f)耐酞性
向䞊剀硫酞バリりム、シリカ、メタケむ酞カル
シりムなど、(g)熱䌝導床向䞊剀鉄、亜鉛、アル
ミニりム、銅などの金属粉末、(h)その他ガラス
ビヌズ、ガラス球、炭酞カルシりム、アルミナ、
タルク、ケむ゜り土、氎和アルミナ、マむカ、シ
ラスバルヌン、石綿、各皮金属酞化物、無機質顔
料類など300℃以䞊で安定な合成および倩然の化
合物類が含たれる。 実斜䟋 以䞋、実斜䟋により本発明をさらに詳述する。 なお、本実斜䟋䞭で甚いた、郚および比の倀
は、特にこずわりのない限り、それぞれ重量、
重量郚および重量比の倀を瀺す。たた、重合䜓の
分子量の目安ずなる察数粘床ηintの倀は、
−メチル−−ピロリドン溶媒䞭、重合䜓濃床
0.5、枩床30℃で枬定したものである。 なお、各皮物性の枬定は次の方法に準じお行な
぀た。 曲げ応力 

ASTMD790 曲げ匟性率   〃 熱倉圢枩床  ASTMD648−5618.56Kgcm2 実斜䟋  撹拌機、枩床蚈および窒玠導入管を備えた内容
積のガラス補セパラブルフラスコにアニリン
塩酞塩およびアセトンから合成した−ビス
−アミノプニルプロパン融点134〜135
℃135.80.60モル、4′−ビス−ア
ミノプノキシゞプニルスルホン259.5
0.60モルおよび無氎−ゞメチルアセト
アミド2000を仕蟌んで撹拌し均䞀溶液を埗た。
この反応混合物をドラむアむスアセトン济で−
10℃に冷华し、無氎トリメリツト酞クロリド253
1.20モルを重合系の枩床を−10〜−℃に
保持するような速床で少量ず぀分割添加した。さ
らに20℃で䞀時間撹拌を続行した。 次に、重合終了液を高速撹拌䞋の氎䞭に埐々に
投入しお重合䜓を粒状に析出させ、続いお析出重
合䜓を衝撃匏粉砕機にかけお埮粉末状に粉砕した
埌、十分に氎掗脱氎し、次いで熱颚也燥機䞭で
150℃で時間、続いお200℃で時間也燥したず
ころ察数粘床が0.55の重合䜓粉末が玄535埗ら
れた。 ここで埗られた共重合䜓の理論的構造単䜍匏お
よびそれに察応する分子匏は次のずおりであり、
しかも単䜍ずたたは単䜍が亀互に連結した
構造にな぀おおり、その共重合䜓の元玠分析結果
は䞋蚘のずおり、理論倀ずよい䞀臎を瀺した。 
[Formula] - CH 2 -, -O-, -S-, -NH-CO- or -
SO 2 −, a is an integer from 1 to 4, b is 0 or 1 to 4
The integer c represents 0, 1 or 2. ) Next, this is heated at a temperature of -20 to 80℃ for 0.5 to 10
Polymerization progresses over time. At this time, the reaction is accelerated by adding a hydrogen chloride scavenger of about 0.9 to 2.0 mol per equivalent of acid chloride group as needed during the reaction. The polymer produced in this step contains the majority (for example, 50 to 100%) of the A units of the PAI copolymer of the present invention in the amido-amic acid units of the ring-closing precursor. The structure has been converted into the so-called polyamide/amic acid. The organic polar solvent used in this first step is N/N- such as dimethylacetamide.
These include dialkylcarboxylic acid amides, N-methylpyrrolidone, heterocyclic compounds such as tetrahydrothiophene-1,1-dioxide, and phenols such as cresol and xylenol. In particular, N-methylpyrrolidone and N.N. -dimethylacetamide is preferred. Hydrogen chloride scavengers added as necessary in the first step include aliphatic tertiary amines such as trimethylamine, triethylamine, tripropylamine, and tributylamine, pyridine, lutidine, collidine, and quinoline. These include cyclic organic bases, organic oxide compounds such as ethylene oxide, propylene oxide, and the like. The polyamide amic acid obtained in the above first step is subsequently subjected to a second dehydration ring closure step and converted into the PAI copolymer of the present invention. The dehydration ring closure operation is carried out either by liquid phase ring closure in solution or solid phase thermal ring closure by heating in a solid. There are two types of liquid phase ring closure: a liquid phase chemical ring closure method using a chemical dehydrating agent, and a simple liquid phase thermal ring closure method. The chemical ring closure method is
Using chemical dehydrating agents such as acetic anhydride, aliphatic anhydrides such as propionic anhydride, P2O5 , etc. at 0 temperature.
Performed at ~120°C. In addition, the liquid phase thermal ring closure method is
This is carried out by heating the polyamide/amic acid solution to 50 to 400°C, preferably 100 to 250°C. In this case, it is more effective to use an azeotropic solvent useful for water removal, such as benzene, toluene, xylene, chlorobenzene, etc. in combination. Solid phase thermal ring closure is performed by first isolating a polyamide/amic acid polymer from the polyamide/amic acid solution obtained in the first step and heat-treating it in a solid state. As a precipitant for isolating the polyamide/amic acid polymer, a liquid such as water, methanol, etc., which is miscible with the reaction mixture solvent but in which the polyamide/amic acid itself is insoluble, is employed. The heat treatment is usually selected from conditions of 150 to 350°C and 0.5 to 50 hours to ensure the desired ring closure rate and melt fluidity. If the treatment is carried out in the 250 to 350°C range for too long, the polymer itself tends to form a three-dimensional crosslinked structure, which significantly reduces the fluidity during melting, so care must be taken. Specific examples of aromatic diamines represented by the above general formulas () and () include amino groups (- NH 2 ). By the production method detailed above, the PAI copolymer targeted by the present invention can be obtained, but other copolymer components other than those constituting A units, B units, and C units are also produced in the reaction system. The melt processability of PAI,
It is possible and within the scope of the present invention to use and copolymerize in combination within a quantitative range that does not significantly reduce the physical properties. The PAI copolymer of the present invention has a structure in which the imide units are partially ring-opened amic acid bonds, but most of them have a ring-closed structure, and N
-Polymer concentration in methyl-2-pyrrolidone solvent
It is a high polymerization degree polymer with a logarithmic viscosity (ηinh) value of 0.25 to 0.55, preferably 0.30 to 0.55, measured at 0.5% by weight at 30°C, and can be used for various purposes as described below. Compression molding is performed by dry blending the PAI copolymer powder of the present invention with different polymers, additives, fillers, reinforcing agents, etc. as required, and then drying the powder at 300 to 400°C and under pressure.
It is carried out under conditions of 50-500Kg/ cm2 . Pressure molding and injection molding are performed by dry-blending the PAI copolymer of the present invention with different polymers, additives, fillers, reinforcing agents, etc. as necessary, or by extruding the same into pellets. It is fed to an extrusion molding machine or an injection molding machine and carried out under a temperature condition of 300-400°C. In particular, the aromatic PAI of the present invention
The copolymer has an excellent balance of thermal stability and flow properties in the 300-400°C range, and is useful for extrusion molding and injection molding. In addition, by further subjecting the molded product obtained by heating and melting molding the PAI copolymer of the present invention to heat treatment under high-temperature conditions, a molded product with further improved physical properties such as heat distortion temperature, tensile strength, bending strength, and friction and wear properties can be obtained. Obtainable. Such heat treatment conditions include heating the molded product at a temperature of 200°C or higher and below the glass transition temperature of the molded product, particularly at a temperature of 220°C or higher and below (glass transition temperature -5°C) of the molded product for 5 hours or more.
In particular, heating for 10 hours or more is appropriate. If the heat treatment temperature exceeds the glass transition temperature of the molded article, the molded article is undesirably deformed during the heat treatment and has a strong tendency to impair its practicality. There are no particular restrictions on the equipment for this heat treatment, but a normal electric heating oven can suffice to achieve the purpose. For film and fiber manufacturing applications, the polymerization-finished solution can be applied in a dry or wet-dry casting process, or the isolated polymer can be melt-molded with appropriate additives as required. . Laminated boards are made by impregnating cloth or mat made of glass fiber, carbon fiber, asbestos fiber, etc. with a copolymer solution, then pre-curing it by drying/heating to obtain a prepreg.
It is manufactured by pressing under conditions of 50-300 kg/cm 2 at ℃. For paint applications, different types of solvents may be added and mixed to the polymerization-completed solution as needed, and then the concentration may be adjusted and used for practical use as is. The composition of the present invention may contain the following fillers in an amount of 70% by weight or less, if necessary. (a) Wear resistance improvers: graphite, carborundum, silica powder, molybdenum disulfide, fluorine resin, etc. (b) Reinforcers: glass fiber, carbon fiber, boron fiber, silicon carbide fiber, carbon whisker, asbestos Fibers, asbestos, metal fibers, etc.
(c) Flame retardant improvers: antimony trioxide, magnesium carbonate, calcium carbonate, etc. (d) Electrical property improvers: clay, mica, etc. (e) Tracking resistance improvers: asbestos, silica, graphite, etc. f) Acid resistance improvers: barium sulfate, silica, calcium metasilicate, etc. (g) Thermal conductivity improvers: Metal powders such as iron, zinc, aluminum, copper, etc. (h) Others: glass beads, glass spheres, carbonic acid calcium, alumina,
It includes synthetic and natural compounds that are stable at temperatures above 300°C, such as talc, diatomaceous earth, hydrated alumina, mica, shirasu balloons, asbestos, various metal oxides, and inorganic pigments. <Examples> Hereinafter, the present invention will be further explained in detail with reference to Examples. Note that the values of %, parts, and ratios used in the examples are % by weight and % by weight, respectively, unless otherwise specified.
Parts by weight and weight ratio values are shown. In addition, the value of logarithmic viscosity (ηint), which is a guideline for the molecular weight of the polymer, is N
-Polymer concentration in methyl-2-pyrrolidone solvent
0.5%, measured at a temperature of 30°C. Note that measurements of various physical properties were performed according to the following methods. Bending stress...ASTMD790 Bending modulus... Heat deformation temperature...ASTMD648-56 (18.56Kg/ cm2 ) Example 1 Glass separable flask with internal volume 5 equipped with a stirrer, thermometer, and nitrogen inlet tube 2,2-bis(p-aminophenyl)propane (melting point 134-135) synthesized from aniline hydrochloride and acetone
℃) 135.8g (0.60mol), 4,4'-bis(4-aminophenoxy)diphenylsulfone 259.5g
(0.60 mol) and 2000 g of anhydrous N,N-dimethylacetamide were charged and stirred to obtain a homogeneous solution.
The reaction mixture was heated in a dry ice/acetone bath.
Cool to 10 °C and remove trimellitic anhydride chloride 253.
g (1.20 mol) was added in small portions at such a rate that the temperature of the polymerization system was maintained at -10 to -5°C. Stirring was continued for an additional hour at 20°C. Next, the polymerized liquid is gradually poured into water under high-speed stirring to precipitate the polymer into particles.Then, the precipitated polymer is crushed into a fine powder using an impact crusher, and then thoroughly washed with water and dehydrated. and then in a hot air dryer
After drying at 150° C. for 5 hours and then at 200° C. for 3 hours, about 535 g of polymer powder having a logarithmic viscosity of 0.55 was obtained. The theoretical structural unit formula and the corresponding molecular formula of the copolymer obtained here are as follows,
In addition, it has a structure in which A units and B or C units are alternately connected, and the elemental analysis results of the copolymer showed good agreement with the theoretical values as shown below. A

【匏】― C9H4N2O3―  ―C24H16O4S― [Formula] (- C 9 H 4 N 2 O 3 )- B (-C 24 H 16 O 4 S) - C

【匏】―C15H14― 1.20.60.6モル比 1005050モル比[Formula] (-C 15 H 14 ) - A/B/C=1.2/0.6/0.6 (mole ratio) 100/50/50 (mole ratio)

【衚】 次に埗られた共重合䜓粉末に焌け防止剀ずしお
の四フツ化゚チレン暹脂旭硝子(æ ª)瀟“アフロン
ポリミスト−”0.5および酞化チタン0.5
を添加した埌、ブラベンダヌプラストグラプ
クストルヌダヌ凊理枩床340〜360℃に䟛絊し
お溶融混緎しながら抌出す操䜜を回行な぀お均
䞀配合ペレツトを埗た。次に埗られたペレツトを
圧瞮成圢凊理枩床330〜360℃、圧力50〜100
Kgcm2にかけお詊隓片を䜜成し、物性枬定を行
な぀たずころ次の第衚のような結果が埗られ
た。
[Table] Next, the obtained copolymer powder was added with 0.5% tetrafluoroethylene resin (Asahi Glass Co., Ltd. "Aphron Polymist F-5") as a sun protection agent and 0.5% titanium oxide.
%, the pellets were fed to a Brabender Plastograph extruder (processing temperature 340-360°C) and extruded twice while being melt-kneaded to obtain uniformly blended pellets. Next, the obtained pellets are compression molded (processing temperature 330-360℃, pressure 50-100℃).
Kg/cm 2 ) to prepare test pieces and measure their physical properties, and the results shown in Table 1 below were obtained.

【衚】 次に䞊蚘ず同䞀条件で埗られた圧瞮成圢詊隓片
を熱颚也燥機に入れ150℃で䞀昌倜也燥埌、245℃
で24時間、続いお260℃で48時間熱凊理を行な぀
たずころ、熱凊理埌の物性は次の第衚のようで
あり、第衚の結果に比べお倧巟に向䞊した。
[Table] Next, the compression molded test piece obtained under the same conditions as above was placed in a hot air dryer and dried at 150°C for a day and night, then heated to 245°C.
When heat treatment was performed for 24 hours at 260°C and then for 48 hours at 260°C, the physical properties after the heat treatment were as shown in Table 2 below, and were significantly improved compared to the results in Table 1.

【衚】 比范䟋 および ゞアミン成分ずしお−ビス−アミノ
プニルプロパン271.61.2モルたたは
4′−ビス−アミノプノキシゞプニ
ルスルホン513.01.2モルを単独で甚いる以
倖すべお実斜の前半ず同じ操䜜を行な぀お、そ
れぞれ察数粘床0.63の重合䜓粉末415および察
数粘床0.42の重合䜓粉末635を埗た。 次に埗られた重合䜓を甚いお実斜䟋ず同様に
四フツ化゚チレン暹脂0.5および酞化チタン0.5
を配合した埌、溶融混緎操䜜を行な぀おペレツ
トを埗た。次にこのペレツトを実斜䟋ず同䞀条
件で圧瞮成圢しお詊隓片を䜜成し、物性を枬定し
たずころ、−ビス−アミノプニル
プロパンから埗られた重合䜓は曲げ匷床が620
Kgcm2ずいう非垞に小さなものであり、䞀方
4′−ビス−アミノプノキシゞプニルス
ルホンから埗られた重合䜓は熱倉圢枩床が238℃
ず䜎いものであ぀た。 このようにゞアミン成分ずしお実斜䟋で䜿甚
したゞアミンを各々単独で甚いたのでは、実斜䟋
ず比べお各々非垞に匷床の小さい成圢品、耐熱
性の䜎い成圢品しか埗られず、実斜䟋ず比べお
物性のトヌタルバランスの劣るものである。 実斜䟋  ゞアミン成分ずしお−ビス−アミノ
プノキシ−プニレンプロパン295.6
0.72モルおよび−ビス−アミノ
プニル−−プニル゚タン融点159〜161
℃138.40.48モルを甚いる以倖すべお実
斜䟋の前半ず同じ操䜜を行な぀お察数粘床0.50
の共重合䜓粉末を560埗た。 この共重合䜓の理論的構造単䜍匏およびそれに
察応する分子匏は次のずおりであり、元玠分析結
果もこの理論倀ずよい䞀臎を瀺した。 
[Table] Comparative Examples 1 and 2 271.6 g (1.2 mol) of 2,2-bis(p-aminophenyl)propane or 513.0 g (1.2 mol) of 4,4'-bis(p-aminophenoxy) diphenylsulfone was used as the diamine component. The same operations as in the first half of Example 1 were carried out except for using the polymer alone, to obtain 415 g of a polymer powder with a logarithmic viscosity of 0.63 and 635 g of a polymer powder with a logarithmic viscosity of 0.42, respectively. Next, using the obtained polymer, 0.5% of tetrafluoroethylene resin and 0.5% of titanium oxide were prepared in the same manner as in Example 1.
%, a melt-kneading operation was performed to obtain pellets. Next, this pellet was compression molded under the same conditions as in Example 1 to prepare a test piece, and its physical properties were measured.
Polymers obtained from propane have a bending strength of 620
It is extremely small at Kg/cm 2 , while 4,
The polymer obtained from 4′-bis(p-aminophenoxy)diphenylsulfone has a heat distortion temperature of 238°C.
It was low. In this way, if each of the diamines used in Example 1 were used alone as the diamine component, only a molded product with extremely low strength and a molded product with low heat resistance could be obtained compared to Example 1, and Compared to No. 1, the total balance of physical properties is inferior. Example 2 2,2-bis(p-aminophenoxy1,4-phenylene)propane as diamine component 295.6
g (0.72 mol) and 1,1-bis(p-aminophenyl)-1-phenylethane (melting point 159-161
The logarithmic viscosity was 0.50 by performing all the same operations as in the first half of Example 1 except using 138.4 g (0.48 mol) of
560g of copolymer powder was obtained. The theoretical structural unit formula and the corresponding molecular formula of this copolymer are as follows, and the elemental analysis results also showed good agreement with this theoretical value. A

【匏】― C9H4N2O3―  ―C27H22O2― [Formula] (- C 9 H 4 N 2 O 3 )- B ( -C27H22O2 ) -C

【匏】―C20H16― 1.20.720.48モル比 1006040モル比 次に埗られた共重合䜓を甚いお実斜䟋ず同様
に四フツ化゚チレン暹脂0.5および酞化チタン
0.5を配合した埌、溶融混緎操䜜を行な぀おペ
レツトを埗た。次にこのペレツトを実斜䟋ず同
䞀の条件で圧瞮成圢しお詊隓片を䜜成し、物性枬
定を行な぀たずころ次のような結果が埗られた。
[Formula] (-C 20 H 16 )- A/B/C=1.2/0.72/0.48 (mole ratio) 100/60/40 (mole ratio) Next, using the obtained copolymer, Example 1 and Similarly, 0.5% tetrafluoroethylene resin and titanium oxide
After blending 0.5%, a melt-kneading operation was performed to obtain pellets. Next, this pellet was compression molded under the same conditions as in Example 1 to prepare a test piece, and the physical properties were measured, and the following results were obtained.

【衚】 実斜䟋  ゞアミン成分ずしお4′−ビス−アミノ
プノキシゞプニルスルホン363.30.84
モルおよび−ビス−アミノプニ
ル−10−アントロン融点302〜304℃135.5
0.36モルを甚いる以倖すべお実斜䟋の前半
ず同じ操䜜を行な぀お察数粘床0.45の共重合䜓粉
末を615埗た。この共重合䜓は次の理論的構造
単䜍および分子匏からなり、元玠分析倀もこの理
論倀ずよく䞀臎した。 
[Table] Example 3 4,4'-bis(p-aminophenoxy) diphenyl sulfone 363.3g (0.84
mol) and 9,9-bis(p-aminophenyl)-10-anthrone (melting point 302-304°C) 135.5g
The same operations as in the first half of Example 1 were carried out except that (0.36 mol) was used to obtain 615 g of copolymer powder having a logarithmic viscosity of 0.45. This copolymer consisted of the following theoretical structural units and molecular formula, and the elemental analysis values also agreed well with the theoretical values. A

【匏】― C9H4N2O3―  ―C24H16O4S― [Formula] (- C 9 H 4 N 2 O 3 )- B (-C 24 H 16 O 4 S) - C

【匏】― C26H16O― 次に埗られた重合䜓を甚いお実斜䟋ず同様に
四フツ化゚チレン暹脂0.5および酞化チタン0.5
を配合した埌、溶融混緎操䜜を行な぀おペレツ
トを埗た。次にこのペレツトを実斜䟋ず同䞀の
条件で圧瞮成圢しお詊隓片を䜜成し、実斜䟋ず
同様に熱凊理前埌の物性枬定を行な぀たずころ次
の第衚のような結果が埗られた。
[Formula] (- C 26 H 16 O) - Next, using the obtained polymer, 0.5% tetrafluoroethylene resin and 0.5% titanium oxide were added in the same manner as in Example 1.
%, a melt-kneading operation was performed to obtain pellets. Next, test specimens were prepared by compression molding this pellet under the same conditions as in Example 1, and the physical properties before and after heat treatment were measured in the same manner as in Example 1, and the results shown in Table 3 below were obtained. It was done.

【衚】 比范䟋 および ゞアミン成分ずしお・−ビス−アミノ
プニル−−プニル゚タン346.11.2モ
ルたたは・−ビス−アミノプニル
−10−アントロン451.81.2モルを単独で甚
いる以倖すべお実斜の前半ず同じ操䜜を行な぀
お、それぞれ察数粘床0.61の重合䜓粉末475お
よび察数粘床0.41の重合䜓粉末570を埗た。次
に埗られた重合䜓を甚いお実斜䟋ず同様に四フ
ツ化゚チレン暹脂0.5および酞化チタン0.5を
配合した埌、ブラベンダヌプラストグラプクス
トルヌダヌ凊理枩床340〜360℃に䟛絊しお溶
融混緎操䜜を行な぀たずころ、・−ビス
−アミノプニル−10−アントロンから埗られ
た重合䜓はスムヌスな溶融状態が発珟せず、゚ク
ストルヌダヌの軞にかかる回転トルク倀が装眮の
蚱容限界を越えおしたい、実質的に溶融混緎はで
きなか぀た。 䞀方・−ビス−アミノプニル−
−プニル゚タンから埗られた重合䜓は、゚クス
トルヌダヌ回転軞にかかる回転トルク倀は高くな
るものの配合ペレツト化は可胜であ぀た。しかし
このペレツトを実斜䟋の埌半ず同䞀の条件で圧
瞮成圢したずころ、埗られた成圢品の曲げ匷床は
560Kgcm2ずいう非垞に小さなものであ぀た。 このようなゞアミン成分ずしお実斜䟋で䜿甚
したゞアミンの第成分のみを甚いたのでは溶融
成圢の困難なPAIしかできず、実斜䟋で䜿甚し
たゞアミンの第成分のみを甚いたのでは溶融成
圢は可胜であるが、実斜䟋に比べお非垞に匷床
の小さい成圢品しか埗られない。 実斜䟋 〜 第衚に瀺したゞアミンを成分ずしお甚いる
以倖はすべお実斜䟋ず同じ操䜜を行な぀お共重
合䜓を埗た。 これらの共重合䜓は各々第衚の理論構造単䜍
匏からなり、元玠分析結果もこの理論倀ずよく䞀
臎した。次に埗られた共重合䜓を圧瞮成圢凊理
枩床350〜400℃、圧力50〜100Kgcm2にかけお
詊隓片を䜜成し、物性枬定を行぀たずころ第衚
のような結果が埗られた。
[Table] Comparative Examples 3 and 4 1,1-bis(p-aminophenyl)-1-phenylethane 346.1g (1.2 mol) or 9,9-bis(p-aminophenyl) as diamine component
The same operations as in the first half of Example 1 were carried out except that 451.8 g (1.2 mol) of -10-anthrone was used alone to obtain 475 g of a polymer powder with a logarithmic viscosity of 0.61 and 570 g of a polymer powder with a logarithmic viscosity of 0.41, respectively. Next, the obtained polymer was blended with 0.5% tetrafluoroethylene resin and 0.5% titanium oxide in the same manner as in Example 1, and then fed to a Brabender Plastograph extruder (processing temperature 340-360°C). When melt-kneading operation was carried out, 9,9-bis (p
The polymer obtained from -10-anthrone (aminophenyl) does not develop a smooth melt state, and the rotational torque applied to the extruder shaft exceeds the allowable limit of the device, making it virtually impossible to melt and knead it. Ta. On the other hand, 1,1-bis(p-aminophenyl)-1
- The polymer obtained from phenylethane could be blended into pellets, although the rotational torque value applied to the extruder rotating shaft was high. However, when this pellet was compression molded under the same conditions as in the second half of Example 1, the bending strength of the molded product obtained was
It was extremely small at 560Kg/ cm2 . If only the second component of the diamine used in Example 3 was used as the diamine component, only PAI, which is difficult to melt mold, could be obtained. Although melt molding is possible, only a molded product with extremely low strength compared to Example 2 can be obtained. Examples 4 to 8 Copolymers were obtained by carrying out the same operations as in Example 1 except for using the diamines shown in Table 4 as two components. These copolymers each had the theoretical structural unit formula shown in Table 4, and the elemental analysis results also agreed well with the theoretical values. Next, the obtained copolymer was compression molded (processing temperature 350-400℃, pressure 50-100Kg/cm 2 ) to prepare test pieces, and physical properties were measured, and the results shown in Table 4 were obtained. Ta.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 発明の効果 本発明のPAIは、300〜400℃の枩床領域におい
お良奜な熱安定性および流動性を兌ね備えるこず
により良奜な溶融成圢性を有し、か぀成圢䜓の物
性バランスがすぐれおおり、抌出成圢および射出
成圢によ぀お高い成圢生産性のもずに高性胜の玠
材および成圢物品を䜜り出すこずができる。そし
おこれらの玠材および成圢物品は、すぐれた耐熱
性および力孊特性を利甚しお、電気・電子郚品、
航空・宇宙機噚郚品、自動車甚郚品、事務機噚郚
品などの分野に広く掻甚される。
[Table] <Effects of the Invention> The PAI of the present invention has good melt moldability by having good thermal stability and fluidity in the temperature range of 300 to 400°C, and the physical property balance of the molded product is good. This makes it possible to produce high-performance materials and molded articles with high molding productivity through extrusion molding and injection molding. Utilizing their excellent heat resistance and mechanical properties, these materials and molded articles can be used to manufacture electrical and electronic components,
It is widely used in fields such as aerospace equipment parts, automobile parts, and office equipment parts.

Claims (1)

【特蚱請求の範囲】   匏【匏】の構造 単䜍、  匏 の構造単䜍および  匏 の構造単䜍からなり各構造単䜍の割合が、A1モ
ルに察しおがモルであり、か぀B0.1〜
0.9モルに察しおが0.9〜0.1モルであり、−メ
チル−−ピロリドン溶媒䞭、重合䜓濃床0.5重
量、30℃で枬定した察数粘床が0.25〜0.55であ
る構造単䜍ず、ずのポリアミドむミド単
䜍がランダムに配列した熱可塑性芳銙族ポリアミ
ドむミド共重合䜓。ただし、匏䞭のは官胜
基のうちの官胜基が隣接炭玠に結合されおいる
官胜芳銙族基、R1は炭玠数〜のアルキル
基たたはアルコキシ基、は【匏】 【匏】たたは【匏】基、 は、【匏】たたは−SO2−基、R3は炭玠数 〜のアルキル基、フツ玠眮換アルキル基たた
は炭玠数〜の芳銙族基、は盎接結合、 【匏】−CH2−、−−、−、−NH−CO− たたは−SO2−、は〜の敎数、はたた
は〜の敎数、はたたはを瀺す。
[Claims] 1 A structural unit of formula [formula], B formula Structural unit of and C formula The ratio of each structural unit is 1 mole of B+C to 1 mole of A, and B0.1 to
Structural units A and B in which C is 0.9 to 0.1 mole relative to 0.9 mole, and the logarithmic viscosity measured at 30° C. at a polymer concentration of 0.5% by weight in an N-methyl-2-pyrrolidone solvent is 0.25 to 0.55; A thermoplastic aromatic polyamide-imide copolymer in which polyamide-imide units A and C are randomly arranged. (However, Z in the formula is a trifunctional aromatic group in which two of the three functional groups are bonded to adjacent carbons, R 1 is an alkyl group or alkoxy group having 1 to 4 carbon atoms, and Y is [Formula ] [Formula] or [Formula] group, X is Y, [Formula] or -SO 2 - group, R 3 is an alkyl group having 1 to 4 carbon atoms, a fluorine-substituted alkyl group, or an aromatic group having 6 to 9 carbon atoms group, Q is a direct bond, [Formula] -CH 2 -, -O-, S-, -NH-CO- or -SO 2 -, a is an integer of 1 to 4, b is 0 or an integer of 1 to 4 , c indicates 0, 1 or 2.)
JP2619185A 1985-02-15 1985-02-15 Thermoplastic aromatic polyamide-imide copolymer Granted JPS61188422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2619185A JPS61188422A (en) 1985-02-15 1985-02-15 Thermoplastic aromatic polyamide-imide copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2619185A JPS61188422A (en) 1985-02-15 1985-02-15 Thermoplastic aromatic polyamide-imide copolymer

Publications (2)

Publication Number Publication Date
JPS61188422A JPS61188422A (en) 1986-08-22
JPH0551015B2 true JPH0551015B2 (en) 1993-07-30

Family

ID=12186600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2619185A Granted JPS61188422A (en) 1985-02-15 1985-02-15 Thermoplastic aromatic polyamide-imide copolymer

Country Status (1)

Country Link
JP (1) JPS61188422A (en)

Also Published As

Publication number Publication date
JPS61188422A (en) 1986-08-22

Similar Documents

Publication Publication Date Title
JPS61195127A (en) Tehrmoplastic aromatic polyamide imide copolymer
EP0492948A1 (en) Imide- and amide-imide containing copolymer
JPH0125331B2 (en)
JPH0551015B2 (en)
JPH0218422A (en) Aromatic polyamide-imide resin and production hereof
JPS61195128A (en) Production of polyamide imide copolymer for molding
JPS62209138A (en) Thermoplastic aromatic polyamideimide copolymer
JPH0723449B2 (en) Molding resin composition
JPH0551016B2 (en)
JPS61126137A (en) Thermoplastic aromatic polyamide-imide copolymer
JPH0297527A (en) Thermoplastic aromatic polyamide-imide copolymer
JPS60231758A (en) Thermoplastic aromatic polyamide resin composition
JPH01149830A (en) Thermoplastic aromatic polyimide polymer
JPS61203133A (en) Thermoplastic aromatic polyamide-imide copolymer
JPS61136522A (en) Thermoplastic aromatic polyamide-imide polymer
JPS5879020A (en) Thermoplastic polyamide-imide copolymer
JPS62177022A (en) Thermoplastic polyaramid copolymer
JPH0757804B2 (en) Thermoplastic aromatic polyamide-imide copolymer
JPS5891724A (en) Thermoplastic polyamide-imide copolymer
JPS5879019A (en) Thermoplastic polyamide-imide copolymer
JPS61126136A (en) Thermoplastic aromatic polyamide-imide copolymer
JPS62177020A (en) Thermoplastic aromatic polyamide copolymer
JPS62177021A (en) Aromatic polyamide copolymer
JPS61285223A (en) Thermoplastic aromatic polyamide-imide copolymer
JPS61221230A (en) Aromatic polyamide-imide polymer