JPH0550517A - Fiber reinforced thermoplastic resin structure and manufacture thereof - Google Patents

Fiber reinforced thermoplastic resin structure and manufacture thereof

Info

Publication number
JPH0550517A
JPH0550517A JP3213636A JP21363691A JPH0550517A JP H0550517 A JPH0550517 A JP H0550517A JP 3213636 A JP3213636 A JP 3213636A JP 21363691 A JP21363691 A JP 21363691A JP H0550517 A JPH0550517 A JP H0550517A
Authority
JP
Japan
Prior art keywords
fiber
fiber bundle
thermoplastic resin
reinforcing
resin structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213636A
Other languages
Japanese (ja)
Inventor
Yasuhisa Fujii
藤井  靖久
Harufumi Murakami
治史 村上
Kazuhito Kobayashi
和仁 小林
Masaru Miura
勝 三浦
Mitsuru Yokouchi
満 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP3213636A priority Critical patent/JPH0550517A/en
Publication of JPH0550517A publication Critical patent/JPH0550517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To provide an efficient and economical manufacturing method of fiber reinforced thermoplastic resin structure, which is reinforced by long fiber so as to develop high mechanical strength and, at the same time, the dispersion properties and the like of reinforcing fibers in which are remarkably improved. CONSTITUTION:In order to manufacture fiber reinforced thermoplastic resin structure containing 5-80wt.% of reinforcing fibers, which are removed in the form of continuous reinforcing fiber bundle from reinforcing fiber bundle aggregate, impregnated with molten thermoplastic resin under the condition being drawn and substantially arranged parallel to one another, as the reinforcing fiber bundle, reinforcing fiber bundle obtained by drying the fiber bundle, which is sized, bundled and wound in the form of cake, is employed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、長繊維で強化され高度
の機械的強度を有すると共に、強化用繊維の分散性等の
著しく改善された繊維強化熱可塑性樹脂構造体およびそ
の効率的、経済的な製造法に関する。
FIELD OF THE INVENTION The present invention relates to a fiber-reinforced thermoplastic resin structure which is reinforced with long fibers and has a high degree of mechanical strength, and in which the dispersibility of reinforcing fibers is remarkably improved, and its efficient and economical structure. Manufacturing method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】熱可塑
性樹脂の強度、剛性等を向上させる手段として、ガラス
繊維等の強化用繊維を配合することが知られており、一
般には、熱可塑性樹脂とチョップドストランド等の短繊
維を混合し押出機で押し出すことにより、繊維強化され
た熱可塑性樹脂の製造が行われている。しかし、使用す
る繊維が短く、しかも押出機での混練中に更に繊維が折
損することが避けられない上記の如き短繊維強化樹脂で
は、機械的強度の改善にも自ずと制約があり、より高度
の機械的強度の要求に対しては充分応えることはできな
い。これに対し、上記の欠点を改善し、繊維の折損を起
こすことなく長繊維で強化された熱可塑性樹脂を製造す
る方法として、最近は引き抜き成形が注目されている
(米国特許第2877501 号明細書、米国特許第4439387 号
明細書、米国特許第3022210 号明細書、特開昭57−1818
52号公報)。かかる引き抜き成形においては、強化用繊
維として、ブッシングから引き出された多数の単繊維を
サイジング剤の水溶液あるいは水性エマルジョンで処理
した後、これを集束して円筒状に巻き取り乾燥させた繊
維束集合体、いわゆるダイレクトロールのロービングパ
ッケージが一般的に用いられてきた。しかしながら、通
常市販されているかかる強化用繊維を用い、上記の如き
引き抜き成形法によって繊維強化樹脂構造体の製造を行
った場合、繊維に対する樹脂の含浸性、密着性が不均一
になり易く、得られた繊維強化樹脂構造体から繊維が容
易にほぐれて飛散し、作業環境を害したり成形加工性を
損なうのみならず、これを成形した時、強化用繊維の均
一分散性に欠けるものになり、成形品の外観や物性を損
なうという欠点を有する。また、繊維束集合体から繊維
束を取り出す際、あるいは繊維束を張力下で引き取る際
に、繊維の部分的な破断により毛羽立ちが生じ、操作性
を害し、毛羽立ちの増大によっては運転不能に陥ること
もある。
2. Description of the Related Art As a means for improving the strength and rigidity of a thermoplastic resin, it has been known to incorporate a reinforcing fiber such as glass fiber, and generally, a thermoplastic resin is used. Fiber-reinforced thermoplastic resin is manufactured by mixing and short fibers such as chopped strands and extruding with an extruder. However, the short fiber reinforced resin as described above, in which the fiber used is short, and the fiber is further broken during kneading in an extruder, is naturally limited in improving the mechanical strength. It cannot fully meet the demand for mechanical strength. On the other hand, pultrusion has recently attracted attention as a method for improving the above-mentioned drawbacks and producing a thermoplastic resin reinforced with long fibers without causing breakage of the fibers (US Pat. No. 2,877,501). U.S. Pat.No. 4,439,387, U.S. Pat.No. 3,022,210, JP-A-57-1818.
No. 52). In such pultrusion molding, as a reinforcing fiber, a large number of single fibers pulled out from a bushing are treated with an aqueous solution or an aqueous emulsion of a sizing agent, and then bundled and wound into a cylindrical shape to dry. So-called direct roll roving packages have been commonly used. However, when such a commercially available reinforcing fiber is usually used to produce a fiber-reinforced resin structure by the above-mentioned pultrusion method, impregnation of the resin with respect to the fiber and adhesion are likely to be non-uniform, and Fibers are easily disentangled and scattered from the obtained fiber reinforced resin structure, which not only impairs the working environment and impairs moldability, but also causes a lack of uniform dispersion of reinforcing fibers when molded. It has the drawback of impairing the appearance and physical properties of the molded product. Also, when taking out the fiber bundle from the fiber bundle assembly or when pulling the fiber bundle under tension, fluffing occurs due to partial breakage of the fiber, impairing operability, and it becomes impossible to operate due to increased fluffing. There is also.

【0003】[0003]

【課題を解決するための手段】本発明者は、かかる課題
を解決するため鋭意検討した結果、繊維に対する樹脂の
含浸性および樹脂と繊維の密着性が良く、高度の機械的
強度を有すると共に繊維の分散性等も著しく改善された
繊維強化熱可塑性樹脂構造体を効率的に得るためには、
強化用繊維に対するサイジング剤付着量の局所的なばら
つきの少ない強化用繊維束を用いることが極めて有効で
あることを見出し、本発明に到達した。即ち、本発明は
連続した強化用繊維束を引きながら、溶融した熱可塑性
樹脂を含浸させ、全体の5〜80重量%の実質上平行に配
列した強化用繊維を含有してなる繊維強化熱可塑性樹脂
構造体を製造するにあたり、強化用繊維束として、サイ
ジング処理し集束された繊維束をケーキ巻きにして乾燥
することにより得られた強化用繊維束を使用することを
特徴とする繊維強化熱可塑性樹脂構造体の製造法及びか
かる製造法によって得られる繊維強化熱可塑性樹脂構造
体に関するものである。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that the resin has good impregnation property and adhesion between the resin and the fiber, and has high mechanical strength. In order to efficiently obtain a fiber-reinforced thermoplastic resin structure whose dispersibility and the like are remarkably improved,
The present inventors have found that it is extremely effective to use a reinforcing fiber bundle in which the amount of the sizing agent attached to the reinforcing fibers locally varies, and have reached the present invention. That is, the present invention relates to a fiber-reinforced thermoplastic resin which comprises a continuous reinforcing fiber bundle, is impregnated with a molten thermoplastic resin, and contains 5 to 80% by weight of the total reinforcing fibers arranged substantially in parallel. In producing a resin structure, as a reinforcing fiber bundle, a fiber-reinforced thermoplastic resin characterized by using a reinforcing fiber bundle obtained by drying a sizing-treated and bundled fiber bundle in a cake roll and drying. The present invention relates to a method for producing a resin structure and a fiber-reinforced thermoplastic resin structure obtained by such a production method.

【0004】本発明において、かかる繊維強化熱可塑性
樹脂構造体の基体として用いられる熱可塑性樹脂の種類
としては特に制約はなく、例えばポリエチレン、ポリプ
ロピレン、ポリエチレンテレフタレートやポリブチレン
テレフタレート等のポリエステル、ナイロン6、ナイロ
ン66、ナイロン11、ナイロン12、ナイロン610 、ナイロ
ン612 等のポリアミド、ポリアセタール、ポリカーボネ
ート、熱可塑性ポリウレタン、ポリフェニレンオキサイ
ド、ポリフェニレンサルファイド、ポリスルフォン、ポ
リエーテルケトン、ポリエーテルアミド、ポリエーテル
イミド等が挙げられる。
In the present invention, the kind of the thermoplastic resin used as the substrate of the fiber reinforced thermoplastic resin structure is not particularly limited, and examples thereof include polyethylene, polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, nylon 6, and the like. Polyamide such as nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, polyacetal, polycarbonate, thermoplastic polyurethane, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyetherketone, polyetheramide, and polyetherimide. ..

【0005】次に本発明に使用する強化用繊維について
説明する。従来、引き抜き成形においては、ブッシング
から引き出された多数の繊維フィラメントをサイジング
剤の水溶液あるいは水性エマルジョンで処理した後、こ
れを集束して円筒状に巻き取り乾燥した繊維束集合体、
いわゆるダイレクトロービングのパッケージとして市販
されるものが用いられてきた。ところが、本発明者らが
検討したところによれば、かかる如くして得られたロー
ビングパッケージは、その乾燥時にサイジング剤がマイ
グレーションを起こすためサイジング剤の付着量は強化
繊維束全体にわたって均一ではなく、局所的なサイジン
グ剤付着量のばらつきが極めて大きく、特に、巻き取ら
れた円筒状のロービングパッケージの両端面、円筒の外
周付近および内周付近においては、サイジング剤付着量
が特に高濃度になっていることが判明した。また本発明
者らは、サイジング剤付着量のかかる如き大きなばらつ
きが、引き抜き成形における諸問題、すなわち樹脂の含
浸不良、樹脂と繊維の密着性不良及びこれに伴い得られ
た強化樹脂構造物から繊維が容易にほぐれて飛散し、作
業環境を害したり成形加工性を損なう根本原因であり、
さらにまた、かかる強化樹脂構造物を成形した場合の強
化繊維の分散不良の原因であることを解明した。本発明
は、かかる知見に基づいてなされたものであり、強化用
繊維として、サイジング処理し集束された繊維束をケー
キ巻きにして乾燥することにより得られた強化用繊維束
を使用することを特徴とする。かかる如くして得られた
繊維束はサイジング剤の局所的なばらつきが少なく、こ
れにより上記の如き諸問題は著しく改善される。繊維束
をケーキ巻きにした捲体は、公知の方法で得ることがで
きる。一般的には、溶融ガラスを多数のノズルを備えた
ブッシングから引き出して単繊維を形成し、これにサイ
ジング剤を塗布し集束して繊維束となし、この繊維束を
往復動するトラバース部材によって巻取部軸線方向に移
動させながら、高速回転するコレット上のチューブに巻
き取ることにより得られる。前述の如く、円筒状捲体で
あるダイレクトロービングの場合、乾燥によってサイジ
ング剤がマイグレーションを起こし、円筒両端面部にお
いては繊維束に対するサイジング剤付着量が局所的に極
めて高濃度となり、諸問題を引き起こすが、ケーキ巻き
の繊維束捲体では、かかる円筒端面が実質上存在しない
ため、乾燥してもサイジング剤付着量の局所的なばらつ
きは少ないものとなり、好結果がもたらされる。この場
合においても、ケーキ巻き捲体の内周面および外周面付
近においては、乾燥時のサイジング剤のマイグレーショ
ンにより、サイジング剤が濃縮され易いが、局所的なば
らつきは比較的少ないため、操作性に対する問題は少な
い。又、この部分の繊維束のみを除去することは極めて
容易であり、これを前もって除去して使用するか、ある
いは使用せずに残し、有効部のロービングを使用するこ
とは一層効果的である。これにより、強化用繊維の分散
性も良好な繊維強化樹脂構造体が得られる。又、かかる
如く、ケーキ巻きにして乾燥した繊維束を円筒状に巻き
直したものは、運搬、取扱い等が容易であり、特に好ま
しい。強化用繊維を束にするため用いられるサイジング
剤の種類としては特に限定はなく、例えばオレフィン
系、ウレタン系、ポリエステル系、アクリル系、AS樹
脂系、エポキシ系等のサイジング剤がいずれも可能であ
る。繊維に対するサイジング剤付与量は、固形分として
概ね0.1 〜1.0 重量%が適当である。また、用いられる
強化用繊維の種類としても特に制約はなく、例えばガラ
ス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維等
の高融点(高軟化点)繊維等がいずれも使用できる。ガ
ラス繊維の場合、繊維径6〜25μで、1000m あたりの重
量が500 〜4400g のロービング(繊維束)が一般的に用
いられる。これらの繊維は、公知の表面処理剤で処理し
たものであってもよい。
Next, the reinforcing fiber used in the present invention will be described. Conventionally, in pultrusion molding, a large number of fiber filaments pulled out from a bushing are treated with an aqueous solution or an aqueous emulsion of a sizing agent, and then bundled and wound into a cylindrical shape to dry a bundle of fibers,
Commercially available packages have been used as so-called direct roving packages. However, according to the studies conducted by the present inventors, the roving package thus obtained has a sizing agent that is not uniformly distributed over the entire reinforcing fiber bundle because the sizing agent causes migration during drying. The variation in the amount of sizing agent adhered locally is extremely large, and particularly, the concentration of sizing agent becomes particularly high on both end surfaces of the wound cylindrical roving package, near the outer circumference and the inner circumference of the cylinder. It turned out that Further, the present inventors have found that such a large variation in the amount of the sizing agent attached causes various problems in the pultrusion molding, that is, poor impregnation of the resin, poor adhesion between the resin and the fiber, and the resulting reinforced resin structure from the reinforced resin structure. Easily disintegrates and scatters, which is the root cause of damaging the work environment and impairing moldability.
Furthermore, it has been clarified that this is a cause of poor dispersion of reinforcing fibers when such a reinforced resin structure is molded. The present invention has been made based on such findings, and as the reinforcing fibers, a reinforcing fiber bundle obtained by drying the sizing-treated and bundled fiber bundle in a cake roll is used. And The fiber bundle thus obtained has little local variation in the sizing agent, which remarkably improves the above problems. A wound body obtained by winding a fiber bundle into a cake can be obtained by a known method. In general, molten glass is drawn out from a bushing equipped with a large number of nozzles to form single fibers, which are coated with a sizing agent and bundled to form a fiber bundle, which is wound by a traverse member that reciprocates. It is obtained by winding the tube on a collet rotating at high speed while moving it in the axial direction of the take-up portion. As described above, in the case of direct roving which is a cylindrical wound body, the sizing agent migrates due to drying, and the amount of the sizing agent attached to the fiber bundle locally becomes extremely high at both end face portions of the cylinder, causing various problems. In the cake-wound fiber bundle wound body, since the cylindrical end surface is substantially absent, even if it is dried, there is little local variation in the amount of the sizing agent attached, and good results are obtained. Even in this case, the sizing agent is likely to be concentrated in the vicinity of the inner peripheral surface and the outer peripheral surface of the cake-wound body due to migration of the sizing agent during drying. There are few problems. Further, it is extremely easy to remove only the fiber bundle in this portion, and it is more effective to remove it in advance and use it, or leave it unused and use roving in the effective portion. As a result, a fiber-reinforced resin structure having good dispersibility of the reinforcing fibers can be obtained. In addition, as described above, a cake-wound and dried fiber bundle rewound into a cylindrical shape is particularly preferable because it is easy to transport and handle. The type of sizing agent used for bundling the reinforcing fibers is not particularly limited, and for example, olefin, urethane, polyester, acrylic, AS resin, epoxy, etc. sizing agents are all possible. .. The appropriate amount of the sizing agent applied to the fiber is about 0.1 to 1.0% by weight as a solid content. Further, the type of reinforcing fiber used is not particularly limited, and for example, glass fiber, carbon fiber, metal fiber, high melting point (high softening point) fiber such as aromatic polyamide fiber and the like can be used. In the case of glass fiber, a roving (fiber bundle) having a fiber diameter of 6 to 25 μm and a weight per 1000 m of 500 to 4400 g is generally used. These fibers may be treated with a known surface treatment agent.

【0006】本発明において、かかる強化用繊維の配合
量は全体の5〜80重量%である。強化用繊維の配合量が
5重量%未満では十分な補強効果が得られず、逆に80重
量%を越えると強化構造物の製造およびその成形が著し
く困難になる。強化用繊維の好ましい配合量は10〜75重
量%であり、より好ましくは20〜70重量%である。
In the present invention, the compounding amount of such reinforcing fibers is 5 to 80% by weight of the whole. If the content of the reinforcing fiber is less than 5% by weight, a sufficient reinforcing effect cannot be obtained. On the contrary, if it exceeds 80% by weight, the production of the reinforced structure and its molding become extremely difficult. The preferred amount of the reinforcing fiber is 10 to 75% by weight, more preferably 20 to 70% by weight.

【0007】本発明のかかる長繊維強化熱可塑性樹脂構
造体を製造するにあたっては、引き抜き成形法が用いら
れる。引き抜き成形は、基本的には連続した繊維を引き
ながら樹脂を含浸するものである。本発明の長繊維強化
熱可塑性樹脂構造体を製造するにあたって用いられる引
き抜き成形の形態は特に限定されないが、操作性の点で
含浸ダイ、特にクロスヘッドダイを用いるのが好まし
い。
A pultrusion method is used to manufacture the long fiber reinforced thermoplastic resin structure of the present invention. Pultrusion molding is basically impregnating a resin while pulling continuous fibers. The form of pultrusion molding used for producing the long fiber reinforced thermoplastic resin structure of the present invention is not particularly limited, but it is preferable to use an impregnation die, particularly a crosshead die, from the viewpoint of operability.

【0008】[0008]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0009】実施例1 サイジング剤を含むエマルジョンで処理され濡れた状態
のガラス繊維束をケーキ巻きにし乾燥することによりガ
ラス繊維束捲体を得た。この捲体から取り出されたガラ
ス繊維束をクロスヘッドを通して引きながら溶融状態の
ポリプロピレンを含浸させ、賦形し、細断することによ
り、ガラス含量50重量%でペレット状の繊維強化樹脂構
造体(A) を得た。次に、ペレット状繊維強化樹脂構造体
(A) に非強化ポリプロピレンのペレットをブレンドする
ことによりガラス含量を15重量%まで希釈し、射出成形
することによって100mm 角の平板成形品を得た。評価
は、繊維強化樹脂構造体(A) 製造時の操作性および平板
成形品における強化繊維の分散性によって行った。結果
を表1に示す。尚、分散性の評価は、成形品中に強化繊
維が集束したまま不均一に分散している部分の程度と数
を考慮した上で相対評価したものであり、点数が低い
程、分散性が良好であることを示す。
Example 1 A glass fiber bundle wound body was obtained by forming a wet glass fiber bundle treated with an emulsion containing a sizing agent into a cake and drying it. A glass fiber bundle taken out from this roll is impregnated with molten polypropylene while being pulled through a crosshead, shaped, and shredded to form a pellet-shaped fiber-reinforced resin structure with a glass content of 50% by weight (A ) Got. Next, pelletized fiber reinforced resin structure
The glass content was diluted to 15% by weight by blending (A) with pellets of non-reinforced polypropylene, and injection molded to obtain a flat plate molded product of 100 mm square. The evaluation was performed by the operability during the production of the fiber-reinforced resin structure (A) and the dispersibility of the reinforcing fibers in the flat plate molded article. The results are shown in Table 1. Incidentally, the evaluation of dispersibility is a relative evaluation in consideration of the degree and number of the unevenly dispersed portions of the reinforcing fiber in the molded product while being bundled, and the lower the score, the higher the dispersibility. Indicates good.

【0010】実施例2 ケーキ巻きにして乾燥したガラス繊維束を捲き直し、円
筒状の捲体を得た。この捲体から取り出されたガラス繊
維束に実施例1と同様の方法で溶融樹脂を含浸させるこ
とにより繊維強化樹脂構造体を製造し、成形し、評価し
た。結果を表1に併せて示す。この場合、ガラス繊維束
捲体の運搬、取扱い当が容易であるという利点があっ
た。
Example 2 A glass fiber bundle which had been cake-wound and dried was rewound to obtain a cylindrical wound body. A glass fiber bundle taken out from this roll was impregnated with a molten resin in the same manner as in Example 1 to produce a fiber-reinforced resin structure, which was molded and evaluated. The results are also shown in Table 1. In this case, there is an advantage that the glass fiber bundle wound body can be easily transported and handled.

【0011】比較例1 通常のダイレクトロールのガラス繊維束を用い、実施例
1と同様の方法で繊維強化樹脂構造体を製造し、成形
し、評価した。結果を表1に併せて示す。
Comparative Example 1 A fiber reinforced resin structure was produced, molded and evaluated in the same manner as in Example 1 using a normal direct roll glass fiber bundle. The results are also shown in Table 1.

【0012】[0012]

【発明の効果】以上の説明並びに実施例により明らかな
ように、長繊維強化熱可塑性樹脂構造体を製造するにあ
たり、強化繊維束としてサイジング処理し集束された繊
維束をケーキ巻きにして乾燥することにより得られた強
化繊維束を用いる本発明の方法によれば、製造時の操作
性等が優れ、しかも、成形時の強化繊維の分散性が極め
て良好な繊維強化熱可塑性樹脂構造体が得られる。
As is apparent from the above description and Examples, in producing a long fiber reinforced thermoplastic resin structure, the fiber bundles sized as reinforcing fiber bundles and bundled into a cake are dried. According to the method of the present invention using the reinforcing fiber bundle obtained by the above, it is possible to obtain a fiber-reinforced thermoplastic resin structure having excellent operability during production and the like, and also having excellent dispersibility of reinforcing fibers during molding. ..

【0013】[0013]

【表1】 [Table 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月12日[Submission date] June 12, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】次に本発明に使用する強化用繊維について
説明する。従来、引き抜き成形においては、ブッシング
から引き出された多数の繊維フィラメントをサイジング
剤の水溶液あるいは水性エマルジョンで処理した後、こ
れを集束して円筒状に巻き取り乾燥した繊維束集合体、
いわゆるダイレクトロービングのパッケージとして市販
されるものが用いられてきた。ところが、本発明者らが
検討したところによれば、かかる如くして得られたロー
ビングパッケージは、その乾燥時にサイジング剤がマイ
グレーションを起こすためサイジング剤の付着量は強化
繊維束全体にわたって均一ではなく、局所的なサイジン
グ剤付着量のばらつきが極めて大きく、特に、巻き取ら
れた円筒状のロービングパッケージの両端面、円筒の外
周付近および内周付近においては、サイジング剤付着量
が特に高濃度になっていることが判明した。また本発明
者らは、サイジング剤付着量のかかる如き大きなばらつ
きが、引き抜き成形における諸問題、すなわち樹脂の含
浸不良、樹脂と繊維の密着性不良及びこれに伴い得られ
た強化樹脂構造物から繊維が容易にほぐれて飛散し、作
業環境を害したり成形加工性を損なう根本原因であり、
さらにまた、かかる強化樹脂構造物を成形した場合の強
化繊維の分散不良の原因であることを解明した。本発明
は、かかる知見に基づいてなされたものであり、強化用
繊維として、サイジング処理し集束された繊維束、例え
ばロービング、スライバー、ヤーン等をケーキ巻きにし
て乾燥することにより得られた強化用繊維束を使用する
ことを特徴とする。かかる如くして得られた繊維束はサ
イジング剤の局所的なばらつきが少なく、これにより上
記の如き諸問題は著しく改善される。本発明におけるケ
ーキ巻き捲体とは、円筒端面あるいはこれに類似した端
面を持たないような捲き方をした捲体を指す。ケーキ巻
き捲体の代表的形状としては、捲体の上部円周および下
部円周に近い部分ほど繊維束の巻き数が少なくて厚みが
小さく、中央部ほど繊維束の巻き数が多くて厚みが大き
い形状であるが、特にこの形状に限定されない。例え
ば、中央部付近等に厚みが相対的に小さい部分があって
もよい。繊維束をケーキ巻きにした捲体は、公知の方法
で得ることができる。一般的には、溶融ガラスを多数の
ノズルを備えたブッシングから引き出して単繊維を形成
し、これにサイジング剤を塗布し集束して繊維束とな
し、この繊維束を往復動するトラバース部材によって巻
取部軸線方向に移動させながら、高速回転するコレット
上のチューブに巻き取ることにより得られる。前述の如
く、円筒状捲体であるダイレクトロービングの場合、乾
燥によってサイジング剤がマイグレーションを起こし、
円筒両端面部においては繊維束に対するサイジング剤付
着量が局所的に極めて高濃度となり、諸問題を引き起こ
すが、ケーキ巻きの繊維束捲体では、かかる円筒端面が
実質上存在しないため、乾燥してもサイジング剤付着量
の局所的なばらつきは少ないものとなり、繊維束の集束
の程度および集束された繊維束形状にかかわらず好結果
がもたらされる。この場合においても、ケーキ巻き捲体
の内周面および外周面付近においては、乾燥時のサイジ
ング剤のマイグレーションにより、サイジング剤が濃縮
され易いが、局所的なばらつきは比較的少ないため、操
作性に対する問題は少ない。又、この部分の繊維束のみ
を除去することは極めて容易であり、これを前もって除
去して使用するか、あるいは使用せずに残し、有効部の
繊維束を使用することは一層効果的である。これによ
り、強化用繊維の分散性も良好な繊維強化樹脂構造体が
得られる。又、かかる如く、ケーキ巻きにして乾燥した
繊維束を円筒状に巻き直したものは、運搬、取扱い等が
容易であり、特に好ましい。強化用繊維を束にするため
用いられるサイジング剤の種類としては特に限定はな
く、例えばオレフィン系、ウレタン系、ポリエステル
系、アクリル系、AS樹脂系、エポキシ系等のサイジン
グ剤がいずれも可能である。繊維に対するサイジング剤
付与量は、固形分として概ね0.1 〜1.0 重量%が適当で
ある。また、用いられる強化用繊維の種類としても特に
制約はなく、例えばガラス繊維、炭素繊維、金属繊維、
芳香族ポリアミド繊維等の高融点(高軟化点)繊維等が
いずれも使用できる。ガラス繊維の場合、繊維径6〜25
μで、1000m あたりの重量が500 〜4400g の繊維束、例
えばロービング等が一般的に用いられる。これらの繊維
は、公知の表面処理剤で処理したものであってもよい。
Next, the reinforcing fiber used in the present invention will be described. Conventionally, in pultrusion molding, a large number of fiber filaments pulled out from a bushing are treated with an aqueous solution or an aqueous emulsion of a sizing agent, and then bundled and wound into a cylindrical shape to dry a bundle of fibers,
Commercially available packages have been used as so-called direct roving packages. However, according to the studies conducted by the present inventors, the roving package thus obtained has a sizing agent that is not uniformly distributed over the entire reinforcing fiber bundle because the sizing agent causes migration during drying. The variation in the amount of sizing agent adhered locally is extremely large, and particularly, the concentration of sizing agent becomes particularly high on both end surfaces of the wound cylindrical roving package, near the outer circumference and the inner circumference of the cylinder. It turned out that Further, the present inventors have found that such a large variation in the amount of the sizing agent attached causes various problems in the pultrusion molding, that is, poor impregnation of the resin, poor adhesion between the resin and the fiber, and the resulting reinforced resin structure from the reinforced resin structure. Easily disintegrates and scatters, which is the root cause of damaging the work environment and impairing moldability.
Furthermore, it has been clarified that this is a cause of poor dispersion of reinforcing fibers when such a reinforced resin structure is molded. The present invention has been made on the basis of such findings, as a reinforcing fiber, a sizing-treated and bundled fiber bundle, for example, roving, sliver, yarn, etc. It is characterized by using a fiber bundle. The fiber bundle thus obtained has little local variation in the sizing agent, which remarkably improves the above problems. The cake-wound roll in the present invention refers to a roll wound in such a manner that it does not have a cylindrical end face or an end face similar thereto. As a typical shape of the cake-wound body, the number of windings of the fiber bundle is smaller and the thickness is smaller in a portion closer to the upper circumference and the lower circumference of the winding body, and the number of windings of the fiber bundle is larger in the central portion. The shape is large, but is not particularly limited to this shape. For example, there may be a portion having a relatively small thickness in the vicinity of the central portion. A wound body obtained by winding a fiber bundle into a cake can be obtained by a known method. In general, molten glass is drawn out from a bushing equipped with a large number of nozzles to form single fibers, which are coated with a sizing agent and bundled to form a fiber bundle, which is wound by a traverse member that reciprocates. It is obtained by winding the tube on a collet rotating at high speed while moving it in the axial direction of the take-up portion. As mentioned above, in the case of direct roving which is a cylindrical wound body, the sizing agent causes migration due to drying,
In both end face portions of the cylinder, the amount of the sizing agent attached to the fiber bundle locally becomes extremely high and causes various problems, but in the case of a cake-wound fiber bundle wound body, such a cylinder end face is substantially absent, and therefore even when dried. Local variations in the sizing agent deposition amount are small, and good results are obtained regardless of the degree of focusing of the fiber bundle and the shape of the bundled fiber bundle. Even in this case, in the vicinity of the inner peripheral surface and the outer peripheral surface of the cake-wound body, the sizing agent is likely to be concentrated due to the migration of the sizing agent during drying, but the local variation is relatively small, and therefore the operability with respect to the operability is reduced. There are few problems. Also, it is extremely easy to remove only the fiber bundle in this portion, and it is more effective to remove it in advance and use it, or leave it unused and use the fiber bundle in the effective portion. .. As a result, a fiber-reinforced resin structure having good dispersibility of the reinforcing fibers can be obtained. Further, as described above, a cake-wound and dried fiber bundle rewound into a cylindrical shape is particularly preferable because it is easy to transport and handle. The type of sizing agent used for bundling the reinforcing fibers is not particularly limited, and for example, olefin, urethane, polyester, acrylic, AS resin, epoxy, etc. sizing agents are all possible. . The appropriate amount of the sizing agent applied to the fibers is about 0.1 to 1.0% by weight as a solid content. Also, there is no particular limitation on the type of reinforcing fiber used, for example, glass fiber, carbon fiber, metal fiber,
Any of high melting point (high softening point) fibers such as aromatic polyamide fibers can be used. In the case of glass fiber, fiber diameter 6-25
In general, a fiber bundle having a weight of 500 to 4400 g per 1000 m, such as roving, is generally used. These fibers may be treated with a known surface treatment agent.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続した強化用繊維束を引きながら、溶
融した熱可塑性樹脂を含浸させ、全体の5〜80重量%の
実質上平行に配列した強化用繊維を含有してなる繊維強
化熱可塑性樹脂構造体を製造するにあたり、強化用繊維
束として、サイジング処理し集束された繊維束をケーキ
巻きにして乾燥することにより得られた強化用繊維束を
使用することを特徴とする繊維強化熱可塑性樹脂構造体
の製造法。
1. A fiber-reinforced thermoplastic comprising a continuous reinforcing fiber bundle, impregnated with a molten thermoplastic resin, and containing 5 to 80% by weight of the total reinforcing fibers arranged substantially parallel to each other. In producing a resin structure, as a reinforcing fiber bundle, a fiber-reinforced thermoplastic resin characterized by using a reinforcing fiber bundle obtained by drying a sizing-treated and bundled fiber bundle in a cake roll and drying. Method of manufacturing resin structure.
【請求項2】 強化用繊維束を引きながらクロスヘッド
を用いて溶融熱可塑性樹脂を含浸させる請求項1記載の
繊維強化熱可塑性樹脂構造体の製造法。
2. The method for producing a fiber-reinforced thermoplastic resin structure according to claim 1, wherein the molten thermoplastic resin is impregnated using a crosshead while pulling the reinforcing fiber bundle.
【請求項3】 請求項1又は2記載の製造法によって得
られ、強化用繊維が構造体の長さ方向全長にわたって実
質的に連続し、且つ互いにほぼ平行な状態で配列してい
ることを特徴とするストランド、ペレット、テープまた
はシート状繊維強化熱可塑性樹脂構造体。
3. The reinforcing fiber obtained by the method according to claim 1 or 2, wherein the reinforcing fibers are arranged substantially continuously over the entire length of the structure in a substantially parallel state. Strand, pellet, tape or sheet fiber reinforced thermoplastic resin structure.
JP3213636A 1991-08-26 1991-08-26 Fiber reinforced thermoplastic resin structure and manufacture thereof Pending JPH0550517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213636A JPH0550517A (en) 1991-08-26 1991-08-26 Fiber reinforced thermoplastic resin structure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213636A JPH0550517A (en) 1991-08-26 1991-08-26 Fiber reinforced thermoplastic resin structure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0550517A true JPH0550517A (en) 1993-03-02

Family

ID=16642437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213636A Pending JPH0550517A (en) 1991-08-26 1991-08-26 Fiber reinforced thermoplastic resin structure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0550517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911259B2 (en) 2002-06-21 2005-06-28 Asahi Fiber Glass Company, Limited Glass fiber-reinforced thermoplastic resin pellets and their production process
CN106393742A (en) * 2016-11-07 2017-02-15 广东亚太新材料科技有限公司 Method for preparing thermoplastic carbon fiber flat clip through extrusion drawing method
WO2018038205A1 (en) * 2016-08-25 2018-03-01 アイシン精機株式会社 Method for manufacturing fiber reinforced resin molded body and method for manufacturing unidirectional fiber reinforced member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911259B2 (en) 2002-06-21 2005-06-28 Asahi Fiber Glass Company, Limited Glass fiber-reinforced thermoplastic resin pellets and their production process
WO2018038205A1 (en) * 2016-08-25 2018-03-01 アイシン精機株式会社 Method for manufacturing fiber reinforced resin molded body and method for manufacturing unidirectional fiber reinforced member
JP2018030318A (en) * 2016-08-25 2018-03-01 アイシン精機株式会社 Method for producing fiber-reinforced resin molding, and method for producing uni-directional fiber-reinforced member
CN106393742A (en) * 2016-11-07 2017-02-15 广东亚太新材料科技有限公司 Method for preparing thermoplastic carbon fiber flat clip through extrusion drawing method

Similar Documents

Publication Publication Date Title
JP3777145B2 (en) Glass fiber reinforced thermoplastic resin pellet and method for producing the same
JP2524945B2 (en) Method for producing continuous glass fiber reinforced thermoplastic resin pellets
JP3315444B2 (en) Fiber reinforced thermoplastic resin structure and method for producing the same
JPH0550517A (en) Fiber reinforced thermoplastic resin structure and manufacture thereof
JP2006248758A (en) Winder of twisted continuous fiber bundle package for manufacturing long-fiber reinforced resin structure, twisted continuous fiber bundle package and method of manufacturing long-fiber reinforced resin structure
EP0581852B1 (en) Protected brittle fiber yarns
US11097280B2 (en) Cutting module and method for cutting a strand into individual pieces
JP3492416B2 (en) Resin impregnated die and method for producing long fiber reinforced thermoplastic resin using the same
JP3453393B2 (en) Fiber-reinforced thermoplastic resin structure and method for producing the same
JP2623282B2 (en) Molding material
JPH0550519A (en) Fiber reinforced thermoplastic resin structure and manufacture thereof
JP3018413B2 (en) Method for producing mixed fiber yarn for composite
JPH05329839A (en) Fiber reinforced theremoplastic resin structure and production thereof
JPH0768544A (en) Impregnation of fiber bundle with resin
JP3237717B2 (en) Method for producing thermoplastic composite material
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
EP0628391B1 (en) Process for preparing a fiber-reinforced thermoplastic resin structure
JPH06143273A (en) Molding material and filament winding molded product
JPS621527A (en) Method of molding resin sheet
JPH10315341A (en) Manufacture of unidirectional reinforced thermoplastic resin structure and device therefor
JP2005088536A (en) Production apparatus and method for fiber-reinforced composite material and pressure vessel
JP3119699B2 (en) Manufacturing method of long fiber reinforced composite material
JPH08258167A (en) Manufacture of fiber reinforced resin structure
JP2018150201A (en) Glass roving, method for manufacturing the same, and glass fiber reinforced composite resin material
JP2007162172A (en) Resin-coated reinforcing fiber yarn and thermoplastic resin molded article comprising the same