JPH0550383U - Millimeter-wave radar range velocity measuring device - Google Patents

Millimeter-wave radar range velocity measuring device

Info

Publication number
JPH0550383U
JPH0550383U JP10071991U JP10071991U JPH0550383U JP H0550383 U JPH0550383 U JP H0550383U JP 10071991 U JP10071991 U JP 10071991U JP 10071991 U JP10071991 U JP 10071991U JP H0550383 U JPH0550383 U JP H0550383U
Authority
JP
Japan
Prior art keywords
frequency
signal
target
wave radar
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10071991U
Other languages
Japanese (ja)
Inventor
正継 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP10071991U priority Critical patent/JPH0550383U/en
Publication of JPH0550383U publication Critical patent/JPH0550383U/en
Withdrawn legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 本考案は連続波レーダの送信信号に周波数変
調を施し同時に目標からの反射信号を受信して距離、速
度を測定すると共に高速フーリエ分析器の分解能以下の
至近距離に係るビート信号を有効利用することを目的と
する。 【構成】 連続波レーダの送信信号の送信信号に周波数
変調を施して適当に繰り返して行い、受信信号と送信信
号とのビート信号から距離及び速度を求めるミリ波レー
ダ距離速度測定装置において、目標に対して前記ビート
信号を周波数分析した周波数成分のうち直流成分とこれ
に隣接する周波数成分のスペクトルレベルが所定値より
も増加したとき目標が至近にあると判断する。
(57) [Summary] [Objective] The present invention measures the distance and speed by frequency-modulating the transmission signal of a continuous wave radar and at the same time receiving the reflection signal from the target, and at the shortest distance less than the resolution of the fast Fourier analyzer. It is intended to effectively use the beat signal according to the above. [Structure] A millimeter-wave radar range-velocity measuring device that obtains a distance and a velocity from a beat signal between a reception signal and a transmission signal by frequency-modulating the transmission signal of a transmission signal of the continuous-wave radar and appropriately repeating it On the other hand, when the spectrum level of the DC component and the frequency component adjacent to the DC component of the frequency components obtained by frequency-analyzing the beat signal increases above a predetermined value, it is determined that the target is close.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は連続波レーダの送信信号に周波数変調を施し同時に目標からの反射信 号を受信して距離、速度を測定するためのミリ波レーダ距離速度測定装置に関す る。特に本考案では高速フーリエ分析器の分解能以下の至近距離に係るビート信 号を有効利用することを目的とする。 The present invention relates to a millimeter-wave radar range-velocity measuring device for performing frequency modulation on a transmission signal of a continuous-wave radar and simultaneously receiving a reflected signal from a target to measure a distance and a velocity. In particular, the present invention aims to effectively utilize the beat signal related to the close range which is less than the resolution of the fast Fourier analyzer.

【0002】[0002]

【従来の技術】[Prior Art]

従来このような分野のミリ波レーダ距離速度測定装置に関する技術としては、 「レーダ技術」(社団法人:電子情報通信学会)に記載されたものがあった。連 続波レーダの送信信号の送信信号に周波数変調を施して適当に繰り返して行い、 受信信号とビートをとると、ビート周波数fは、 f=4R・fm・Δf/c …(1) として表せる。ここにRは目標までの距離、fmは周波数変調の繰り返し周波数 、Δfは周波数偏移幅、cは光速を表す。ビート周波数fが高速フーリエ分析器 で周波数分析されてピーク周波数として得られこれにより目標までの距離が求め られる。 次に目標が移動している場合には、ドップラ効果により送信信号と受 信信号との関係では、ビート信号周波数fは、固定した目標の場合のビート信号 周波数fにドップラ周波数fpが重畳し、fpは、 fp=2・f0・V/c …(2) として表せる。ここにf0は送信中心周波数である。このfとfpとの合成ビー ト信号の周波数の方向が各変調サイクル毎に上昇(up)又は降下(down) を交互に変わるから次の式で与えられる。 Conventionally, as a technology relating to a millimeter wave radar distance velocity measuring device in such a field, there is one described in "Radar Technology" (Incorporated Association: The Institute of Electronics, Information and Communication Engineers). When the transmission signal of the continuous wave radar is frequency-modulated and repeated appropriately and the beat is taken from the reception signal, the beat frequency f can be expressed as f = 4R · fm · Δf / c (1) . Here, R is the distance to the target, fm is the repetition frequency of frequency modulation, Δf is the frequency shift width, and c is the speed of light. The beat frequency f is frequency-analyzed by a fast Fourier analyzer and obtained as a peak frequency, whereby the distance to the target is obtained. Next, when the target is moving, due to the Doppler effect, the beat signal frequency f is the beat signal frequency f when the target is fixed, and the Doppler frequency fp is superimposed on the beat signal frequency f. fp can be expressed as fp = 2 · f0 · V / c (2) Here, f0 is the transmission center frequency. The direction of the frequency of the combined beat signal of f and fp alternates between rising (up) and falling (down) for each modulation cycle, and is therefore given by the following equation.

【0003】 fu(up)=f−fp …(3) fd(down)=f+fp …(4) したがって変調の各半サイクル毎に、fu(up)とfd(down)を別々 に測定すれば、これらを下記のように組み合わせて、 f={fu(up)+fd(down)}/2 …(5) fp={fu(up)−fd(down)}/2 …(6) とし、これらのf、fpから距離R、速度Vがそれぞれ得られる。Fu (up) = f−fp (3) fd (down) = f + fp (4) Therefore, if fu (up) and fd (down) are separately measured for each half cycle of modulation, By combining these as follows, f = {fu (up) + fd (down)} / 2 (5) fp = {fu (up) -fd (down)} / 2 (6) The distance R and the velocity V are obtained from f and fp, respectively.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら従来のミリ波レーダ距離速度測定装置を自動車等に搭載して使用 する場合には目標が近い位置に存在しこのためビート信号の周波数が低く観測区 間に2周期以下程度の存在であれば、周波数分析器の分解能以下になり正確なピ ーク周波数が同定できず距離の測定が困難であるという問題があった。 However, when the conventional millimeter-wave radar range velocities measuring device is used by mounting it on an automobile, etc., the target is close to the target, and therefore the frequency of the beat signal is low and if there are two cycles or less between the observation zones. However, there is a problem that the resolution becomes lower than that of the frequency analyzer, and the accurate peak frequency cannot be identified, making it difficult to measure the distance.

【0005】 したがって本考案は上記問題点に鑑み正確はピーク周波数が同定できないビー ト信号から距離情報を抽出できるミリ波レーダ距離速度測定装置を提供すること を目的とする。Therefore, in view of the above problems, it is an object of the present invention to provide a millimeter wave radar range velocity measuring device capable of accurately extracting range information from a beat signal whose peak frequency cannot be identified accurately.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は前記問題点を解決するために、連続波レーダの送信信号の送信信号に 周波数変調を施して適当に繰り返して行い、受信信号と送信信号とのビート信号 から距離及び速度を求めるミリ波レーダ距離速度測定装置において、目標に対し て前記ビート信号を周波数分析した周波数成分のうち直流成分とこれに隣接する 周波数成分のスペクトルレベルが目標が存在しない場合の所定値よりも増加した とき目標が至近にあると判断する。 In order to solve the above-mentioned problems, the present invention performs the frequency modulation on the transmission signal of the continuous wave radar transmission signal and repeats it appropriately, and calculates the distance and velocity from the beat signal of the reception signal and the transmission signal. In the radar range velocity measurement device, when the spectral level of the DC component and the frequency component adjacent to it among the frequency components obtained by frequency-analyzing the beat signal with respect to the target increases above a predetermined value when the target does not exist, the target Judge that it is very close.

【0007】[0007]

【作用】[Action]

本考案のミリ波レーダ距離速度測定装置によれば、目標に対して前記ビート信 号を周波数分析した周波数成分のうち直流成分とこれに隣接する周波数成分のス ペクトルレベルが目標が存在しない場合の所定値よりも増加したことを判断する ことによって、正確なピーク周波数が同定できなくても目標が至近にあると判断 できる。 According to the millimeter-wave radar range velocity measuring device of the present invention, when the target does not exist in the spectrum level of the DC component and the frequency component adjacent to the DC component among the frequency components obtained by frequency-analyzing the beat signal with respect to the target. By determining that the target frequency has increased beyond the predetermined value, it is possible to determine that the target is in the immediate vicinity even if the accurate peak frequency cannot be identified.

【0008】[0008]

【実施例】【Example】

以下本考案の実施例について図面を参照して説明する。 図1は本考案の実施例に係るミリ波レーダ距離速度測定装置の全体構成を示す 図である。本図に示すミリ波レーダ距離速度測定装置は、3角波変調の連続波信 号を送信しこれと目標で反射した受信信号とを混合してビート信号を形成するセ ンサ1と、該センサ1の信号をサンプリングする時に折り返しを発生しないよう に高域信号を除去する低域通過フィルタ2と、該低域通過フィルタ2からのアナ ログ信号をディジタル信号に変換するA/D(Analog to Digital Converter)変 換器3と、該A/D変換器3からのディジタル信号に変換されたビート信号を周 波数分析し、距離及び速度の信号に処理するためにDSP(Digital Signal Pro cessor) で構成される信号処理部4と、該信号処理部4で得られた距離及び速度 データを表示するための制御を行うコントローラ5と、該コントローラ5で制御 されたデータを表示する表示部6とを含む。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a millimeter wave radar range velocity measuring apparatus according to an embodiment of the present invention. The millimeter wave radar distance velocity measuring device shown in the figure is a sensor 1 that transmits a continuous wave signal of triangular wave modulation and mixes the continuous wave signal with a received signal reflected by a target to form a beat signal, and the sensor. A low-pass filter 2 that removes a high-pass signal so that aliasing does not occur when the signal of 1 is sampled, and an A / D (Analog to Digital) that converts the analog signal from the low-pass filter 2 into a digital signal. Converter) A converter 3 and a DSP (Digital Signal Processor) for frequency analysis of the beat signal converted into the digital signal from the A / D converter 3 and processing it into a distance and velocity signal. A signal processing unit 4, a controller 5 for controlling the distance and speed data obtained by the signal processing unit 4, and a display unit 6 for displaying the data controlled by the controller 5. .

【0009】 図2は図1のセンサの出力信号の形成を示す図である。本図(a)の実線で示 すように、センサ1から3角波変調の連続の送信信号が送信され、点線で示すよ うに目標で反射された信号がセンサ1で受信される。さらに本図(b)に示すよ うに、3角波変調の上昇側でビート信号のピーク周波数fuと下降側でビート信 号のピーク周波数fdが図示しない混合器で形成される。FIG. 2 shows the formation of the output signal of the sensor of FIG. As shown by the solid line in this figure (a), a continuous transmission signal of triangular wave modulation is transmitted from the sensor 1, and the signal reflected by the target is received by the sensor 1 as shown by the dotted line. Further, as shown in FIG. 9B, the peak frequency fu of the beat signal on the rising side of the triangular wave modulation and the peak frequency fd of the beat signal on the falling side of the triangular wave modulation are formed by a mixer (not shown).

【0010】 図3は図2の信号処理部の構成を示す図である。本図に示すように、高速フー リエ分析器(FFT)からなり、該A/D変換器3からの信号の周波数分析を行 う周波数分析部41と、該周波数分析部41からの上昇側及び下降側のビート信 号のピーク周波数fu及びfdを上記式(5)及び(6)に代入して目標との距 離及び速度を求める距離速度演算部42と、該周波数分析部41から周波数成分 0、ΔF、2ΔFのスペクトルレベルを抽出する抽出手段43と、目標がないと きに該抽出手段43で得られた周波数成分0、ΔF、2ΔFのスペクトルレベル をバックグラウンドとしてテーブル化して記憶する記憶部44と、該記憶部44 で抽出された周波数成分0、ΔF、2ΔFのスペクトルレベルを該記憶部44か らのバックグラウンドの周波数成分0、ΔF、2ΔFのものとを比較し、これよ りも大きい場合には至近距離に目標が存在すると判断する判断手段45とを含む 。FIG. 3 is a diagram showing the configuration of the signal processing unit shown in FIG. As shown in the figure, it is composed of a high-speed Fourier analyzer (FFT), and performs a frequency analysis of the signal from the A / D converter 3, and a frequency analysis section 41, and a rising side from the frequency analysis section 41. The peak frequency fu and fd of the falling beat signal are substituted into the above equations (5) and (6) to calculate the distance and speed to the target, and the frequency component from the frequency analysis unit 41. Extraction means 43 for extracting spectral levels of 0, ΔF, 2ΔF, and storage for tabulating and storing the spectral levels of the frequency components 0, ΔF, 2ΔF obtained by the extracting means 43 when there is no target as a background. The spectrum level of the frequency components 0, ΔF, 2ΔF extracted by the storage unit 44 is compared with that of the background frequency components 0, ΔF, 2ΔF from the storage unit 44. If it is larger than this, the determination means 45 for determining that the target exists at the close range is included.

【0011】 該周波数分析部41は周波数の分解能がΔFでありこの分解能毎に周波数が分 析されるが、周波数成分0は直流成分を示し、ΔFは該直流成分に隣接する第1 成分を示し、2ΔFは該第1成分に隣接する第2の成分を示す。上記ΔF≒1. 5KHzであり、これを距離に換算すると約2mに相当し、したがって2ΔFは 約2m×2=4mに相当する。以上の説明のように目標までの距離として0〜4 mの範囲を本発明の対象としている。The frequency analysis unit 41 has a frequency resolution of ΔF, and the frequency is analyzed for each resolution. A frequency component 0 indicates a DC component, and ΔF indicates a first component adjacent to the DC component. , 2ΔF represents a second component adjacent to the first component. The above ΔF≈1. It is 5 KHz, and when converted into a distance, it corresponds to about 2 m, and thus 2ΔF corresponds to about 2 m × 2 = 4 m. As described above, the range of 0 to 4 m as the distance to the target is the subject of the present invention.

【0012】 図4は本考案の一連の動作を説明するフローチャートであり、図5は周波数に よる計測範囲を説明する図であり、図6は直流成分、第1成分及び第2成分のス ぺクトルレベルを示す図である。図4に示すように、該周波数分析部41ではビ ート信号のピーク周波数のピーク周波数分析が行われ(ステップ1)、図に示す ように周波数2ΔF以上では従来と同様にピーク周波数検出をして距離等を計測 する。周波数の範囲が0から2ΔFにある場合に以下に説明するようにレベルに よる判断により至近距離にある目標の有無を検出する。図6に示すように、該周 波数分析部41の直流成分、第1成分及び第2成分の周波数成分が該抽出手段4 3で抽出される(ステップ2)。バックグラウンド測定の場合には(ステップ3 )、該センサ1に目標物がないことを確認して図5(a)に示すように、上記成 分のスペクトルレベルが抽出される。図5(a)のバックグラウンドから目標が 存在しないという基準レベルLの決定は、目標がないときのレベルをL0とし、 ピーク周波数が可能でなるべく近い距離(3ΔF程度の周波数:約4.5m)に 目標をおいた時のレベルをL1とし、L0<L<L1の範囲でS/N比を考慮し てなされるが好ましい(ステップ4)。目標がない場合の基準レベルが設定され たら、目標の計測を行う。図5(b)に示すように、直流成分、第1成分及び第 2成分のスペクトルが上記レベルLより大きいので0から4m内に目標が存在す ると判断できる(ステップ5)。この情報は該距離速度演算部42による遠距離 の目標情報と共に該コントローラ5を介して該表示器6に表示される。FIG. 4 is a flow chart for explaining a series of operations of the present invention, FIG. 5 is a diagram for explaining a measurement range by frequency, and FIG. 6 is a DC component, a first component and a second component spectrum. It is a figure which shows a cuttle level. As shown in FIG. 4, the frequency analysis unit 41 performs peak frequency analysis of the peak frequency of the beat signal (step 1). Measure the distance. When the frequency range is 0 to 2ΔF, the presence / absence of a target at a close range is detected by the level-based judgment as described below. As shown in FIG. 6, the DC component of the frequency analysis unit 41, the frequency components of the first component and the second component are extracted by the extracting means 43 (step 2). In the case of background measurement (step 3), it is confirmed that the sensor 1 has no target object, and the spectrum level of the above component is extracted as shown in FIG. 5 (a). To determine the reference level L that there is no target from the background in Fig. 5 (a), the level when there is no target is L0, and the peak frequency is as close as possible (frequency of about 3ΔF: about 4.5m). It is preferable that the level when the target is set is L1 and the S / N ratio is considered in the range of L0 <L <L1 (step 4). When the reference level for the case without a target is set, measure the target. As shown in FIG. 5B, since the spectra of the DC component, the first component and the second component are larger than the level L, it can be determined that the target exists within 0 to 4 m (step 5). This information is displayed on the display 6 via the controller 5 together with the target information of the long distance by the distance / speed calculator 42.

【0013】[0013]

【考案の効果】[Effect of the device]

以上説明したように本考案によれば、目標に対して前記ビート信号を周波数分 析した周波数成分のうち直流成分とこれに隣接する周波数成分のスペクトルレベ ルが所定値よりも増加したことを判断することによって、正確なピーク周波数が 同定できなくても目標が至近にあると判断できる。 As described above, according to the present invention, it is determined that the spectral level of the direct current component and the frequency component adjacent to the direct current component of the frequency components obtained by frequency analysis of the beat signal with respect to the target has increased above a predetermined value. By doing so, even if the accurate peak frequency cannot be identified, it can be determined that the target is close.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例に係るミリ波レーダ距離速度測
定装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a millimeter wave radar range velocity measuring apparatus according to an embodiment of the present invention.

【図2】図1のセンサの出力信号の形成を示す図であ
る。
2 shows the formation of the output signal of the sensor of FIG.

【図3】図2の信号処理部の構成を示す図である。FIG. 3 is a diagram showing a configuration of a signal processing unit in FIG.

【図4】本考案の一連の動作を説明するフローチャート
である。
FIG. 4 is a flowchart illustrating a series of operations of the present invention.

【図5】周波数による計測範囲を説明する図である。FIG. 5 is a diagram illustrating a measurement range according to frequency.

【図6】直流成分、第1成分及び第2成分のスぺクトル
レベルを示す図である。
FIG. 6 is a diagram showing spectrum levels of a DC component, a first component, and a second component.

【符号の説明】[Explanation of symbols]

1…センサ 4…信号処理部 41…周波数分析部 42…距離速度演算部 43…抽出手段 44…記憶部 45…判断手段 DESCRIPTION OF SYMBOLS 1 ... Sensor 4 ... Signal processing part 41 ... Frequency analysis part 42 ... Distance speed calculation part 43 ... Extraction means 44 ... Storage part 45 ... Judgment means

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 連続波レーダの送信信号の送信信号に周
波数変調を施して適当に繰り返して行い、受信信号と送
信信号とのビート信号から距離及び速度を求めるミリ波
レーダ距離速度測定装置において、 目標に対して前記ビート信号を周波数分析した周波数成
分のうち直流成分とこれに隣接する周波数成分のスペク
トルレベルが所定値よりも増加したとき目標が所定の至
近にあると判断することを特徴とするミリ波レーダ距離
速度測定装置。
1. A millimeter-wave radar range-velocity measuring device for obtaining a distance and a velocity from a beat signal between a reception signal and a transmission signal by frequency-modulating a transmission signal of a transmission signal of a continuous-wave radar and repeating appropriately. Among the frequency components obtained by frequency-analyzing the beat signal with respect to the target, it is determined that the target is close to a predetermined range when the spectrum level of the DC component and the frequency component adjacent to the DC component increases above a predetermined value. Millimeter-wave radar range and velocity measurement device.
JP10071991U 1991-12-06 1991-12-06 Millimeter-wave radar range velocity measuring device Withdrawn JPH0550383U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10071991U JPH0550383U (en) 1991-12-06 1991-12-06 Millimeter-wave radar range velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10071991U JPH0550383U (en) 1991-12-06 1991-12-06 Millimeter-wave radar range velocity measuring device

Publications (1)

Publication Number Publication Date
JPH0550383U true JPH0550383U (en) 1993-07-02

Family

ID=14281449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10071991U Withdrawn JPH0550383U (en) 1991-12-06 1991-12-06 Millimeter-wave radar range velocity measuring device

Country Status (1)

Country Link
JP (1) JPH0550383U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010109A1 (en) * 2014-07-16 2016-01-21 株式会社デンソー Target detection device and target detection method for detecting target using radar waves

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010109A1 (en) * 2014-07-16 2016-01-21 株式会社デンソー Target detection device and target detection method for detecting target using radar waves
JP2016023945A (en) * 2014-07-16 2016-02-08 株式会社デンソー Target detector

Similar Documents

Publication Publication Date Title
JP4728329B2 (en) Radar sensor and method for evaluating an object
US9547078B2 (en) Detection of radar objects using a radar sensor of a motor vehicle
CN105103003B (en) Fast linear frequency modulation fmcw radar
US20030156055A1 (en) FMCW radar system
JP2935420B2 (en) FM radar equipment
US4780837A (en) Doppler signal frequency converter
JP4408638B2 (en) Radar device with anomaly detection function
JP2004271233A (en) Radar device equipped with abnormality detection function
JPH04343084A (en) Fm-cw radar device
JP2778864B2 (en) Millimeter wave radar distance / velocity measurement system
JP2765773B2 (en) Millimeter wave radar distance / velocity measurement system
JP3505441B2 (en) Peak frequency calculation method in FFT signal processing
JP2003240842A (en) Radar
JP3716229B2 (en) Radar equipment
JP2794611B2 (en) Dual frequency FM-CW radar device
JPH0550383U (en) Millimeter-wave radar range velocity measuring device
JP3099598B2 (en) Relative distance detection device
KR20180068600A (en) Moving object detection and velocity measurement system based on motion sensor
JPH05150035A (en) Millimeter wave radar distance-speed measuring device
EP0166392A2 (en) Doppler signal frequency converter
JP2000510238A (en) Method and apparatus for measuring the distance between a distance measuring instrument and a target
JPH05333143A (en) Distance and speed measuring device
US6927726B2 (en) Radar
JP3213143B2 (en) Radar equipment
JP2762143B2 (en) Intermittent FM-CW radar device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19960404