JPH0550235A - Welding method for steel tube - Google Patents

Welding method for steel tube

Info

Publication number
JPH0550235A
JPH0550235A JP19649391A JP19649391A JPH0550235A JP H0550235 A JPH0550235 A JP H0550235A JP 19649391 A JP19649391 A JP 19649391A JP 19649391 A JP19649391 A JP 19649391A JP H0550235 A JPH0550235 A JP H0550235A
Authority
JP
Japan
Prior art keywords
welding
surface side
submerged arc
arc welding
tack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19649391A
Other languages
Japanese (ja)
Other versions
JP2833279B2 (en
Inventor
Yasuhiko Tanaka
保彦 田中
Yoshio Kato
善雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3196493A priority Critical patent/JP2833279B2/en
Publication of JPH0550235A publication Critical patent/JPH0550235A/en
Application granted granted Critical
Publication of JP2833279B2 publication Critical patent/JP2833279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the welding production efficiency of a steel tube by executing submerged arc welding to the outside surface side of a press formed tube under a specific welding condition. CONSTITUTION:After a plate-like steel plate is formed in a circular shape by press working, at the time of executing welding of the inside and the outside surfaces of a tube along a seam in the longitudinal direction of the tube, tack welding and submerged arc welding of the outside surface side are executed by the same welding pass of the beginning. In this case, at the time of executing submerged arc welding of the outside surface side, the welding heat input quantity and groove depth of the inside surface side are set to a range of oblique lines shown in the figure. In such a way, the number of welding passes can be reduced, and the production efficiency can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に大径溶接鋼管の製
造方法に係り、UOEプロセス等により鋼管に成形した
後のシーム溶接を効率的に溶接を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a large diameter welded steel pipe, and more particularly to a method for efficiently performing seam welding after forming a steel pipe by a UOE process or the like.

【0002】[0002]

【従来の技術】大径鋼管の製造方法には、その形成方法
によりUOE方式、コンチニュアスフォーミング方式、
またはベンディング方式に分類される。いずれの成形方
式を採用したとしても、成形後の鋼管は、一般的にはそ
れぞれ独立の溶接ステージで、仮付溶接→内面溶接→外
面溶接の順で行われている。なお、前記鋼管の内外面の
本溶接は、一般的には高能率、高速化を図るために2本
以上の電極を使用する多電極サブマージドアーク溶接
(SAW)が採用されている。
2. Description of the Related Art A large diameter steel pipe is manufactured by a UOE method, a continuous forming method,
Or it is classified as a bending method. Regardless of which forming method is adopted, the steel pipe after forming is generally subjected to independent welding stages in the order of tack welding → inner surface welding → outer surface welding. For the main welding of the inner and outer surfaces of the steel pipe, multi-electrode submerged arc welding (SAW) using two or more electrodes is generally adopted in order to achieve high efficiency and high speed.

【0003】近年、鋼管のシーム溶接法においては、高
能率、高品質、高速化のために種々の溶接方法が提案さ
れている。たとえば、特公昭63−17554号公報に
おいては、U→O成形後に、内面側開先を外側開先より
も小断面積の非対称形状とし、内面側はサブマージドア
ーク溶接を行い、外面側は第1層は所定電流のMIG溶
接を行った後、第2層をサブマージドアーク溶接する方
法の開示がある。
In recent years, in the seam welding method for steel pipes, various welding methods have been proposed for high efficiency, high quality and high speed. For example, in Japanese Examined Patent Publication No. 63-17554, after U → O molding, the inner surface side groove has an asymmetrical shape with a smaller cross-sectional area than the outer side groove, the inner surface side is subjected to submerged arc welding, and the outer surface side is There is a disclosure of a method in which the first layer is subjected to MIG welding with a predetermined current and then the second layer is subjected to submerged arc welding.

【0004】また、特開昭61−253174号公報に
おいては、仮付溶接を省略し、初段管外面からの本溶接
を溶加材の不要なプラズマアーク溶接で行うとともに、
20〜150mm下流側にて、管内面に生じた裏波ビード
を平滑化するために内面側からTIG溶接を行い、最後
に同一パス中に管外面に充分な肉盛を行うためにTI
G、MIGまたはサブマージアークを行うことで、溶接
パス数の低減および溶接ワイヤの節減を図った溶接方法
の開示がある。
In Japanese Patent Laid-Open No. 61-253174, tack welding is omitted and main welding from the outer surface of the first-stage pipe is performed by plasma arc welding which does not require a filler material.
20 to 150 mm downstream side, TIG welding is performed from the inner surface side to smooth the back bead generated on the inner surface of the pipe, and finally TI welding is performed to sufficiently build up the outer surface of the pipe during the same pass.
There is a disclosure of a welding method in which the number of welding passes and the number of welding wires are reduced by performing G, MIG, or submerged arc.

【0005】さらに、特公平2−52586号公報にお
いては、ステンレス鋼、ニッケル基合金鋼、非鉄金属な
どのソリッドおよびクラッド鋼管をUOE鋼管として製
造するに当り、U成形後O成形した素管を、内面側から
TIG溶接するとともに、同時に外面側からプラズマ溶
接し、さらに外面側から前記プラズマ溶接上にTIGま
たはMIG溶接を行うことで、効率的な溶接を行うとと
もに、溶接割れ、スラグ巻き込み等の溶接欠陥を無くし
た溶接方法の開示がある。
Further, in Japanese Patent Publication No. 2-52586, in producing solid and clad steel pipes such as stainless steel, nickel-base alloy steel and non-ferrous metal as UOE steel pipes, a blank pipe formed by U-forming after U-forming is By performing TIG welding from the inner surface side, simultaneously performing plasma welding from the outer surface side, and further performing TIG or MIG welding on the plasma welding from the outer surface side, efficient welding is performed, and welding such as welding cracks and slag inclusion are also performed. There is a disclosure of a welding method that eliminates defects.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特公昭
63−17554号公報における溶接方法は、基本的に
従来と同様に仮付溶接(外面側から)→内面溶接→外面
溶接の工程を経なければならず、各溶接ステージ毎の段
取り・盛り換え作業を必要とするため作業が能率的でな
いなどの問題を要する。また、前記特開昭61−253
174号公報および特公平2−52586号公報におけ
る溶接方法においては、溶接材のコスト低減は図れる
が、溶接パス中にプラズマ溶接を挿入する溶接法である
ため、このプラズマ溶接により全体の溶接速度が律速さ
れ、溶接速度は最高で50cm/min 程度となるため、同
時溶接による溶接パス数の低減は実現できるものの結果
的には、それほどの高能率化は望めない。
However, the welding method disclosed in Japanese Patent Publication No. Sho 63-17554 is basically the same as the conventional method except that the steps of tack welding (from the outer surface side) → inner surface welding → outer surface welding are performed. In addition, the setup / refilling work for each welding stage is required, which causes a problem that the work is not efficient. Further, the above-mentioned JP-A-61-253
In the welding methods of Japanese Patent Publication No. 174 and Japanese Patent Publication No. 2-52586, the cost of the welding material can be reduced, but since the welding method inserts plasma welding into the welding path, the overall welding speed is increased by this plasma welding. Since the rate is controlled and the welding speed is about 50 cm / min at the maximum, the number of welding passes can be reduced by simultaneous welding, but as a result, such a high efficiency cannot be expected.

【0007】そこで、本発明の主たる課題は、従来から
の溶接順序を見直しを行い、溶接パス数の低減を図ると
ともに、同時に溶接入熱量および開先深さの制御を行っ
た鋼管の溶接方法を提供するものである。
[0007] Therefore, the main object of the present invention is to review a conventional welding sequence to reduce the number of welding passes and, at the same time, to control a welding heat input amount and a groove depth. Is provided.

【0008】[0008]

【課題を解決するための手段】前記課題は、板状鋼板を
プレス加工により円筒形に成形した後、管長手方向の継
目に沿って管内外面の溶接を行うに当り、少なくとも仮
付溶接と外面側のサブマージドアーク溶接を同一溶接パ
スにて行い、次いで内面側のサブマージドアーク溶接を
行うとともに、前記外面側のサブマージドアーク溶接に
際し、溶接入熱量および内面側開先深さを図1の斜線の
範囲としたことで解決できる。
[Means for Solving the Problems] The above-mentioned problems are solved by at least temporary welding and outer surface welding when the inner and outer surfaces of a pipe are welded along a joint in the pipe longitudinal direction after a plate-shaped steel plate is formed into a cylindrical shape by press working. Side submerged arc welding is performed in the same welding pass, then inner surface side submerged arc welding is performed, and at the time of the outer surface side submerged arc welding, the welding heat input and the inner surface side groove depth are shown in FIG. The problem can be solved by setting the shaded area.

【0009】[0009]

【作用】従来のサブマージドアーク溶接方法において
は、基本的に最初に内面側溶接を行い下側(管内面側)
に内面ビードを形成した後、外面側溶接を行うことで、
外面側溶接の際の溶け落ちを防止していた。一方、前記
特開昭61−253174号公報のように仮付溶接を省
略した溶接法の場合には、やはり外面側溶接の時点で溶
接される鋼板両エッジの突き合わせ状態を安定させるこ
とが難しく、溶接中に生じたズレにより、オフセット、
ビード割れなどの溶接欠陥を発生させる場合があるた
め、仮付溶接パスを省略することは得策でない。そこ
で、本発明においては、先ず溶接パス数を少なくするた
めに、従来内面側溶接→外面側溶接の順序で行っていた
溶接を、外面側溶接→内面側溶接の順序で行い、最初に
行う仮付溶接と外面側溶接とを同一パスで連続的に行い
得るようにしている。しかし、このような順序で行った
場合には、外面側溶接の際に内面ビードが形成されてい
ないために溶け落ちが生じ易い。そのため、各板厚に応
じて溶接入熱量と開先深さとの関係を図1に示される範
囲に制御することで、必要溶け込み量を確保するととも
に、溶け落ちを防止している。
[Function] In the conventional submerged arc welding method, the inner surface is basically welded first and then the lower surface (pipe inner surface side).
After forming the inner bead on the outer surface, by welding the outer surface side,
Prevents burn-through during external surface welding. On the other hand, in the case of the welding method in which tack welding is omitted as in JP-A-61-253174, it is still difficult to stabilize the abutting state of both edges of the steel plates to be welded at the time of outer surface side welding. Offset due to the deviation generated during welding,
Since welding defects such as bead cracks may occur, it is not a good idea to omit the tack welding pass. Therefore, in the present invention, first, in order to reduce the number of welding passes, welding which was conventionally performed in the order of inner surface side welding → outer surface side welding is performed in the order of outer surface side welding → inner surface side welding, and temporarily performed first. Adhesive welding and outer surface side welding can be continuously performed in the same pass. However, when the steps are performed in this order, the inner surface bead is not formed during the outer surface side welding, and thus the burn-through is likely to occur. Therefore, by controlling the relationship between the welding heat input and the groove depth within the range shown in FIG. 1 according to each plate thickness, the required penetration amount is secured and the burn-through is prevented.

【0010】[0010]

【実施例】以下、本発明を実施例に基づき詳説する。図
2において、円筒状鋼管1は、UOプレス方式によって
円筒状に製管された鋼管である。UOプレスにおいて
は、エッジプレーナにより所定板幅に切削するととも
に、精度良く開先加工を行った後、クリピングプレスに
より板端部のみの曲げ加工を行う。次いでUプレスによ
りU字状に成形した後、O字状に成形して所定形状の円
筒管を得る。前記円筒状鋼管1は、成形後洗浄および乾
燥工程を経た後、図示される溶接工程に入る。ガイドロ
ール4、4…に沿って走行する円筒状鋼管1は、1パス
中に仮付溶接用トーチ3により仮付溶接が行われるとと
もに、その後段で多電極サブマージドアーク溶接機2に
より、継目1aの外面側に沿ってサブマージドアーク溶
接が行われる。
EXAMPLES The present invention will be described in detail below based on examples. In FIG. 2, the cylindrical steel pipe 1 is a steel pipe manufactured into a cylindrical shape by the UO pressing method. In the UO press, the edge planer is used to cut into a predetermined plate width, the groove is processed with high precision, and then only the plate end is bent with the clipping press. Then, after being formed into a U shape by U press, it is formed into an O shape to obtain a cylindrical tube having a predetermined shape. The cylindrical steel pipe 1 is subjected to a cleaning and drying process after forming, and then enters a welding process shown in the drawing. The cylindrical steel pipe 1 traveling along the guide rolls 4, 4, ... Is subjected to tack welding by the tack welding torch 3 during one pass, and is jointed by the multi-electrode submerged arc welder 2 at the subsequent stage. Submerged arc welding is performed along the outer surface side of 1a.

【0011】前記仮付溶接は、炭酸ガスまたは炭酸ガス
+Arガスを用いたガスシールドアーク溶接が行われ、
溶接方式は、連続仮付方式であると断続仮付方式である
とを問わない。前記連続仮付方式によれば、溶接速度を
著しく速くすることができるが、図4に示されるよう
に、仮付速度の上昇に伴って、スタッピングビードまた
はハンピングビードが発生しないビード良好範囲が狭め
られると同時に、アーク電圧範囲も狭められるため、綿
密な管理の下で操業されることが重要である。使用され
るワイヤ径は、板厚に応じてφ2.4〜φ4.0mm程度
の範囲とされ、アーク電流は、600A〜1300A程
度の範囲とされる。また、シールドガスの流量は50 l
/min〜100 l/min程度とされる。
The tack welding is gas shielded arc welding using carbon dioxide gas or carbon dioxide gas + Ar gas,
The welding method may be either a continuous tacking method or an intermittent tacking method. According to the continuous tacking method, the welding speed can be remarkably increased, but as shown in FIG. 4, a good bead range in which the stapling bead or the humping bead does not occur as the tacking speed increases. Since the arc voltage range is narrowed at the same time as the arc voltage is narrowed, it is important to operate under close control. The diameter of the wire used is in the range of about φ2.4 to φ4.0 mm, and the arc current is in the range of about 600A to 1300A, depending on the plate thickness. The flow rate of the shielding gas is 50 l
/ min to 100 l / min.

【0012】本実施例における板厚別の仮付溶接条件例
を整理した結果を表1に示す。
Table 1 shows a summary of the examples of the tack welding conditions by plate thickness in this embodiment.

【0013】[0013]

【表1】 [Table 1]

【0014】前記仮付溶接トーチ3の離間距離lをもっ
て、円筒状鋼管1の進行方向前方に多電極サブマージド
アーク溶接機2が配設される。前記離間距離lは、10
00〜2000mmの範囲とされる。1000mm未満の場
合には、仮付溶接のスパッタがサブマージドアーク溶接
機2に付着したり、ワイヤ送給等における故障の原因と
なったり、開先倣いフラックス散布等のスペースを確保
できない。また、2000mmを超える場合には、仮付連
続締付機(ケージロール)の拘束から外れ、サビマージ
ドアーク溶接中にシーム部の角変形を起こし、溶接部に
凝固割れを発生させる原因となる。また、シーム部の捩
じれが大きい場合、後続の溶接ヘッド自体のシーム追従
が不能となる。
A multi-electrode submerged arc welding machine 2 is disposed in front of the cylindrical steel pipe 1 in the traveling direction with a separation distance 1 of the tack welding torch 3. The separation distance l is 10
The range is from 00 to 2000 mm. When it is less than 1000 mm, spatter of tack welding adheres to the submerged arc welder 2, causes a failure in wire feeding, and cannot secure a space for groove-like flux dispersion. On the other hand, if it exceeds 2000 mm, it will come out of the constraint of the temporary tacking continuous tightening machine (cage roll), causing angular deformation of the seam during scavenged arc welding, causing solidification cracking in the weld. .. Further, when the twist of the seam portion is large, the seam following of the subsequent welding head itself becomes impossible.

【0015】図示の例では、本実施例におけるサブマー
ジドアーク溶接機2は6電極としているが、板厚、溶接
速度等に応じて適宜の電極数とすることができる。な
お、通常の例に従って、アークの干渉を抑えて溶融池を
安定に保つために、直流−交流の組合せとするか、また
は交流−交流の場合には位相差をもつようにする。
In the illustrated example, the submerged arc welding machine 2 in this embodiment has six electrodes, but the number of electrodes can be set appropriately according to the plate thickness, welding speed and the like. In order to suppress the arc interference and keep the molten pool stable in accordance with a usual example, a combination of direct current and alternating current or a phase difference in the case of alternating current and alternating current is provided.

【0016】また、サブマージドアーク溶接の溶接条件
は、電極数、板厚等のよって異なるが、概ね電流は各極
500〜1600A程度、電圧は30〜50V、溶接速
度は100〜500cm/min、使用ワイヤ径はφ4.0〜
φ8.0mmの範囲とされる。
The welding conditions for submerged arc welding differ depending on the number of electrodes, plate thickness, etc., but the current is about 500 to 1600 A for each electrode, the voltage is 30 to 50 V, and the welding speed is 100 to 500 cm / min. Wire diameter is φ4.0
The range is φ8.0 mm.

【0017】本実施例においては、仮付溶接の直後に、
外面側溶接を行うために、裏側からの溶け落ちが心配さ
れる。そのため、図1に示されるグラフに従って、溶接
入熱量と内面側開先深さを管理する。図1は板厚別に、
必要溶け込み量Pを確保し、かつ溶け落ちの生じない外
面側溶接を行うために、板厚に対応した溶接入熱量と開
先深さXとの関係を示したものである。なお、図1中に
おける記号は、図2に示されるように、T;母材板厚、
P;母材の内外面一層の溶接とするために必要な溶け込
み量の範囲、X;板厚Tと溶接入熱量により決定される
溶け落ちをしないための内面側の最高開先深さである。
In this embodiment, immediately after tack welding,
Since the outer surface is welded, there is a concern that it will burn through from the back side. Therefore, the welding heat input amount and the inner surface side groove depth are managed according to the graph shown in FIG. Figure 1 is for each plate thickness
This shows the relationship between the welding heat input and the groove depth X corresponding to the plate thickness in order to secure the required amount of penetration P and perform outer surface side welding without causing burn-through. The symbols in FIG. 1 are, as shown in FIG. 2, T: base metal plate thickness,
P: Range of penetration amount necessary for welding one layer on the inner and outer surfaces of the base metal, X: Maximum groove depth on the inner surface side determined by plate thickness T and welding heat input to prevent burn-through ..

【0018】図1に示されるグラフ中、板厚別のライン
各板厚でのX値を○印の値からX=0まで変化させ
て、6電極にてサブマージドアーク溶接を実施した場合
に必要な適性溶込み量として求めた。また、図中の必要
溶け込み量Pの範囲は、ミルの操業能率を考慮し、外面
仮付−SAW溶接ラインと下工程の内面溶接ラインの能
率(溶接速度)バランスから外面側の適性溶込み量を設
定したものである。
In the graph shown in FIG. 1, the line for each plate thickness shows the case where the X value at each plate thickness is changed from the value marked with ◯ to X = 0 and submerged arc welding is performed with 6 electrodes. Was determined as the appropriate amount of penetration required for. In addition, the range of the required penetration amount P in the figure is the optimum penetration amount on the outer surface side from the efficiency (welding speed) balance between the outer surface tacking-SAW welding line and the lower surface inner surface welding line in consideration of the operation efficiency of the mill. Is set.

【0019】表2に本実施例における板厚別の溶接条件
例を示す。
Table 2 shows examples of welding conditions for each plate thickness in this embodiment.

【0020】[0020]

【表2】 [Table 2]

【0021】以上の外面側溶接を終えたならば、引き続
き、次の溶接パスで内面側溶接を行う。内面側溶接は、
外面側溶接と同じくサブマージドアーク溶接を行うが、
溶接条件等については前記外面側溶接に準じて行うこと
ができる。
After the above-mentioned outer surface side welding is completed, subsequently, the inner surface side welding is performed in the next welding pass. Inner surface side welding
Submerged arc welding is performed in the same way as outer surface welding,
Regarding the welding conditions and the like, the welding can be performed according to the above-mentioned outer surface side welding.

【0022】〔実施例〕U成形後O成形した鋼管に関
し、板厚6〜40mmの範囲について、種々内面開先深さ
と溶接入熱量を変化させて、溶け落ちの有無および溶込
み深さについて調査を行った。その結果を表3に示す。
[Example] With respect to a steel pipe that was O-formed after U-forming, various internal surface groove depths and welding heat input amounts were changed in the range of a plate thickness of 6 to 40 mm, and the presence or absence of burn-through and the penetration depth were investigated. I went. The results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】表3より、各板厚別ライン上にプロットさ
れるXと入熱量の関係にあるとき、溶け落ちもなく、ま
た適性な溶込み深となり、良好な溶接が行われたことが
判明される。
From Table 3, it was found that when there was a relationship between X plotted on each plate thickness line and the heat input amount, there was no burn-through, the penetration depth was appropriate, and good welding was performed. It

【0025】[0025]

【発明の効果】以上詳説のとおり、本発明によれば、内
面側溶接に先行して外面側溶接を行うため、仮付溶接と
外面側溶接とを同一溶接パスにより行い得るようにな
り、溶接パス数の低減により生産効率の向上を図ること
ができる。また、外面側溶接に際して、入熱量と開先深
さを緻密に制御しているため溶け落ちが発生することが
ない。
As described above, according to the present invention, since the outer surface side welding is performed prior to the inner surface side welding, the tack welding and the outer surface side welding can be performed in the same welding pass. The production efficiency can be improved by reducing the number of passes. In addition, since the heat input amount and the groove depth are precisely controlled during welding on the outer surface side, burn-through does not occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】板厚別の溶接入熱量と開先深さの関係図であ
る。
FIG. 1 is a relationship diagram of welding heat input and groove depth for each plate thickness.

【図2】図1における記号説明図である。FIG. 2 is an explanatory diagram of symbols in FIG.

【図3】本実施例における仮付溶接および外面側溶接の
斜視図である。
FIG. 3 is a perspective view of tack welding and outer surface side welding in the present embodiment.

【図4】仮付溶接における仮付速度とアーク電圧との関
係図である。
FIG. 4 is a diagram showing the relationship between tacking speed and arc voltage in tack welding.

【符号の説明】[Explanation of symbols]

1…円筒状鋼管、2…サブマージドアーク溶接機、3…
仮付溶接用トーチ、4…ガイドロール
1 ... Cylindrical steel pipe, 2 ... Submerged arc welder, 3 ...
Temporary welding torch, 4 ... Guide roll

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】板状鋼板をプレス加工により円筒形に成形
した後、管長手方向の継目に沿って管内外面の溶接を行
うに当り、 少なくとも仮付溶接と外面側のサブマージドアーク溶接
を同一溶接パスにて行い、次いで内面側のサブマージド
アーク溶接を行うとともに、前記外面側のサブマージド
アーク溶接に際し、溶接入熱量および内面側開先深さを
図1の斜線の範囲としたことを特徴とする鋼管の溶接方
法。
1. When a plate-shaped steel sheet is formed into a cylindrical shape by press working and then the inner and outer surfaces of the pipe are welded along a joint in the longitudinal direction of the pipe, at least tack welding and submerged arc welding on the outer surface are the same. It is performed by a welding pass, and then submerged arc welding on the inner surface side is performed, and at the time of the submerged arc welding on the outer surface side, the welding heat input amount and the inner surface side groove depth are set within the range of the diagonal line in FIG. Welding method for steel pipes.
JP3196493A 1991-08-06 1991-08-06 Steel pipe welding method Expired - Lifetime JP2833279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196493A JP2833279B2 (en) 1991-08-06 1991-08-06 Steel pipe welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196493A JP2833279B2 (en) 1991-08-06 1991-08-06 Steel pipe welding method

Publications (2)

Publication Number Publication Date
JPH0550235A true JPH0550235A (en) 1993-03-02
JP2833279B2 JP2833279B2 (en) 1998-12-09

Family

ID=16358692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196493A Expired - Lifetime JP2833279B2 (en) 1991-08-06 1991-08-06 Steel pipe welding method

Country Status (1)

Country Link
JP (1) JP2833279B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221297A (en) * 2009-02-25 2010-10-07 Jfe Steel Corp Welding method of thick steel plate
JP4883429B2 (en) * 2010-03-26 2012-02-22 住友金属工業株式会社 UOE steel pipe manufacturing method and manufacturing apparatus
WO2017141760A1 (en) 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
CN107876941A (en) * 2016-09-29 2018-04-06 海阳中集来福士海洋工程有限公司 Steel plate buried arc welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168468A (en) * 1974-12-11 1976-06-14 Sumitomo Metal Ind Yosetsukokanno seizoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5168468A (en) * 1974-12-11 1976-06-14 Sumitomo Metal Ind Yosetsukokanno seizoho

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221297A (en) * 2009-02-25 2010-10-07 Jfe Steel Corp Welding method of thick steel plate
JP4883429B2 (en) * 2010-03-26 2012-02-22 住友金属工業株式会社 UOE steel pipe manufacturing method and manufacturing apparatus
WO2017141760A1 (en) 2016-02-19 2017-08-24 Jfeスチール株式会社 Multi-electrode submerged arc welding method
US11453079B2 (en) 2016-02-19 2022-09-27 Jfe Steel Corporation Multi-electrode submerged arc welding method
CN107876941A (en) * 2016-09-29 2018-04-06 海阳中集来福士海洋工程有限公司 Steel plate buried arc welding method
CN107876941B (en) * 2016-09-29 2020-08-28 海阳中集来福士海洋工程有限公司 Submerged arc welding method for steel plate

Also Published As

Publication number Publication date
JP2833279B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US4546230A (en) Welding process using laser beam
US20020008094A1 (en) Laser/arc hybrid welding process with appropriate gas mixture
EP2698223B1 (en) A process of welding to repair thick sections using two arc welding devices and a laser device
JP2004306084A (en) Composite welding method of laser welding and arc welding
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JPH08243754A (en) Inner face welding method of clad steel tube
JP2833279B2 (en) Steel pipe welding method
JP3423467B2 (en) High speed gas shielded arc welding apparatus and method
JPH07204854A (en) High speed gas shield arc welding equipment and method therefor
JP3352960B2 (en) Manufacturing method of titanium or titanium alloy welded pipe
JP3182672B2 (en) Internal welding method of clad steel pipe
JPH0252586B2 (en)
JP2006130510A (en) Butt welding method for thick plate metal
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
JPH08276273A (en) Butt welding method for clad steel
US4100389A (en) Method of high speed gas shielded arc welding
JPH0428472B2 (en)
JPH07256456A (en) One-side submerged arc welding
JPH09314334A (en) High speed gas shield arc welding equipment and method therefor
JP2002103035A (en) Seam welding method of uo steel pipe
JPH071126A (en) Automatic horizontal position one side welding method
JP2002103036A (en) Method for seam-welding uo steel pipe
JP3052036B2 (en) Strip welding method in ERW pipe manufacturing equipment
JPS6310095A (en) Manufacture of high alloy clad steel pipe
KR20230091695A (en) Undercut prevention method for TIG welding end point