JPH0550206B2 - - Google Patents

Info

Publication number
JPH0550206B2
JPH0550206B2 JP61048686A JP4868686A JPH0550206B2 JP H0550206 B2 JPH0550206 B2 JP H0550206B2 JP 61048686 A JP61048686 A JP 61048686A JP 4868686 A JP4868686 A JP 4868686A JP H0550206 B2 JPH0550206 B2 JP H0550206B2
Authority
JP
Japan
Prior art keywords
power
frequency
power transmission
protection device
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61048686A
Other languages
Japanese (ja)
Other versions
JPS62207115A (en
Inventor
Isao Iyoda
Tetsuro Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61048686A priority Critical patent/JPS62207115A/en
Publication of JPS62207115A publication Critical patent/JPS62207115A/en
Publication of JPH0550206B2 publication Critical patent/JPH0550206B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の交流発電所の電力を直流単
独送電系で送電する直流送電を含む電力系統の保
護方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a protection system for a power system including DC power transmission in which power from a plurality of AC power plants is transmitted through a single DC power transmission system.

〔従来の技術〕[Conventional technology]

従来、この種直流単独送電系を含む電力系統の
保護方式として第5図の如きものがあつた。図に
おいて、101,102は発電機システムで、1
11,112は発電機、121,122は前記発
電機111,112を駆動する原動機、131,
132は原動機121,122・発電機111,
112系の回転数(周波数)を検出し、それを一
定値に維持するように原動機121,122の機
械出力PM1,PM2を調節する調速機、21,22
は遮断機、31,32は交流系統の周波数を検出
し、過度に周波数が上昇した場合に、遮断機2
1,22を開放し、発電機111,112を電力
系統から分離する保護リレー、41,42は交流
を直流に変換する交直変換装置、43,44は、
直流から交流に変換する直交変換装置、51,5
2は直流送電回線、6は電力を受ける交流母系
統、7は発電機111,112の出力を交直変換
装置41,42に送電する交流送電線系統で、図
では単線で示してあるが、一般には複数の送電回
線で構成される。
Conventionally, there has been a protection system for power systems including this type of DC single power transmission system as shown in FIG. In the figure, 101 and 102 are generator systems, and 1
11, 112 are generators, 121, 122 are prime movers that drive the generators 111, 112, 131,
132 is the prime mover 121, 122, generator 111,
Governors 21 and 22 that detect the rotational speed (frequency) of the 112 system and adjust the mechanical outputs P M1 and P M2 of the prime movers 121 and 122 to maintain it at a constant value.
is a circuit breaker, and 31 and 32 detect the frequency of the AC system, and when the frequency increases excessively, circuit breaker 2 is activated.
1 and 22 are opened to isolate the generators 111 and 112 from the power system; 41 and 42 are AC/DC converters that convert AC to DC; 43 and 44 are
Orthogonal conversion device for converting direct current to alternating current, 51,5
2 is a DC power transmission line, 6 is an AC bus system that receives the power, and 7 is an AC power transmission line system that transmits the output of the generators 111, 112 to the AC/DC converters 41, 42. Although shown as a single line in the figure, generally consists of multiple power transmission lines.

次に動作について説明する。まず、第5図に示
すような電力系統で例えば、直流送電回線52
が、事故等で開放状態になると、その回線により
送電されていた電力PDC2が送電出来なくなる。
今、仮に、直流送電回線51,52の送電電力
PDC1,PDC2がそれぞれ、1ギガワツト(GW)で
あつたとすると、事故前の送電電力は2GWとな
り、これに等しい機械出力が原動機121,12
2から発生していることになる。簡単のために、
発電機システム101,102が同一の特性であ
るとすると、機械出力PM1,PM2は等しくなるの
で、それぞれ1GW相当となる。
Next, the operation will be explained. First, in a power system as shown in FIG.
However, if the line becomes open due to an accident or the like, the power P DC2 that was being transmitted through that line will no longer be able to be transmitted.
Now, suppose that the power transmitted by DC power transmission lines 51 and 52 is
If P DC1 and P DC2 were each 1 gigawatt (GW), the transmitted power before the accident was 2 GW, and the mechanical output equivalent to this was 121, 12
This means that it is occurring from 2. For simplicity,
Assuming that the generator systems 101 and 102 have the same characteristics, the mechanical outputs P M1 and P M2 will be equal, and therefore each will be equivalent to 1 GW.

そこで、第6図に示すように直流送電回線52
が開放され、送電電力PDC2が零となると、送電電
力の合計PEは2GWから1GWに減少する。これに
対し、機械出力の総計は2GWのままであるので、
その差により、発電機111,112系が加速さ
れ周波数fが上昇する。周波数上昇に対しては、
まず、直流送電系の周波数制御により、健全系統
である直流送電回線52の送電電力が限界値まで
増加するが、通常、限界送電電力は定格値を100
%として、110〜130%であるので、1GWを定格
値とすると、1.1GW〜1.3GWとなる。従つて、
機械出力の総計2GWを完全に送電する事は出来
ない。このため、周波数fは上昇を続ける。周波
数上昇に対しては、調速機131,132も原動
機121,122の出力を減少させて周波数を下
げようとするが、一般に応答が遅いので、しばら
くは周波数が上昇する。すると、過周波数保護リ
レー31,32が動作するので、発電機111,
112は、交流送電系統7から分離される。この
ため、交流送電系統7に電力を供給する発電機が
無くなり、結局、交直変換装置41も送電を停止
し、第6図に示すように送電電力の合計PEは零
となる。
Therefore, as shown in FIG.
is opened and the transmitted power P DC2 becomes zero, the total transmitted power P E decreases from 2 GW to 1 GW. On the other hand, since the total mechanical output remains 2GW,
Due to the difference, the generators 111 and 112 systems are accelerated and the frequency f increases. For increasing frequency,
First, by frequency control of the DC transmission system, the transmitted power of the healthy DC transmission line 52 increases to the limit value, but normally the limit transmitted power is 100% higher than the rated value.
As a percentage, it is 110 to 130%, so if 1 GW is the rated value, it will be 1.1 GW to 1.3 GW. Therefore,
It is not possible to completely transmit the total mechanical output of 2GW. Therefore, the frequency f continues to rise. In response to an increase in frequency, the speed governors 131 and 132 also try to lower the frequency by reducing the output of the prime movers 121 and 122, but since the response is generally slow, the frequency continues to increase for a while. Then, the overfrequency protection relays 31 and 32 operate, so the generators 111 and
112 is separated from the AC power transmission system 7. Therefore, there are no generators to supply power to the AC power transmission system 7, and eventually the AC/DC converter 41 also stops transmitting power, and the total transmitted power P E becomes zero as shown in FIG. 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の直流送電を含む電力系統の保護方式は以
上のように行われているので、発電電力を直流送
電回線群のみで送電するような系統では一部の直
流送電回線の事故により、全体の送電が停止して
しまうと言う問題点が有つた。
Conventional protection systems for power systems including DC power transmission are implemented as described above, so in a system where generated power is transmitted only through a group of DC power transmission lines, a fault in one of the DC power transmission lines may cause damage to the entire power transmission system. There was a problem that the system would stop.

この発明は、上記のような問題点を解消するた
めになされたもので、一部の直流送電回線の事故
が全体の送電系統の停止に発展しない直流送電を
含む電力系統の保護方式を得る事を目的とする。
This invention was made in order to solve the above-mentioned problems, and provides a protection system for power systems including DC power transmission in which an accident in a part of the DC power transmission line does not lead to a shutdown of the entire power transmission system. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る直流送電を含む電力系統の保護
方式は、発電機と交直変換装置とを結ぶ交流送電
系統の周波数を検出し、その周波数の検出値に応
じて、系統から解列するべき発電機を決定し、該
発電機が対応する遮断器を開放するようにしたも
のである。
The protection method for a power system including DC power transmission according to the present invention detects the frequency of an AC power transmission system that connects a generator and an AC/DC converter, and selects a generator to be disconnected from the system according to the detected frequency value. is determined, and the generator opens the corresponding circuit breaker.

〔作用〕[Effect]

この発明における電力系統保護方式の遮断器群
は、変化する周波数検出値から、交直変換装置
を、また直流送電回線から直流送電系統の送電量
減少を算定し、相当する発電量を系統から解列す
るように動作条件を設定する。
The circuit breaker group of the power system protection system in this invention calculates the decrease in the amount of power transmitted in the DC power system from the AC/DC converter or the DC power transmission line based on the changing frequency detection value, and disconnects the corresponding amount of power generation from the system. Set the operating conditions so that

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。図中、第5図と同一の部分は同一の符号をも
つて図示した第1図において、311,321は
本発明に関連する過速度保護装置である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, the same parts as in FIG. 5 are designated by the same reference numerals. In FIG. 1, 311 and 321 are overspeed protection devices related to the present invention.

次に動作について説明する。まず、過速度保護
装置311,321の設定として、最初の過速度
保護装置311は第2図に示すように系統周波数
fがfH1より高い状態が時間TH1だけ続いた時、
遮断器21を開放する信号を発生するように設定
しておき、又、過速度保護装置321は、系統周
波数fがfH2より高い状態が、時間TH2だけ続い
た時、遮断器22を開放する信号を発生するよう
に設定してある。そして、互いの設定に関して、
次の(1)式,(2)式が成立するようにする。
Next, the operation will be explained. First, as for the settings of the overspeed protection devices 311 and 321, the first overspeed protection device 311 is configured such that when the system frequency f remains higher than f H1 for a time TH 1 as shown in FIG.
It is set to generate a signal to open the circuit breaker 21, and the overspeed protection device 321 opens the circuit breaker 22 when the system frequency f remains higher than f H2 for a time TH 2 . It is set to generate a signal. And regarding each other's settings,
Make sure that the following equations (1) and (2) hold true.

fH1=fH2 ………(1) TH1<TH2 ………(2) 従来例と同様に直流送電回線52が事故等で開
放状態になると、その回線により送電されていた
電力PDC2が送電出来なくなる。今、仮に、直流送
電回線51,52の送電電力PDC1,PDC2がそれぞ
れ1ギガワツト(GW)であつたとすると、事故
前の送電電力は、2GWとなる。これに等しい機
械出力が、原動機121,122から発生してい
ることになる。簡単のため、発電機システム10
1,102が同一の特性であるとすると、機械出
力PM1,PM2は等しくなるので、それぞれ1GW相
当となる。
f H1 = f H2 (1) TH 1 < TH 2 (2) As in the conventional example, when the DC power transmission line 52 becomes open due to an accident or the like, the power P DC2 transmitted through that line will be unable to transmit power. Now, if the transmitted power P DC1 and P DC2 of the DC power transmission lines 51 and 52 were each 1 gigawatt (GW), the transmitted power before the accident would be 2 GW. Mechanical output equivalent to this is generated from the prime movers 121 and 122. For simplicity, generator system 10
1 and 102 have the same characteristics, the mechanical outputs P M1 and P M2 will be equal, and each will be equivalent to 1 GW.

第2図に示すように、直流送電回線52が開放
され、送電電力PDC2が零となると、送電電力の合
計PEは、2GWから1GWに減少する。これに対し
て、機械出力の総計は、2GWのままであるので、
その差により発電機系が加速され、周波数fが上
昇する。
As shown in FIG. 2, when the DC power transmission line 52 is opened and the transmitted power P DC2 becomes zero, the total transmitted power P E decreases from 2 GW to 1 GW. On the other hand, the total mechanical output remains 2GW, so
The difference accelerates the generator system and increases the frequency f.

この時、健全直流送電系統の送電電力は、1.1
〜1.3GW程度に上昇する。しかし、機械出力
2GWに比べれば非常に小さいので、周波数fの
上昇は続く。周波数fがfH1を超えた状態がTH1
続くと、過速度保護装置311が作動し、遮断器
21を開放するので、発電機111が系統から解
列する。すると、機械出力は、発電機112の原
動機122が発生する約1GWだけになるので、
周波数は減少し始める。そして、過速度保護装置
321が動作する時間TH2に至る前に、周波数
fはfH2よりも低くなるので、過速度保護装置3
21は動作せず、従つて発電機112は系統に連
系され続けるので、発電を継続する事が出来る。
そして、周波数fは直流送電系の周波数制御によ
り、基準値f0に復帰する。
At this time, the transmitted power of a healthy DC transmission system is 1.1
It will rise to ~1.3GW. However, mechanical output
Since this is very small compared to 2GW, the frequency f will continue to rise. The state where the frequency f exceeds f H1 is TH 1
Subsequently, the overspeed protection device 311 is activated and opens the circuit breaker 21, so that the generator 111 is disconnected from the grid. Then, the mechanical output is only about 1 GW generated by the prime mover 122 of the generator 112, so
The frequency begins to decrease. Then, before reaching the time TH 2 when the overspeed protection device 321 operates, the frequency f becomes lower than f H2 , so the overspeed protection device 321
21 does not operate, and therefore the generator 112 continues to be connected to the grid, so it is possible to continue generating electricity.
Then, the frequency f returns to the reference value f 0 by frequency control of the DC power transmission system.

実際には、原動機122が周波数上昇に対応し
て機械出力を減少させているので、直流送電電力
PEは、その原動機出力値に一致する。そして、
周波数が基準値f0になつた後、原動機出力は元の
値(1GW)に徐々に戻るので、直流送電電力PE
もそれに応じて増加し、元の状態に戻る。
In reality, since the prime mover 122 decreases its mechanical output in response to the frequency increase, the DC transmission power
P E corresponds to the prime mover output value. and,
After the frequency reaches the reference value f 0 , the prime mover output gradually returns to its original value (1GW), so the DC transmission power P E
increases accordingly and returns to its original state.

第3図はこの発明の他の実施例である。図にお
いて313,323は周波数の時間変化率検出器
である。
FIG. 3 shows another embodiment of the invention. In the figure, 313 and 323 are frequency time change rate detectors.

今、過速度保護装置311の設定条件として系
統周波数をfとしたとき、fH1より高い周波数が
時間TH1だけ続き、かつ、周波数の時間変化率
が正の時、遮断器21を開放する信号を発生する
ように設定しておく、又、過速度保護装置321
は、系統周波数をfとしたときfH2より高い周波
数が時間TH2だけ続き、かつ、周波数fの時間
変化率が、正の時、遮断器22を開放する信号を
発生するように設定しておく。そして、互いの設
定に関しては前述の(1)、(2)式が成立するようにし
ておく。
Now, assuming that the grid frequency is f as a setting condition for the overspeed protection device 311, a signal that opens the circuit breaker 21 when a frequency higher than f H1 continues for a time TH 1 and the time rate of change of frequency is positive. In addition, the overspeed protection device 321 is set to occur.
is set so that when the system frequency is f, a frequency higher than f H2 continues for a time TH 2 , and the time rate of change of frequency f is positive, a signal is generated to open the circuit breaker 22. put. Regarding the mutual settings, the above-mentioned equations (1) and (2) are made to hold true.

そして、従来例と同様に直流送電回線52が事
故等で開放状態になると、その回線により送電さ
れていた電力PDC2が送電出来なくなり、従来例、
及び第1図の実施例の説図で述べた時と同様に周
波数が上昇する。そして、周波数fが、fH1を越
えた状態がTH1続いた状態では、まだ、周波数
の時間変化率が正であるので、過速度保護装置3
11が作動し、遮断器21を開放するので、発電
機111が系統から解列する。すると、機械出力
は、発電機112の原動機122が発生する約
1GWだけになるので、周波数は減少し始める。
第4図に示すように、しばらくすると、周波数が
fH2を越えている時間がTH2続いた時点に至る。
第1図の実施例では、このような場合には、過速
度保護装置321が作動してしまう事になるが、
本実施例では、過速度保護装置321は、更に、
周波数fの時間変化率が正である事と言う条件が
あり、第4図に示すように、周波数fがfH2を越
えている時間がTH2続いた時点では、既に、発
電機111が解列され、機械出力と直流送電電力
のアンバランスが解消されているので、周波数の
時間変化率は負になつており、過速度保護装置3
21は動作せず、その結果、発電機112は系統
に留まつて運転を続ける事になる。このようにこ
の実施例では、保護装置の動作条件に、周波数の
時間変化率が正の値であると言う条件を加えてい
るので、第1図の実施例のように、周波数偏差の
持続時間TH1とTH2の設定に、ある程度差を持
たせ、後続して動作する方(第1図の実施例では
TH2)の保護装置の時間TH2は、先行して動作
する保護装置の動作により周波数が低下し、周波
数の基準fH2より下がる時点よりも長く設定しな
ければならないと言う制約条件は無く、周波数偏
差の持続時間TH1とTH2は、近い値に設定出来
る。これは、直流送電電力の低下量が、発電機1
11の出力より大きく、発電機112も解列しな
ければならない時、発電機112も発電機111
に続いて迅速に解列できると言う効果があり、直
流送電能力と発電機械出力のバランスを取ると言
う本発明の目的をより効果的に実現できる。周波
数の時間変化率は、例えば、一定時間毎に周波数
を計測し、前回の計測値と今回の計測値とを、計
測の時間間隔で除算すると言うような方法で検出
できる。又、検出装置に誤差のある場合には、判
定条件として、正の値という条件ではなく、誤差
を考慮した正の一定の値以上で動作すると言う条
件にすれば、誤動作等を防げることは言うまでも
ない。
As in the conventional example, when the DC power transmission line 52 becomes open due to an accident or the like, the power P DC2 that was being transmitted through that line can no longer be transmitted.
and the frequency increases as described in the illustration of the embodiment of FIG. If the frequency f continues to exceed f H1 for TH 1 , the rate of change over time of the frequency is still positive, so the overspeed protection device 3
11 is activated and opens the circuit breaker 21, so that the generator 111 is disconnected from the grid. Then, the mechanical output is approximately equal to that generated by the prime mover 122 of the generator 112.
Since there will only be 1 GW, the frequency will start to decrease.
As shown in Figure 4, after a while the frequency decreases.
The time when f H2 is exceeded continues for TH 2 .
In the embodiment shown in FIG. 1, in such a case, the overspeed protection device 321 will be activated.
In this embodiment, the overspeed protection device 321 further includes:
There is a condition that the time rate of change of the frequency f is positive, and as shown in Fig. 4, when the frequency f exceeds f H2 for TH 2 hours, the generator 111 has already been disconnected. Since the unbalance between the mechanical output and the DC transmitted power has been eliminated, the time rate of change of the frequency has become negative, and the overspeed protection device 3
21 will not operate, and as a result, generator 112 will remain on the grid and continue operating. In this way, in this embodiment, the condition that the rate of change over time of the frequency is a positive value is added to the operating conditions of the protection device, so the duration of the frequency deviation is The setting of TH 1 and TH 2 is set to have a certain difference, and the one that operates subsequently (in the example shown in Fig. 1)
There is no constraint that the protection device time TH 2 (TH 2 ) must be set longer than the point at which the frequency drops below the frequency reference f H2 due to the operation of the preceding protection device. The frequency deviation durations TH 1 and TH 2 can be set to similar values. This means that the amount of decrease in DC transmitted power is
When the output of generator 112 is greater than that of generator 11, and generator 112 also has to be disconnected, generator 112 also connects generator 111.
This has the effect of quickly disconnecting from the line following this, and the object of the present invention, which is to balance the DC power transmission capacity and the output of the generator machine, can be more effectively achieved. The time rate of change in frequency can be detected, for example, by measuring the frequency at regular intervals and dividing the previous measurement value and the current measurement value by the measurement time interval. Furthermore, if there is an error in the detection device, it goes without saying that malfunctions can be prevented if the judgment condition is not a positive value but a condition that the detector operates at a certain positive value or more that takes the error into consideration. stomach.

また、説明では発電機が2台の場合の例につい
て説明したが更に多数の発電機のある電力系統の
場合についても保護装置の動作条件を夫々変えて
設定することにより同様の効果が得られることは
言うまでもない。
In addition, in the explanation, we have explained an example in which there are two generators, but the same effect can be obtained in the case of a power system with even more generators by changing the operating conditions of each protection device. Needless to say.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、直流送電回
線に事故が発生したような場合にその直流送電電
力に対応した発電所群が電力系統に留まるよう
に、適切な量の発電所を解列出来る保護方式とし
たので、直流送電回線の事故時にも信頼性の高い
電力系統が実現出来る効果がある。
As described above, according to the present invention, when an accident occurs in a DC transmission line, an appropriate number of power plants can be disconnected so that a group of power plants corresponding to the DC transmission power remains in the power system. Since this protection method is adopted, it has the effect of realizing a highly reliable power system even in the event of an accident in the DC power transmission line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による電力系統保
護方式を施した電力系統図、第2図は、第1図の
直流送電電力が低下した時の要部の波形図、第3
図は、この発明の他の実施例である電力系統保護
方式を施した電力系統図、第4図は、第3図の実
施例で直流送電電力が低下した場合要部の波形
図、第5図は従来の電力系統保護方式を施した電
力系統図、第6図は、第5図の直流送電電力が低
下した時の要部波形図である。 図において、101,102は発電機システム
で、111,112は発電機、121,122は
原動機、131,132は調速機、21,22は
遮断器、311,321は過速度保護装置、31
3,323は周波数の時間変化率検出器、41,
42は交直変換装置、43,44は直交変換装
置、51,52は直流送電回線、6は交流母系
統、7は交流送電系統。
Fig. 1 is a power system diagram with a power system protection system according to an embodiment of the present invention, Fig. 2 is a waveform diagram of main parts when the DC transmitted power in Fig. 1 decreases, and Fig. 3
Fig. 4 is a power system diagram using a power system protection system according to another embodiment of the present invention, Fig. 4 is a waveform diagram of main parts when the DC transmitted power decreases in the embodiment of Fig. 3, and Fig. 5 The figure is a power system diagram using a conventional power system protection system, and FIG. 6 is a waveform diagram of the main part when the DC transmitted power in FIG. 5 is reduced. In the figure, 101, 102 are generator systems, 111, 112 are generators, 121, 122 are prime movers, 131, 132 are speed governors, 21, 22 are circuit breakers, 311, 321 are overspeed protection devices, 31
3,323 is a frequency time change rate detector; 41;
42 is an AC/DC converter, 43 and 44 are orthogonal converters, 51 and 52 are DC power transmission lines, 6 is an AC main system, and 7 is an AC power transmission system.

Claims (1)

【特許請求の範囲】 1 複数の交流発電所で発電された電力を交流送
電系統を介して送電し、該交流電力を直流電力に
変換して送電する直流送電回線とからなる直流送
電を含む電力系統の保護方式において、前記直流
送電回線に事故が発生した時、前記交流発電所の
交流周波数が所定の基準値を上まわり、かつ、そ
の状態が一定時間以上継続した時、該交流発電所
を交流送電系統から解列する過速度保護装置を設
け、該過速度保護装置の継続時間を各々別々に設
定することにより複数の交流発電所を異つた時刻
で逐次該交流送電系統から解列させるようにした
ことを特徴とする直流送電を含む電力系統の保護
方式。 2 前記交流発電所の交流周波数が基準値を上ま
わつた状態が所定時間継続し、かつ、周波数の時
間変化率が一定値以上の時、該発電所を交流系統
から解列する過速度保護装置を設け、該過速度保
護装置の継続時間を各々別々に設定することによ
り複数の交流発電所を異つた時刻で逐次交流送電
系統から解列させることを特徴とする特許請求の
範囲第1項記載の直流送電を含む電力系統の保護
方式。
[Scope of Claims] 1. Electric power including DC power transmission consisting of a DC power transmission line that transmits power generated at a plurality of AC power plants via an AC power transmission system, converts the AC power into DC power, and transmits the power. In the system protection system, when an accident occurs in the DC transmission line, the AC frequency of the AC power plant exceeds a predetermined reference value, and this condition continues for a certain period of time, the AC power plant is By providing an overspeed protection device that disconnects from the AC power transmission system and setting the duration of each overspeed protection device separately, multiple AC power plants can be disconnected from the AC power transmission system sequentially at different times. A protection system for power systems including DC power transmission, characterized by the following: 2. An overspeed protection device that disconnects the power plant from the AC system when the AC frequency of the AC power plant continues to exceed a reference value for a predetermined period of time and the rate of change over time of the frequency exceeds a certain value. Claim 1, characterized in that a plurality of AC power plants are sequentially disconnected from an AC power transmission system at different times by providing a plurality of AC power plants and separately setting the duration of each overspeed protection device. A protection method for power systems including DC power transmission.
JP61048686A 1986-03-07 1986-03-07 Protective method of power system including dc transmission Granted JPS62207115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61048686A JPS62207115A (en) 1986-03-07 1986-03-07 Protective method of power system including dc transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61048686A JPS62207115A (en) 1986-03-07 1986-03-07 Protective method of power system including dc transmission

Publications (2)

Publication Number Publication Date
JPS62207115A JPS62207115A (en) 1987-09-11
JPH0550206B2 true JPH0550206B2 (en) 1993-07-28

Family

ID=12810197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048686A Granted JPS62207115A (en) 1986-03-07 1986-03-07 Protective method of power system including dc transmission

Country Status (1)

Country Link
JP (1) JPS62207115A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115044A (en) * 1978-03-20 1978-10-07 Hitachi Ltd Selective breaker for generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115044A (en) * 1978-03-20 1978-10-07 Hitachi Ltd Selective breaker for generator

Also Published As

Publication number Publication date
JPS62207115A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
DK2580836T3 (en) Wind energy plant and method for operating a wind power plant
EP2528184B1 (en) Method and apparatus for controlling a DC-transmission link
CA2833953C (en) System and method for detecting a grid event
US9459320B2 (en) Fault detection in brushless exciters
US10396695B2 (en) Method for protecting an electrical power system
CA2667229C (en) Controllable phase-angle converter
EP2706643A2 (en) Method and systems for operating a wind turbine using dynamic braking in response to a grid event
US20120139264A1 (en) Protection arrangement of an electric power system
CA2766768A1 (en) System and method for mitigating an electric unbalance of a three-phase current at a point of common coupling between a wind farm and a power grid
CN101710815B (en) System and method for controlling low voltage ride through of grid side converter of double-feed induction wind driven generator in power grid three-phase short-circuit failure
WO2003058789A1 (en) Power grid connection system for a wind turbine generator
Usta et al. Protection of dispersed storage and generation units against islanding
US20150233982A1 (en) Detection of load-shedding of an inverter
JPH0550206B2 (en)
JP2011211817A (en) Wind power generation system, and control unit for the same
EP3745588B1 (en) Dual-frequency filter for distinguishing between different types of grid events
JP3353549B2 (en) Islanding operation detection device of inverter for grid interconnection
US11255309B2 (en) System and method for increasing mechanical inertia of a wind turbine rotor to support a power grid during an over-frequency or under-frequency disturbance of the grid
US4406984A (en) Current responsive devices for synchronous generators
WO2019212562A1 (en) Method for protecting an electrical power system
JPH09252541A (en) Single operation detector for synchronous generator
JP3629324B2 (en) Synchronous generator isolated operation detection method
JP2642509B2 (en) System frequency rise prevention relay device
SHUKLA et al. Power System Stability and Control
CN113169544A (en) Detection device and method for detecting a fault in a transformer of a wind turbine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees