JPH05501937A - Solid metal-sulfur cell - Google Patents

Solid metal-sulfur cell

Info

Publication number
JPH05501937A
JPH05501937A JP2514987A JP51498790A JPH05501937A JP H05501937 A JPH05501937 A JP H05501937A JP 2514987 A JP2514987 A JP 2514987A JP 51498790 A JP51498790 A JP 51498790A JP H05501937 A JPH05501937 A JP H05501937A
Authority
JP
Japan
Prior art keywords
cell
sulfur
anode
aliphatic
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2514987A
Other languages
Japanese (ja)
Other versions
JP3102880B2 (en
Inventor
ヴィスコ スティーヴン ジェイ
リュー メイリン
デジョング ルトガード シー
Original Assignee
ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23669134&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05501937(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア filed Critical ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
Publication of JPH05501937A publication Critical patent/JPH05501937A/en
Application granted granted Critical
Publication of JP3102880B2 publication Critical patent/JP3102880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3954Sodium-sulfur cells containing additives or special arrangement in the sulfur compartment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本明細書に記載された発明は、米国エネルギー省とカリフォルニア大学の契約第 DE−AC03−763FOOO98号のもとに生したものであり、米国政府は その発明に権利を有する。[Detailed description of the invention] The invention described herein is the subject of a contract between the U.S. Department of Energy and the University of California. DE-AC03-763FOOO98, and the U.S. government have the right to the invention.

本発明は二次電池を製造するための金属−硫黄型セル、特に固体状態でその全て の構成部分てもって操作するセルに関する。The present invention relates to a metal-sulfur type cell for manufacturing a secondary battery, particularly in a solid state. relates to a cell that operates with its constituent parts.

二次電池は、特に、多量のエネルギーか必要とされない用途で現代社会で広範囲 で使用されている。しかしながら、かなりの電力を要する用途で蓄電池を使用す ることか所望され、そして電気自動車の如き高電力用途に適した蓄電池を開発す るのに多大の努力か費やされている。勿論、このような蓄電池はまたカメラまた は卓上記録装置の如き低電力用途に使用するのに適している。Secondary batteries are widely used in modern society, especially in applications that do not require large amounts of energy. used in However, storage batteries cannot be used in applications that require significant amounts of power. Developing storage batteries that are desirable and suitable for high power applications such as electric vehicles. A great deal of effort is expended to Of course, such storage batteries can also be used for cameras or is suitable for use in low power applications such as desktop recording devices.

現時点で、最も普通の二次電池は、おそらく自動車に使用される鉛−酸蓄電池で ある。蓄電池は、性能を殆と損失しないで多くの充電サイクルで操作し得るとい う利点を有する。しかしながら、このような蓄電池は低い電力対重量の比を有す る。重量比を改良するために、リチウム蓄電池が充分に研究され、これらの系の 成るものは成る種の用途に有望である。改良かなされているので、更に広い用途 かその後開発されるものと認められる。At present, the most common secondary battery is probably the lead-acid battery used in automobiles. be. Batteries can be operated for many charge cycles with little loss of performance. It has the following advantages. However, such storage batteries have a low power-to-weight ratio. Ru. In order to improve the weight ratio, lithium storage batteries have been well studied and the It is promising for various applications. Since it has been improved, it can be used even more widely. It is recognized that the technology will be developed later.

リチウムポリエチレンオキサイドセルの開発は典型的には約50の性能係数(F OM)を有しており、この係数はサイクル数に平均サイクルキャパシティを掛け 、そして過度の設定リチウムキャパシティで割ることにより計算される。このよ うなセルの代表例か米国特許IE4.589.197号明細書に見られ、この特 許は電気活性物質か内位添加化合物であるリチウム/ポリエチレン蓄電池系を記 載している。また、この種の蓄電池は、性能を殆と損失しないで大きなサイズに スケール・アップし得ることか示されている。The development of lithium polyethylene oxide cells typically has a coefficient of performance (F OM), and this factor is calculated by multiplying the number of cycles by the average cycle capacity. , and is calculated by dividing by the excess set lithium capacity. This way A representative example of the cell is found in US Patent No. IE 4.589.197, and this lithium/polyethylene battery systems with electroactive materials or intercalation compounds. It is listed. Additionally, this type of battery can be scaled up to large sizes with little loss in performance. It has been shown that it can be scaled up.

その他のリチウム型セルが米国特許第4.833.048号明細書に見られ、こ れは充電状態で硫黄−硫黄結合(これらの結合は放電状態で分解されて有機金属 塩を生成する)を有する有機硫黄陽極を使用する。この特許は優れた重量比を存 するセルを開示しているが、開示された電極は液状で使用され、そして所望の電 流輸送を与えるためには溶剤か必要とされた。本発明は、これらの特許の系に改 良を加えるものである。詳しくは、本発明は室温または周囲温度に於ける操作能 力と共に120程度のFOMを有するセルを提供する。Other lithium-type cells are found in U.S. Pat. No. 4,833,048, which This is a sulfur-sulfur bond in the charged state (these bonds are broken down in the discharged state to form organometallic using an organic sulfur anode (which produces salts). This patent has an excellent weight ratio. However, the disclosed electrodes are used in liquid form and the desired voltage is A solvent was required to provide flow transport. The present invention is a modification of the series of these patents. It adds goodness. Specifically, the present invention provides the ability to operate at room or ambient temperature. It provides a cell with a FOM of the order of 120 along with a force.

発明の要約 それ故、本発明の主目的は、高い性能係数を有し、しかも周囲温度で操作し得る 金属−硫黄型セルを提供することである。Summary of the invention Therefore, the main object of the present invention is to have a high coefficient of performance and yet be able to operate at ambient temperature. An object of the present invention is to provide a metal-sulfur type cell.

本発明の別の目的は、全ての構成部分か固体状態であり、しかも再現可能な性能 値を存するユニットに信頼性良く加工し得るセルを提供することである。Another object of the invention is that all components are in solid state and yet have reproducible performance. It is an object of the present invention to provide a cell that can be reliably processed into a unit that has a value.

本発明の更に別の目的は、負荷レベリング用及び/または自動車用に対する要望 をはるかに越えるエネルギー対重量比を有する蓄電池を提供することである。Yet another object of the invention is the need for load leveling and/or automotive applications. The object of the present invention is to provide a storage battery having an energy-to-weight ratio far exceeding .

これらの目的及びその他の目的は、明細書の進行につれて明らかになる。These and other objectives will become apparent as the specification progresses.

本発明によれば、複合陽極と複合陽極系でつくられた蓄電池系とか提供される。According to the present invention, a composite anode and a storage battery system made of a composite anode system are provided.

完全充電状態で、陽極は1次元、2次元、または3次元のポリマー電気活性成分 を含む。1次元の線状形態では、この成分は(SRS) 、 (式中、Rは以下 に定義されるような有機部分であり、且つnは充電状態で2より大きく、好まし くは20より大きい)として表すことかできる。半セル反応は下記のように表す ことかでき、(SRS) 、 + 2 n e−=n−SRS−そして全セル反 応は下記のように表すことができる。In a fully charged state, the anode is a one-, two-, or three-dimensional polymeric electroactive component. including. In one-dimensional linear form, this component is (SRS), where R is and n is greater than 2 in the charged state, preferably or greater than 20). The half-cell reaction is expressed as below. It can be said that (SRS), +2n e-=n-SRS- and all cells are reversed. The response can be expressed as follows.

(SRS) s+2nLi=nLizSRS最も一般的な意味で、固体状態の有 機硫黄電極の電気活性成分は充電状態で(R3、) 、により表すことかできる 。式中、yは2〜6であり、nは2より大きく、好ましくは20より大きく、且 つRは1〜20個の炭素原子を有する一種以上の異なる脂肪族部分または芳香族 部分であり、これらの部分は、Rが1個以上の芳香族環を含む場合には、1個以 上の酸素、リン、ケイ素、硫黄または窒素へテロ原子を含んでもよく、またはR が脂肪族鎖を含む場合には、その鎖と会合した1個以上の酸素、リン、ケイ素、 硫黄、窒素またはフッ素原子を含んでもよく、脂肪族基は線状であってもよく、 または分岐していてもよく、飽和または不飽和であってもよ(、脂肪族鎖または 芳香族環は置換基を育していてもよく、前記の有機硫黄陽極は充電状態である場 合に多数の硫黄−硫黄結合により更に特徴付けられ、これらの結合はセルの放電 後に分解されてセル中で金属イオンと有機金属塩を生成する。(SRS) s+2nLi=nLizSRS In the most general sense, solid state existence The electroactive component of the sulfur electrode can be represented by (R3, ) in the charged state. . where y is 2 to 6, n is greater than 2, preferably greater than 20, and R is one or more different aliphatic or aromatic moieties having 1 to 20 carbon atoms moieties, and these moieties include one or more aromatic rings when R contains one or more aromatic rings. or R contains an aliphatic chain, one or more oxygen, phosphorus, silicon, It may contain sulfur, nitrogen or fluorine atoms, and the aliphatic group may be linear; or may be branched, saturated or unsaturated (, aliphatic chains or The aromatic ring may carry a substituent, and the organic sulfur anode described above is in a charged state. The cell is further characterized by a large number of sulfur-sulfur bonds, and these bonds are responsible for the discharge of the cell. It is later decomposed to produce metal ions and organometallic salts in the cell.

陽極中の充電/放電プロセスは可逆的な酸化還元重合(またはモノマ−R55R 化合物の場合には酸化還元二量体化/切断)として考えることができる。2次元 (ラダーポリマー)!極の例は、下記のようなポリエチレンイミンジスルフィド により示し得る。The charge/discharge process in the anode is a reversible redox polymerization (or monomer R55R In the case of compounds, it can be considered as redox dimerization/cleavage). 2D (Ladder polymer)! An example of a pole is polyethyleneimine disulfide such as It can be shown by

これらのポリマー電極材料はアルカリ金属イオンを輸送するが、多くの場合、内 位添加系電極で行われているように、電極内の迅速なイオン輸送に適したポリマ ー電解質、例えばポリエチレンオキサイドを含むことが必要であり、または所望 される。更に、有機硫黄電極は導電性ではないので、少量のカーボンブラック( 典型的には7重量%)または同等のコンダクタ−粒子を複合電極中に分散させる ことが重要である。ポリマー陽極中のこれらの材料の範囲は、約30重量%〜8 0重量%の活性有機硫黄、約20重量%〜約70重量%のポリマー電解質、及び 約1重量%〜約20重量%のコンダクタ−粒子である。These polymeric electrode materials transport alkali metal ions, but often internally Polymers suitable for rapid ion transport within the electrode, as is done in doped electrodes. – Necessary or desirable to contain an electrolyte, e.g. polyethylene oxide be done. Furthermore, since organosulfur electrodes are not conductive, a small amount of carbon black ( conductor particles (typically 7% by weight) or equivalent are dispersed in the composite electrode. This is very important. The range of these materials in the polymer anode is about 30% by weight to 8% 0% by weight active organic sulfur, about 20% to about 70% by weight polymer electrolyte, and From about 1% to about 20% by weight conductor particles.

所望の混合物は、アセトニトリル中に(SR3)。ポリマー、ポリエチレンオキ サイド、及びカーボンブラック粉末を溶解または分散させ、続いて溶剤を蒸発さ せて薄膜(例えば、10〜200ミクロン)の固体複合電極をキャストすること により得られる。好ましい場合には、陽極は有機硫黄酸化還元ポリマー、ポリエ チレンオキサイド、及びカーボンブラックを含む複合電極である。The desired mixture is in acetonitrile (SR3). Polymer, polyethylene oxide side, and dissolve or disperse the carbon black powder, followed by evaporation of the solvent. casting a thin film (e.g. 10-200 microns) solid composite electrode. It is obtained by In preferred cases, the anode is made of an organic sulfur redox polymer, polyester. This is a composite electrode containing tyrene oxide and carbon black.

完全に充電された状態で、有機硫黄陽極は一般式(SR3) 、のちのであり、 その重要な特徴はアルカリ金属チオ塩の酸化後の硫黄−硫黄結合の形成である。In a fully charged state, the organic sulfur anode has the general formula (SR3), later, Its important feature is the formation of sulfur-sulfur bonds after oxidation of the alkali metal thiosalt.

好ましい電極はポリマージスルフィドであるが、米国特許第4.833.048 号明細書に記載されているようなモノマージスルフィド(RSSR)がまた固体 状態の蓄電池で有効であると考えられる。完全に放電された状態で、有機硫黄電 極はポリマー電解質マトリックス中に分散されたポリチオアニオン及び/または ジチオアニオン(−SRS−)を含む。最終の放電生成物は、勿論、ポリマー鎖 中のR基の種類及び完全に酸化されたポリマー陽極の次元数に依存する。Preferred electrodes are polymeric disulfides, but US Pat. No. 4.833.048 Monomeric disulfide (RSSR) as described in It is considered to be effective for storage batteries in the state. In a fully discharged state, the organic sulfur battery The electrodes are polythioanions and/or dispersed in a polymer electrolyte matrix. Contains dithioanion (-SRS-). The final discharge product is, of course, a polymer chain It depends on the type of R groups therein and the number of dimensions of the fully oxidized polymer anode.

本発明の別の利点は、種々の金属に対して可逆性である固体状態の電極の能力に ある。リチウムは最低の当量及び相当する重量の利点を存するが、それはナトリ ウムよりも高価である。加えて、ポリエチレンオキサイドの如き好ましいポリエ ーテル電解質の導電率は、リチウム輸送の場合よりもナトリウム輸送の場合に高 い。従って、内位添加型セルは実際問題としてリチウムを必要とするか、本電極 の負極は多くの異なる金属を含んでもよい。それ故、アルカリ金属もしくはアル カリ土類金属または遷移金属(ポリエーテル電解質はZn″+の如き2価のカチ オンを輸送することが示された)、特にリチウム及び/またはナトリウムを含む 混合物か本発明の範囲内にある。Another advantage of the present invention lies in the ability of solid state electrodes to be reversible to a variety of metals. be. Although lithium has the advantage of lowest equivalent weight and equivalent weight, it It is more expensive than Umu. In addition, preferred polyesters such as polyethylene oxide The conductivity of the electrolyte is higher for sodium transport than for lithium transport. stomach. Therefore, as a practical matter, intercalation cells require lithium, or this electrode The negative electrode may include many different metals. Therefore, alkali metals or Potassic earth metals or transition metals (polyether electrolytes contain divalent metals such as Zn″+) ), especially containing lithium and/or sodium Mixtures are also within the scope of this invention.

本発明のセルに使用される電解質は、電極のセパレーターとして、また金属イオ ンの輸送媒体として作用する。それ故、金属イオンを輸送し得るあらゆる固体材 料が使用し得る。例えば、ナトリウムβアルミナか有効であることが示された。The electrolyte used in the cell of the present invention can be used as an electrode separator and as a metal ion Acts as a transport medium for water. Therefore, any solid material capable of transporting metal ions fees may be used. For example, sodium beta alumina has been shown to be effective.

しかしなから、固体電解質セパレーターは、適当な電解質塩か添加された好適な ポリマー電解質、例えばポリエーテル、ポリイミド、ポリチオエーテル、ポリホ スファゼン、ポリマーブレンド、等であることか好ましい。However, solid electrolyte separators do not contain suitable electrolyte salts or suitable electrolyte salts. Polymer electrolytes such as polyethers, polyimides, polythioethers, polyphos Preferably, they are sphazenes, polymer blends, etc.

図面の簡単な説明 図1は本発明によりつくられたセルの主構成部分の断面図である。Brief description of the drawing FIG. 1 is a cross-sectional view of the main components of a cell made according to the present invention.

図2は本発明の一実施態様の操作を示し、それを従来技術の実施態様のデータと 比較するデータをグラフ形態で示す。FIG. 2 illustrates the operation of one embodiment of the present invention and compares it with data of a prior art embodiment. The data to be compared is shown in graphical form.

発明の詳細な説明 図1に示されたような金属−硫黄量セルは、負極12と並列の集電装置11、陽 極I4と並列の集電装置I3、及び負極I2と陽極I4の間にはさまれた電解質 15を含む。Detailed description of the invention A metal-sulfur content cell such as that shown in FIG. A current collector I3 in parallel with the pole I4, and an electrolyte sandwiched between the negative pole I2 and the positive pole I4. Contains 15.

典型的セルでは、これらの構成部分の全部かプラスチック等の適当なケース(図 示されていない)中に密閉され、集電装置のみか閉鎖容器を越えて延びている。A typical cell may contain all of these components or a suitable case such as plastic (see fig. (not shown) with only the current collector extending beyond the enclosure.

このようにして、負極中のナトリウムまたはリチウムの如き反応性金属か保護さ れる。同様に、セルのその他の部分の保護か施される。In this way, reactive metals such as sodium or lithium in the anode are protected. It will be done. Similarly, protection of other parts of the cell is provided.

好適な蓄電池構造は、所望によりセル構成部分及びセルを組み立てるための既知 技術によりつくることかでき、そして本発明を使用して既知の形態のいずれかが 加工し得る。正確な構造は、主として蓄電池ユニットに関して目的とされる用途 に依存する。しかしなから、セルユニットは全て周囲温度で操作中に実質的に固 体状態であることか認められる。Suitable battery structures include cell components and known methods for assembling the cell, if desired. any of the known forms can be made by the technique and using the present invention. Can be processed. The exact structure mainly depends on the intended use for the storage battery unit. Depends on. However, all cell units are substantially solid during operation at ambient temperature. It is recognized that this is a physical condition.

再度、図1を参照して、集電装置11及び13はステンレス鋼の如き導電性材料 のシートであり、これらはセルの放電及び充電中に実質的に未変化のままであり 、しかもセルのカソードとアノードに電流接続を与える。負極12はリチウムま たはナトリウムの如きアルカリ金属であることが好ましく、ナトリウムかリチウ ムより好ましい。有機硫黄カソード即ち陽極I4は上記の集電装置I3の上に箔 にされ、全ユニットか示されるように電極間にはさまれた電解質I5と一緒にプ レスされる。Referring again to FIG. 1, current collectors 11 and 13 are made of a conductive material such as stainless steel. sheets, which remain substantially unchanged during cell discharging and charging. , and provide current connections to the cell's cathode and anode. The negative electrode 12 is made of lithium or or an alkali metal such as sodium, preferably sodium or lithium. It is preferable to The organosulfur cathode or anode I4 is a foil on top of the current collector I3 described above. and the entire unit is pumped with electrolyte I5 sandwiched between the electrodes as shown. will be responded to.

その図面中、全てのセル構成部分の厚さは説明のため拡大されており、これらの 構成部分の全ては典型的にはかなり薄いシートである。例えば、典型的なリチウ ムまたはナトリウム固体アノード12は約10〜50ミクロンの厚さてあり、典 型的な固体複合ポリマーカソード14は約50〜100 ミクロンの厚さであり 、典型的なPEO電解質15は約10〜100 ミクロンの厚さである。In the drawing, the thickness of all cell components are exaggerated for illustrative purposes; All of the components are typically fairly thin sheets. For example, a typical Lichiu The aluminum or sodium solid anode 12 is approximately 10 to 50 microns thick and typically The typical solid composite polymer cathode 14 is approximately 50-100 microns thick. , a typical PEO electrolyte 15 is approximately 10-100 microns thick.

好ましい電解質は、LiN(CF3SO,)!の如き可塑化電解質塩か添加され たポリエチレンオキサイドの如きポリアルキレンオキサイドである。可塑化電解 質塩の効果は、ポリエーテルを低温でアモルファス(導電性)状態に維持し、そ れによりセルの低温操作を可能にすることである。A preferred electrolyte is LiN(CF3SO,)! Plasticizing electrolyte salts such as Polyalkylene oxide such as polyethylene oxide. plasticizing electrolysis The effect of the salt is to maintain the polyether in an amorphous (conductive) state at low temperatures; This allows the cell to operate at low temperatures.

本発明によれば、本発明の新規な陽極を構成する有機硫黄化合物は有機部分と第 一結合を形成し、そして有機硫黄材料かその充電状態にある場合に別の硫黄原子 (これはまた有機部分に結合される)と第二結合を形成する少なくとも一つの硫 黄原子を有する有機硫黄材料により特徴付けられる。その化合物がその放電状態 にある場合、硫黄−硫黄結合が分解され、ナトリウムの如き金属イオンか、得ら れる有機硫黄アニオンの夫々と塩を生成する。According to the present invention, the organic sulfur compound constituting the novel anode of the present invention has an organic moiety and an organic moiety. One sulfur atom forms a bond with another sulfur atom when the organic sulfur material is in its charged state. (which is also bonded to the organic moiety) and at least one sulfur bond forming a second bond. Characterized by organic sulfur materials with yellow atoms. The compound is in its discharge state When the sulfur-sulfur bond is broken down, metal ions such as sodium or Each of the organic sulfur anions produced forms a salt.

こうして、陽極材料は、基本式即ち主鎖の式R−3−を含む有機硫黄材料を含む 。Thus, the anode material comprises an organic sulfur material having the basic formula or backbone formula R-3-. .

その充電状態で、1個以上の硫黄原子(以下に説明される)は−5−3−結合を 形成し、別のR−8−基の硫黄原子はR−3−5−Rを形成する。放電後に、5 −8−結合は分解され、夫々のトS−基か例えばナトリウムの如き金属イオンと 塩、例えばR−3−Naを生成する。In its charged state, one or more sulfur atoms (described below) form a -5-3- bond. and the sulfur atom of another R-8- group forms R-3-5-R. After discharge, 5 The -8- bond is broken and the respective S- group is separated from the metal ion, e.g. sodium. A salt such as R-3-Na is produced.

また、有機部分を表すR基は、以下に説明されるように、二重結合によりそれに 結合された硫黄原子、即ちR=Sを存することかできるだけでなく、上記の硫黄 原子を有することかできる。また、R基は、例えば−5−R−S−の場合に、単 結合によりそれに結合された1個より多い硫黄原子を有し、こうして重合を可能 にする。Additionally, the R group representing an organic moiety may be attached to it by a double bond, as explained below. Not only can there be a bonded sulfur atom, i.e. R=S, but also the above sulfur Can have atoms. Furthermore, in the case of, for example, -5-R-S-, the R group is a single has more than one sulfur atom attached to it by a bond, thus allowing polymerization Make it.

また、R基がそれに単結合された3個以上のこのような硫黄原子を有する場合に は、分岐か生しることがある。Also, when the R group has three or more such sulfur atoms single-bonded to it, may branch or grow.

それ故、本発明の新規な陽極を構成する有機硫黄材料の一般式は、その充電状態 で、(R(S)ア)6と書くことかできる。式中、yは2〜6であり、nは20 より大きく、Rは1〜20個の炭素原子を存する一種以上の同種または異種の脂 肪族有機部分または芳香族有機部分であり、これらの部分は、Rが1個以上の芳 香族環を含む場合には、1個以上の酸素、硫黄、リン、ケイ素または窒素へテロ 原子を含んでもよく、またはRか脂肪族鎖を含む場合には、その鎖と会合した1 個以上の酸素、リン、ケイ素、硫黄、窒素またはフッ素原子を含んでもよく、脂 肪族基は線状であってもよく、または分岐していてもよく、飽和または不飽和で あってもよく、脂肪族鎖または芳香族環は置換基を存していてもよい。Therefore, the general formula of the organic sulfur material constituting the novel anode of the present invention is that its state of charge is So, it can be written as (R(S)a)6. In the formula, y is 2 to 6, and n is 20 R is one or more homologous or heterogeneous lipids having from 1 to 20 carbon atoms. aliphatic organic moieties or aromatic organic moieties, where R is one or more aromatic organic moieties. If it contains an aromatic ring, it contains one or more oxygen, sulfur, phosphorus, silicon or nitrogen heterocycles. atoms or, if R includes an aliphatic chain, 1 associated with that chain. may contain more than one oxygen, phosphorus, silicon, sulfur, nitrogen or fluorine atom; Aliphatic groups may be linear or branched, saturated or unsaturated. The aliphatic chain or aromatic ring may have a substituent.

一般式(R(S)ア)、中のnか2より大きい場合には、有機硫黄陽極材料の少 なくとも一部は同し有機部分に結合された1個より多い硫黄原子を含む有機部分 を含み、且つ別の有機部分に結合された硫黄と硫黄−硫黄結合を形成し得る。こ うして、その充電状態で、ポリマー状材料は、不純物または重合を停止するため のモノスルフィド有機部分、例えば、CH=−CH2−5−Naの如き連鎖停止 剤の存在に応したポリマーの長さで生成し得る。例えば、このようなポリマーは 、その鎖の夫々の末端でこのような硫黄原子を育する線状脂肪族鎖、例えば、− 3−CH,CH2−5−を含むことかでき、二量体、オリゴマー、等、例えば、 一般式(R(S) ! ) 、に相当する−3−CH2CH,−3−S−C)1 .cH,−3−S−CH,CI(2−3−の生成を可能にする。If n in the general formula (R(S)a) is greater than 2, the amount of organic sulfur anode material an organic moiety containing more than one sulfur atom, at least in part bound to the same organic moiety and can form sulfur-sulfur bonds with sulfur bonded to another organic moiety. child Thus, in its charged state, the polymeric material is free from impurities or to stop polymerization. monosulfide organic moieties, e.g., chain termination such as CH=-CH2-5-Na Polymer lengths can be produced depending on the presence of the agent. For example, such polymers , a linear aliphatic chain bearing such a sulfur atom at each end of the chain, e.g. 3-CH, CH2-5-, dimers, oligomers, etc., e.g. -3-CH2CH, -3-S-C)1 corresponding to the general formula (R(S)!), .. cH, -3-S-CH, CI (enables the production of 2-3-).

同様に、有機硫黄化合物は、他の有機硫黄材料の隣接硫黄原子と硫黄−硫黄結合 を形成し得る2個より多い硫黄を含む分岐ポリスルフィド材料を構成してもよい 。例えば、夫々のR基が硫黄−硫黄結合を形成し得る3個の硫黄原子を含む場合 には、一般式は(R(S) 、 ) 、と書くことかできる。Similarly, organosulfur compounds have sulfur-sulfur bonds with adjacent sulfur atoms of other organosulfur materials. branched polysulfide materials containing more than two sulfurs capable of forming . For example, if each R group contains three sulfur atoms capable of forming a sulfur-sulfur bond , the general formula can be written as (R(S), ).

こうして、yは、R基の二重結合された硫黄原子の存在、並びに池の分子の同様 の硫黄原子と硫黄−硫黄結合を形成し得るその1個より多い硫黄原子の存在の可 能性の両方を認めて一般式中で1〜6の値を与えられた。一般式中のnの値は2 0より大きいことか好ましいか、例えば環形成によるような重合の低段階の可能 性を認めて、また固体状態の蓄電池か重合しない有機硫黄化合物で利点を有する ので、2〜20を含む範囲を与えられた。上限はnについて課せられなかった。Thus, y depends on the presence of a doubly bonded sulfur atom in the R group as well as the similar The possibility of the presence of more than one sulfur atom that can form a sulfur-sulfur bond with the sulfur atom of A value of 1 to 6 was given in the general formula in recognition of both abilities. The value of n in the general formula is 2 Greater than 0 or preferred, possibility of low steps of polymerization, e.g. by ring formation It also has advantages in solid-state storage batteries and non-polymerizing organic sulfur compounds. Therefore, a range including 2-20 was given. No upper limit was imposed on n.

何となれば、重合度は使用される有機硫黄化合物の性質により充電条件のもとに 制限されるからである。After all, the degree of polymerization depends on the nature of the organosulfur compound used and under the charging conditions. This is because it is restricted.

有機硫黄電極の酸化−還元化学は米国特許第4.833.048号明細書に充分 に説明されており、その中の関係する部分か参考として含まれる。本発明は、同 様の有機硫黄電極を使用するか、固体状態て低温で操作することにより異なる。The oxidation-reduction chemistry of organosulfur electrodes is fully described in U.S. Pat. No. 4,833,048. , and relevant parts thereof are included for reference. The present invention They differ by using similar organic sulfur electrodes or by operating at low temperatures in the solid state.

それ故、本発明は、モノマー単位か20を越え、好ましくは50単位より高い有 機硫黄ポリマーを好む。加えて、本発明の陽極は、特別な電流輸送添加剤を使用 することにより引用特許の陽極と異なる。Therefore, the present invention provides that the monomer units have a monomer unit of more than 20, preferably more than 50, Machines prefer sulfur polymers. In addition, the anode of the present invention uses special current transport additives. This makes it different from the anode in the cited patent.

固体状態のセルの操作温度は一40〜145°Cの範囲てあり、電極または電解 質の融点により高い範囲で制限される。好ましい温度範囲は周囲温度から100 ℃までである。ナトリウム負極は98°C未満の温度に制限されるが、Na4P bの如きナトリウム合金電極か100″Cより上て固体形態て良好に使用し得る 。The operating temperature of solid-state cells ranges from -40°C to 145°C, and the electrode or electrolytic Limited to a high range by the melting point of the quality. The preferred temperature range is from ambient temperature to 100°C. up to ℃. Although sodium negative electrodes are limited to temperatures below 98 °C, Na4P Sodium alloy electrodes such as those in solid form above 100"C can be used successfully. .

固体ポリマー電解質及び固体酸化還元重合カソードの使用は、硬質または液体の 電解質の使用に関連する難点かなく、全固体状態で製造することを可能にする。The use of solid polymer electrolytes and solid redox polymerization cathodes can be It allows production in an all-solid state without the difficulties associated with the use of electrolytes.

固体ポリマー電解質及び固体酸化還元重合カソードの接着性及び弾性は、セルサ イクル中の固体電解質と電極の電気接触の損失または重大な低下を防止する。加 えて、本発明は固体の安全な組成物による成る種の液体の腐食性材料の置換によ りその技術の状態に改良を与える。この置換は、本発明を使用する蓄電池を高度 に自動化された方法により製造、包装することをはるかに容易にし、しかも容器 材料に対して非腐食性であるセルを与える。The adhesion and elasticity of solid polymer electrolytes and solid redox polymer cathodes are prevent loss or significant degradation of electrical contact between the solid electrolyte and the electrodes during the cycle. Canada Additionally, the present invention provides for the replacement of certain types of liquid corrosive materials by solid, safe compositions. Provide improvements to the state of the art. This substitution makes storage batteries using the present invention highly automated methods make it much easier to manufacture and package containers. Provides cells that are non-corrosive to the material.

実験室試験の以下の実施例は本発明を更に説明するのに役立つ。The following examples of laboratory tests serve to further illustrate the invention.

ナトリウム負極、ナトリウムβアルミナ電解質、並びに(SRS)n、ポリエチ レンオキサイド及びカーボン粒子でつくられた陽極で実験室蓄電池を組み立てた 。使用した(SR3)nポリマーは2.5ジメルカプトl、3. 4チオジアゾ ールのポリマーであり、そのポリマーの3単位は以下の構造式で示される。Sodium negative electrode, sodium β-alumina electrolyte, and (SRS)n, polyethylene A laboratory battery was assembled with an anode made of ren oxide and carbon particles. . The (SR3)n polymer used was 2.5 dimercapto, 3. 4thiodiazo The three units of the polymer are represented by the following structural formula.

複合陽極を約1oOミクロンの厚さくこれは約0.0115g/cm”の電極表 面積と言い換えられる)にキャストした。100ミクロンのポリマーフィルムの 有効キャパシティは約6.4クーロン/cm2即ち1.8mAh/cm”であっ た。組み立てたセルを6クーロンの終点(100%のキャパシティと定義される )までサイクルした。これらのセルを合計80サイクルにわたって種々の温度及 び電流密度で充電、放電し、性能の低下の認められる形跡は全くなかった。13 0°Cの操作温度で、セルを41TIA/Cm2の電流密度で100%の有効キ ャパシティまで放電でき、3mA/cm2の電流密度で完全に再充電でき、その 後のサイクルに悪影響しなかった。更に、セルは10mA/cm2程度に高い比 率で50%の有効キャパシティまで放電でき、6mA/cm2程度に高い比率で 65%の有効キャパシティで充電できた。更に、これらの格別高い充電/放it 流密度は固体ポリマー電極の保全性を害しなかった。これらの研究の結果は、激 しい電気化学的条件下でさえも固体酸化還元分極電極の可逆性及び信頼性を実証 した。The composite anode has a thickness of approximately 100 microns, which is approximately 0.0115 g/cm" electrode surface. (which can be translated as area). 100 micron polymer film The effective capacity is approximately 6.4 coulombs/cm2 or 1.8 mAh/cm". Ta. Bring the assembled cell to the endpoint of 6 coulombs (defined as 100% capacity) ) was cycled. These cells were subjected to various temperatures and conditions for a total of 80 cycles. The battery was charged and discharged at high current densities, with no apparent evidence of performance deterioration. 13 At an operating temperature of 0°C, the cell was charged to 100% effective key at a current density of 41 TIA/Cm2. It can be discharged to capacity and fully recharged at a current density of 3mA/cm2, and There were no negative effects on subsequent cycles. Furthermore, the cell has a high ratio of around 10mA/cm2. It can discharge up to 50% effective capacity at a rate as high as 6mA/cm2. It was able to charge at 65% effective capacity. Furthermore, these exceptionally high charging/discharging The flow density did not harm the integrity of the solid polymer electrode. The results of these studies are Demonstrates reversibility and reliability of solid redox polarized electrodes even under novel electrochemical conditions did.

リチウム負極、ポリエチレンオキサイド電解質、並びに(SR3)nポリマー、 ポリエチレンオキサイド及びカーボン粒子でつくられた陽極でつくられたセルを 、本発明に従ってつくられた薄膜蓄電池の実際の性能を試験するためにつくった 。これらのセルに使用した固体電解質は、リチウムトリフレート(LiCF、5 O−)、リチウムバークロレート(LiCIO4)、またはその他の適当な電解 質塩でドーピングされたポリエチレンオキサイドであった。電解質塩の濃度は塩 1分子当たり8 PEOモノマー単位(CH2CH,O)であり、本明細書中P E0sL+Xとして略記され、この場合、Xは塩アニオンである。使用した有機 硫黄ポリマーはナトリウムセルに関して上記したポリマーと同してあった。Lithium negative electrode, polyethylene oxide electrolyte, and (SR3)n polymer, A cell made with an anode made of polyethylene oxide and carbon particles. , was created to test the actual performance of thin film storage batteries made in accordance with the present invention. . The solid electrolyte used in these cells was lithium triflate (LiCF, 5 O-), lithium barchlorate (LiCIO4), or other suitable electrolyte It was polyethylene oxide doped with salt. The concentration of electrolyte salt is salt There are 8 PEO monomer units (CH2CH,O) per molecule, and herein P It is abbreviated as E0sL+X, where X is the salt anion. organic used The sulfur polymer was the same as the polymer described above for the sodium cell.

高電力密度の蓄電池に関して二種の厚さの電極:高キャパシティの6ク一ロン/ cm2のフィルム(100ミクロン)及び低キャパシティの3ク一ロン/cm2 のフィルム(50ミクロン)をキャストした以外は、ナトリウム系セルに関して 上記したようにして複合陽極をツくッた。これらのLi/PEO/ [(SR3 )n/PEO/C]セルは1000Th/kgの理論エネルギー密度を有し、組 み立てたセルは、実際の電極、PEOフィルム、及び41の過剰のリチウム(実 際の電極は大過剰のリチウムを有していた)の重量を基準として、高キャパシテ ィのフィルムに関して338Th/kg(ゼロ電流トレイン)の実際のエネルギ ー密度を有し、低キャパシティのフィルムに関して304Wh/kgの実際のエ ネルギー密度を有していた。これらのセルを充電し合計350サイクルにわたっ て二つの異なる放電レベルで放電した。最初の100サイクルをキャパシティの 80%の深度まで放電し、残りの250サイクルをキャパシティの50%の深度 まで放電した。実証された電力密度及びエネルギー密度は、下記の表に見られる ように、格別高く、全ての既知の固体状態の内位添加化合物系蓄電池より優れて いた。また、これらのセルはNa/βアルミナ/Sセル(350℃) 、Li/ LiC1/KCI/FeS2セル(450°C)、等のように非常に高温で操作 するセルより性能か優れている。Two thicknesses of electrodes for high power density storage batteries: high capacity 6 quartz/ cm2 film (100 microns) and low capacity 3K/cm2 Regarding sodium-based cells, except for casting a film (50 microns) of The composite anode was assembled as described above. These Li/PEO/[(SR3 ) n/PEO/C] cell has a theoretical energy density of 1000 Th/kg, and The assembled cell consists of the actual electrodes, PEO film, and excess lithium of 41 The electrode had a large excess of lithium). Actual energy of 338 Th/kg (zero current train) for the film of 304 Wh/kg for low capacity films with It had energy density. These cells were charged for a total of 350 cycles. The battery was discharged at two different discharge levels. The first 100 cycles are Discharge to 80% depth, remaining 250 cycles to 50% capacity depth It was discharged until The demonstrated power density and energy density can be found in the table below. As such, it is exceptionally high and superior to all known solid-state intercalated batteries. there was. In addition, these cells are Na/β alumina/S cells (350°C), Li/ Operates at very high temperatures such as LiC1/KCI/FeS2 cells (450°C), etc. The performance is better than that of other cells.

表 蓄電池 理論エネルギー 実際のエネルギー 容積 電力 電力密度 Th/k g 密度 Th/kg エネルギー 書庫 密度密度簡/I W/kg W/I Li/PEO/ 1000 ゼロ電流で300 280 160 144(SR 3)、 (OCv=3.0) 0.5mA/cm’で264 350350 サ イクル サイクル 1サイクル 5分間 100 % util。table Storage battery theoretical energy actual energy volume power power density Th/k g Density Th/kg Energy Archive Density Density Simple/I W/kg W/I Li/PEO/1000 300 280 160 144 (SR 3), (OCv=3.0) 264 350350 at 0.5mA/cm' cycle cycle 1 cycle 5 minutes 100% util.

Li/PEO/ 480 120 150 100 1500図2に、い/PE O/Xと1/PEO/ Tl32の比較データかグラフで示されている。グラフ 中、Jcは充電下のセルを示し、JDは放電下のセルを示す。その試験をコンピ ューター制御し、ピークをショート・オフ(short off)時間中に印刷 した。従って、真のデータラインはこれらのピークを平滑にすること(smoo thing off)により得られる。グラフに示されるように、本発明のセル は放電期間中にそれらの電圧を良好に維持したか、一方、比較セルは迅速に低下 した。加えて、本発明のセルはカソードの100%の利用付近から再充電できた 。Li/PEO/480 120 150 100 1500 In Figure 2, I/PE Comparison data of O/X and 1/PEO/Tl32 is shown in a graph. graph In the figure, Jc indicates a cell under charge and JD indicates a cell under discharge. Compile the exam Computer controlled and prints peaks during short off time did. Therefore, the true data line is smoothed out by these peaks. thing off). As shown in the graph, the cell of the present invention maintained their voltage well during the discharge period, whereas the comparison cells dropped quickly. did. In addition, the cell of the present invention could be recharged from near 100% utilization of the cathode. .

以上の説明から、本発明は、現在知られており使用されている高度に開発された 系の比エネルギー及び電力を越える高い比エネルギー及び電力のセルを提供する ことがわかる。同時に、高いエネルギー及び電力は室温または周囲温度の操作で 利用できる。From the foregoing description, it is clear that the present invention is based on the currently known and used highly developed Provides high specific energy and power cells that exceed the specific energy and power of the system I understand that. At the same time, high energy and power is required for room temperature or ambient temperature operation. Available.

国際調査報告international search report

Claims (15)

【特許請求の範囲】[Claims] 1.充電状態で、 金属負極; 式(SRSr)n(式中、yは2〜6であり、nは2より大きく、且つRは1〜 20個の炭素原子を有する一種以上の異なる脂肪族部分または芳香族部分であり 、これらの部分は、Rが1個以上の芳香族環を含む場合には、1個以上の酸素、 リン、ケイ素、硫黄または窒素ヘテロ原子を含んでもよく、またばRが脂肪族鎖 を含む場合には、その鎖と会合した1個以上の酸素、リン、ケイ素、硫黄、窒素 またはフッ素原子を含んでもよく、脂肪族基は線状であってもよく、または分岐 していてもよく、飽和または不飽和であってもよく、脂肪族鎖または芳香族環は 置換基を有していてもよく、前記の有機硫黄陽極材料は充電状態である場合に硫 黄−硫黄結合により更に特徴付けられ、この結合はセルの放電後に分解されてセ ル中で金属イオンと有機金属塩を生成する)を有するポリマーを主として含む固 体状態の有機硫黄陽極;及び 負極と陽極の間にはさまれ、前記の電極間にカチオンを輸送し得る固体電解質を 含むことを特徴とする二次電池製造用セル。1. In charging state, Metal negative electrode; Formula (SRSr) n (wherein y is 2 to 6, n is greater than 2, and R is 1 to one or more different aliphatic or aromatic moieties having 20 carbon atoms; , these moieties contain one or more oxygen when R contains one or more aromatic rings, may contain phosphorus, silicon, sulfur or nitrogen heteroatoms or R is an aliphatic chain. containing one or more oxygen, phosphorus, silicon, sulfur, or nitrogen associated with the chain. or may contain a fluorine atom, and the aliphatic group may be linear or branched. may be saturated or unsaturated, and aliphatic chains or aromatic rings may be The organic sulfur anode material may have a substituent, and the organic sulfur anode material exhibits sulfur when in a charged state. It is further characterized by a yellow-sulfur bond, which breaks down after the cell discharges and leaves the cell. solids containing mainly polymers with metal ions and organometallic salts) organic sulfur anode in body state; and A solid electrolyte is sandwiched between the negative electrode and the anode and is capable of transporting cations between the electrodes. A cell for manufacturing a secondary battery, comprising: 2.負極がナトリウムもしくはリチウムまたは金属の混合物(ナトリウムまたは リチウムが主成分である)を含む請求の範囲第1項に記載の二次電池製造用セル 。2. If the negative electrode is sodium or lithium or a mixture of metals (sodium or The cell for manufacturing a secondary battery according to claim 1, which contains lithium as a main component. . 3.負極が主としてナトリウムを含む請求の範囲第2項に記載の二次電池製造用 セル。3. For manufacturing a secondary battery according to claim 2, wherein the negative electrode mainly contains sodium. cell. 4.電解質がドーピングされたポリアルキレンオキサイドである請求の範囲第1 項に記載のセル。4. Claim 1, wherein the electrolyte is a doped polyalkylene oxide. Cells listed in section. 5.電解質がリチウムトリフレートでドーピングされたポリエチレンオキサイド である請求の範囲第4項に記載のセル。5. Electrolyte is polyethylene oxide doped with lithium triflate The cell according to claim 4. 6.陽極が0%〜約10%のカーボン粒子を含む請求の範囲第5項に記載のセル 。6. 6. The cell of claim 5, wherein the anode comprises 0% to about 10% carbon particles. . 7.陽極が0%〜約70%のポリアルキレンオキサイドポリマーを含む請求の範 囲第6項に記載のセル。7. Claims wherein the anode comprises 0% to about 70% polyalkylene oxide polymer Cell according to paragraph 6. 8.充電状態で、 金属負極; 式(SRSr)n(式中、yは2〜6であり、nは20より大きく、且つRは1 〜20個の炭素原子を有する一種以上の異なる脂肪族部分または芳香族部分であ り、これらの部分は、Rが1個以上の芳香族環を含む場合には、1個以上の酸素 、リン、ケイ素、硫黄または窒素ヘテロ原子を含んでもよく、またはRが脂肪族 鎖を含む場合には、その鎖と会合した1個以上の酸素、リン、ケイ素、硫黄、窒 素またはフッ素原子を含んでもよく、脂肪族基は線状であってもよく、または分 岐していてもよく、飽和または不飽和であってもよく、脂肪族鎖または芳香族環 は置換基を有していてもよく、前記の有機硫黄陽極材料は充電状態である場合に 硫黄−硫黄結合により更に特徴付けられ、この結合はセルの放電後に分解されて セル中で金属イオンと有機金属塩を生成する)を有するポリマーを主として含む 固体状態の有機硫黄陽極;及び 負極と陽極の間にはさまれ、前記の電極間にカチオンを輸送し得る固体電解質を 含み、前記の電解質が有機ポリマー及び電解質塩を含むことを特徴とする二次電 池製造用セル。8. In charging state, Metal negative electrode; Formula (SRSr)n (wherein y is 2 to 6, n is greater than 20, and R is 1 one or more different aliphatic or aromatic moieties having ~20 carbon atoms and these moieties contain one or more oxygen atoms when R contains one or more aromatic rings. , phosphorus, silicon, sulfur or nitrogen heteroatoms, or R is aliphatic. If it contains a chain, one or more oxygen, phosphorus, silicon, sulfur, or nitrogen atoms associated with the chain. may contain elementary or fluorine atoms, and aliphatic groups may be linear or may be branched, saturated or unsaturated, aliphatic chains or aromatic rings may have a substituent, and when the organic sulfur anode material is in a charged state, It is further characterized by a sulfur-sulfur bond, which is broken down after the cell discharges. (forms metal ions and organometallic salts in the cell) a solid state organosulfur anode; and A solid electrolyte is sandwiched between the negative electrode and the anode and is capable of transporting cations between the electrodes. and wherein the electrolyte includes an organic polymer and an electrolyte salt. Cell for pond production. 9.負極が主としてナトリウムを含む請求の範囲第8項に記載の二次電池製造用 セル。9. For manufacturing a secondary battery according to claim 8, wherein the negative electrode mainly contains sodium. cell. 10.負極が実質的にリチウムからなる請求の範囲第8項に記載の二次電池製造 用セル。10. Manufacture of a secondary battery according to claim 8, wherein the negative electrode substantially consists of lithium. Cell for use. 11.固体電解質がナトリウムトリフレートでドーピングされたポリエチレンオ キサイドであり、陽極が少量のカーボン粒子を含む請求の範囲第8項に記載の二 次電池製造用セル。11. The solid electrolyte is polyethylene oxide doped with sodium triflate. oxide, and the anode contains a small amount of carbon particles. Cells for manufacturing next-generation batteries. 12.陽極が0%〜約70%の範囲の絶対量のポリアルキレンオキサイドポリマ ーを含む請求の範囲第11項に記載の二次電池製造用セル。12. The anode has an absolute amount of polyalkylene oxide polymer ranging from 0% to about 70%. 12. A cell for manufacturing a secondary battery according to claim 11. 13.ポリアルキレンオキサイドがポリエチレンオキサイドである請求の範囲第 12項に記載の二次電池製造用セル。13. Claim No. 1 in which the polyalkylene oxide is polyethylene oxide The cell for manufacturing a secondary battery according to item 12. 14.金属負極を有し、全構成部分が固体状態で機能する二次電池用セルに於い て、陽極が約0重量%〜約70重量%の不活性ポリマー材料、約約0重量%〜約 10重量%のカーボン粒子、及び約30重量%〜約100重量%の活性材料(こ れは充電状態で高度にポリマー状であり、放電状態で負極からの金属と塩を生放 する)を含み、充電状態の前記の活性材料が式(SRSr)n(式中、yは2〜 6であり、nは20より大きく、且つRは1〜20個の炭素原子を有する一種以 上の異なる脂肪族部分または芳香族部分であり、これらの部分は、Rが1個以上 の芳香族環を含む場合には、1個以上の酸素、リン、ケイ素、硫黄または窒素ヘ テロ原子を含んでもよく、またはRが脂肪族鎖を含む場合には、その鎖と会合し た1個以上の酸素、リン、ケイ素、硫黄、窒素またはフッ素原子を含んでもよく 、脂肪族基は線状であってもよく、または分岐していてもよく、飽和または不飽 和であってもよく、脂肪族鎖または芳香族環は置換基を有していてもよく、前記 の有機硫黄陽極材料は充電状態である場合に硫黄−硫黄結合により更に特徴付け られ、この結合はセルの放電後に分解されてセル中で金属イオンと有機金属塩を 生成する)を有することを特徴とする二次電池用セル。14. In a secondary battery cell that has a metal negative electrode and all components function in a solid state. and the anode comprises from about 0% to about 70% by weight of an inert polymeric material, from about 0% to about 10% by weight carbon particles, and about 30% to about 100% by weight active material. It is highly polymeric in the charged state and frees metals and salts from the negative electrode in the discharged state. ), and said active material in a charged state has the formula (SRSr)n, where y is 2 to 6, n is greater than 20, and R is one or more having 1 to 20 carbon atoms. different aliphatic or aromatic moieties above, these moieties include one or more R aromatic ring, one or more oxygen, phosphorus, silicon, sulfur or nitrogen atoms. may contain a terroratom or, if R contains an aliphatic chain, be associated with that chain. It may also contain one or more oxygen, phosphorus, silicon, sulfur, nitrogen or fluorine atoms. , aliphatic groups may be linear or branched, saturated or unsaturated. The aliphatic chain or aromatic ring may have a substituent, and the aliphatic chain or aromatic ring may have a substituent. The organosulfur anode material is further characterized by sulfur-sulfur bonds when in the charged state. This bond is broken down after the cell discharges, producing metal ions and organometallic salts in the cell. 1. A secondary battery cell characterized by having: 15.不活性ポリマー材料がポリエチレンオキサイドである請求の範囲第14項 に記載のセル。15. Claim 14 wherein the inert polymeric material is polyethylene oxide. Cells described in.
JP02514987A 1989-10-13 1990-10-09 Solid metal-sulfur cell Expired - Fee Related JP3102880B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42109189A 1989-10-13 1989-10-13
US421,091 1989-10-13

Publications (2)

Publication Number Publication Date
JPH05501937A true JPH05501937A (en) 1993-04-08
JP3102880B2 JP3102880B2 (en) 2000-10-23

Family

ID=23669134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02514987A Expired - Fee Related JP3102880B2 (en) 1989-10-13 1990-10-09 Solid metal-sulfur cell

Country Status (9)

Country Link
EP (1) EP0495895A4 (en)
JP (1) JP3102880B2 (en)
KR (1) KR0137006B1 (en)
CN (1) CN1023364C (en)
AU (1) AU642676B2 (en)
BR (1) BR9007750A (en)
CA (1) CA2053887C (en)
RU (1) RU2099821C1 (en)
WO (1) WO1991006132A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711843B1 (en) * 1993-10-21 1995-12-01 Alsthom Cge Alcatel Cathodic material for electrochemical generator.
WO2001058805A1 (en) 2000-02-09 2001-08-16 Hitachi Maxell, Ltd. Poly(carbon sulfide), method for preparing the same and non-aqueous electrolyte cell using the same
GB0713898D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
JP2014523094A (en) * 2011-07-11 2014-09-08 ビーエーエスエフ ソシエタス・ヨーロピア Electrode material containing metal sulfide
CN104221196B (en) * 2012-04-13 2019-02-22 阿科玛股份有限公司 Battery based on organic sulphur species
US10749166B2 (en) * 2015-11-09 2020-08-18 Robert Bosch Gmbh All-solid-state lithium rechargeable cells
EP3548459A4 (en) * 2016-12-02 2020-07-22 Arkema, Inc. Battery based on organosulfur species
WO2020152119A1 (en) * 2019-01-25 2020-07-30 Shell Internationale Research Maatschappij B.V. An electric energy storage device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393169A (en) * 1989-09-01 1991-04-18 Hydro Quebec Solid state rechargeable electrochemical generator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8329906D0 (en) * 1983-11-09 1983-12-14 Friend R H Composites
US4833048A (en) * 1988-03-31 1989-05-23 The United States Of America As Represented By The United States Department Of Energy Metal-sulfur type cell having improved positive electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393169A (en) * 1989-09-01 1991-04-18 Hydro Quebec Solid state rechargeable electrochemical generator

Also Published As

Publication number Publication date
RU2099821C1 (en) 1997-12-20
CA2053887A1 (en) 1991-04-14
CN1053324A (en) 1991-07-24
CA2053887C (en) 2001-12-11
JP3102880B2 (en) 2000-10-23
AU642676B2 (en) 1993-10-28
CN1023364C (en) 1993-12-29
AU6611090A (en) 1991-05-16
EP0495895A1 (en) 1992-07-29
BR9007750A (en) 1992-09-01
KR0137006B1 (en) 1998-06-15
EP0495895A4 (en) 1993-02-03
WO1991006132A1 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US5162175A (en) Cell for making secondary batteries
US5601947A (en) Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
US5599355A (en) Method for forming thin composite solid electrolyte film for lithium batteries
US5462566A (en) High capacity cathodes for secondary cells
Haas et al. Electrochemical energy storage
EP0602984A2 (en) Electrochemical cell
US20070254213A1 (en) Electrochemical Element for Use at High Temperatures
Doeff et al. Thin film solid state sodium batteries for electric vehicles
KR100578797B1 (en) Electrolyte for lithium metal battery and lithium metal battery comprising same
JPH05501937A (en) Solid metal-sulfur cell
JPH0950823A (en) Secondary battery
JP3553697B2 (en) Rechargeable battery
West et al. Solid-state sodium cells—An alternative to lithium cells?
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
Scrosati et al. Lithium polymer batteries
EP0239976A2 (en) Molten salt secondary battery
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
Takehara Development of lithium rechargeable batteries in Japan
US5916710A (en) Sodium cobalt bronze batteries and a method for making same
Ma et al. Rechargeable Na/Na {sub x} CoO {sub 2} and Na {sub 15} Pb {sub 4}/Na {sub x} CoO {sub 2} Polymer Electrolyte Cells
Doeff et al. ITll Lawrence· Berkeley Laboratory
Munshi Technology Assessment of Lithium Polymer Electrolyte Secondary Batteries
Carlin et al. Electrodes and Electrolytes for Molten Salt Batteries: Expanding the Temperature Regimes
JPH0831449A (en) High-capacity battery for secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees