JPH0549900B2 - - Google Patents

Info

Publication number
JPH0549900B2
JPH0549900B2 JP58117609A JP11760983A JPH0549900B2 JP H0549900 B2 JPH0549900 B2 JP H0549900B2 JP 58117609 A JP58117609 A JP 58117609A JP 11760983 A JP11760983 A JP 11760983A JP H0549900 B2 JPH0549900 B2 JP H0549900B2
Authority
JP
Japan
Prior art keywords
total heat
heat exchanger
counterflow
disc
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58117609A
Other languages
Japanese (ja)
Other versions
JPS608639A (en
Inventor
Nobuyuki Yano
Takashi Inami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58117609A priority Critical patent/JPS608639A/en
Publication of JPS608639A publication Critical patent/JPS608639A/en
Publication of JPH0549900B2 publication Critical patent/JPH0549900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は全熱交換換気装置の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to improvements in total heat exchange ventilation systems.

従来例の構成とその問題点 従来の全熱交換器には、静止透過式と蓄熱回転
式と蓄熱透過式の3種類があるが、いずれも全熱
交換装置として機能を発揮するためには、全熱交
換器以外に2つの送風用フアンが同時に必要にな
る。そのため装置は大形、コスト高になる。第1
図はこのような全熱交換器を使用した従来の空調
換気扇の概略構成図の一例である。第1図におい
て、1,2は各々給気用フアンおよび排気用フア
ンである。3はプレート式全熱交換器、4はフア
ンモータ、5は給排両気流を分離しているセパレ
ータ、6はフアンの回転軸、7は換気扇のケーシ
ング、8は壁面、9は前面ルーバである。モータ
4によつて給気用フアン1および排気用フアン2
は回転される。給気用フアン1からの気流は全熱
交換器3を介して排気用フアン2で室外へ排出さ
れる。
Conventional configurations and their problems There are three types of conventional total heat exchangers: stationary transmission type, heat storage rotating type, and heat storage transmission type, but in order for each to function as a total heat exchange device, In addition to the total heat exchanger, two blower fans are required at the same time. Therefore, the device becomes large and expensive. 1st
The figure is an example of a schematic configuration diagram of a conventional air conditioning ventilation fan using such a total heat exchanger. In FIG. 1, numerals 1 and 2 are an air supply fan and an exhaust fan, respectively. 3 is a plate-type total heat exchanger, 4 is a fan motor, 5 is a separator that separates both supply and exhaust air flows, 6 is the rotating shaft of the fan, 7 is the casing of the ventilation fan, 8 is the wall surface, and 9 is the front louver. . The motor 4 drives the air supply fan 1 and the exhaust fan 2.
is rotated. The airflow from the air supply fan 1 passes through the total heat exchanger 3 and is exhausted to the outside by the exhaust fan 2.

発明の目的 本発明は上記従来技術の欠点をなくし、小形で
安価な全熱交換換気装置を提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the prior art described above and provides a compact and inexpensive total heat exchange ventilation system.

発明の構成 本発明の全熱交換換気装置は、回転中心側から
放射状に外側方向にのびる複数の山および溝部分
が、交互に円周方向にならび、かつ、その両側面
において、一方の側面で山および溝部分が、他方
の側面ではそれぞれ溝および山の部分になる形状
をした透湿性もしくは非透湿性の波形状仕切板か
らなる円板状インペラと、前記円板状インペラの
中央中空部を貫通する円筒状対向流全熱交換器を
具備し、前記円筒状対向流全熱交換器は、その端
面が前記円板状インペラの異なる面側に位置する
とともに、吸気口と、排気口と、前記吸気口と前
記排気口の間に配した透湿性の仕切板を有し、前
記吸気口は、前記円筒状対向流全熱交換器の各端
面に位置し、前記吸気口に対応する前記排気口
は、前記円板状インペラを境として対応する前記
吸気口の位置とは反対側に位置する前記円筒状対
向流全熱交換器の円筒側面にそれぞれ設けられ、
前記円筒状対向流全熱交換器と前記円板状インペ
ラの内少なくとも前記円板状インペラは回転する
構成を有し、前記各吸気口から入つた異なる気流
は直接接することなく前記円筒状対向流全熱交換
器で全熱交換されるとともに前記円筒状対向流全
熱交換器を通過後、前記円板状インペラの異なる
面に導かれ、前記円板状インペラの波形状仕切板
を介してさらに熱交換されることを特徴とする。
Structure of the Invention The total heat exchange ventilation device of the present invention has a plurality of peaks and grooves extending radially outward from the rotation center side and arranged alternately in the circumferential direction, and on both sides thereof, on one side side. A disc-shaped impeller consisting of a moisture-permeable or moisture-impermeable wave-shaped partition plate having peaks and grooves that become grooves and peaks on the other side, respectively, and a central hollow part of the disc-shaped impeller. A penetrating cylindrical counterflow total heat exchanger is provided, the end surface of the cylindrical counterflow total heat exchanger is located on a different surface side of the disc-shaped impeller, and an intake port, an exhaust port, a moisture permeable partition plate disposed between the intake port and the exhaust port, the intake port being located at each end face of the cylindrical counterflow total heat exchanger, and the exhaust port corresponding to the intake port The ports are each provided on a cylindrical side surface of the cylindrical counterflow total heat exchanger located on the opposite side from the position of the corresponding intake port with the disc-shaped impeller as a boundary,
Of the cylindrical counterflow total heat exchanger and the discoidal impeller, at least the discoidal impeller has a rotating configuration, and the different airflows entering from the respective intake ports are connected to the cylindrical counterflow without directly contacting each other. After being subjected to total heat exchange in the total heat exchanger and passing through the cylindrical counterflow total heat exchanger, it is guided to different surfaces of the disc-shaped impeller, and further passed through the wave-shaped partition plate of the disc-shaped impeller. It is characterized by heat exchange.

実施例の説明 以下本発明の実施例を図にもとづいて説明す
る。第2図は本発明を実施するための実施例に使
用している両翼送風形全熱交換器を構成するイン
ペラの概略斜視図、第3図は同じく円筒状対向流
全熱交換器の概略外観図、第4図は本発明の一実
施例の全熱交換換気装置の一部破断斜視図であ
り、インペラ10の内円側に円筒状対向流全熱交
換器13をはめ込み一体化した構造を示してお
り、両者は同一回転軸を中心にして回転する。第
5図はこの概略構成図である。図中19は波形状
のブレード(羽根)で、複数の溝部分が回転中心
側より外側へ放射状にのびる形状で対向流全熱交
換器13と外周板20との間に保持されている。
この羽根19の材質はLiClを含浸後乾燥させた厚
さ0.2mmのクラフト紙で、羽根の枚数は全部で100
枚、羽根の高さは50mmである。インペラ(羽根
車)10の外径はφ300mmある。主として対向流
全熱交換器13と羽根19と外周板20により構
成されている。外周板20は対向流全熱交換器1
3との間で羽根19部分を保持する以外に、イン
ペラ10の両側面における異なる2気流を分離す
る役目ももつている。対向流全熱交換器13の仕
切板の材質は同じくLiClを含浸後乾燥させた厚さ
0.2mmのクラフト紙で出来ている。14はインペ
ラ10を包囲しているケーシングである。通常の
シロツコフアンやターボフアンなどの場合と同様
に中心部に気流の吸込口15とその外周方向の一
部に気流の吐出口16をもつている。11はパレ
ータ(仕切板)でケーシング14の一部である
が、上記外周板20と共にインペラ10の両側面
の2気流間の混合を防ぐ役目を果たしている。な
お、本発明の場合は同じ気流に関しての上記ケー
シングの吸込口と吐出口は、セパレータ11に対
して互いに反対側に位置している。これは中央部
に対向流の全熱交換器13があるためである。ケ
ーシング14およびセパレータ11の材質は本実
施例では金属を使用しているが、強度があつて加
工しやすいものならば何でもよい。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on the drawings. Fig. 2 is a schematic perspective view of an impeller constituting a double-blade blower type total heat exchanger used in an embodiment of the present invention, and Fig. 3 is a schematic external appearance of a cylindrical counterflow total heat exchanger. FIG. 4 is a partially cutaway perspective view of a total heat exchange ventilation system according to an embodiment of the present invention, and shows a structure in which a cylindrical counterflow total heat exchanger 13 is fitted and integrated into the inner circle side of an impeller 10. Both rotate around the same axis of rotation. FIG. 5 is a schematic diagram of this configuration. In the figure, reference numeral 19 denotes a wave-shaped blade, which is held between the counterflow total heat exchanger 13 and the outer circumferential plate 20 and has a plurality of grooves extending radially outward from the rotation center side.
The material of this blade 19 is 0.2 mm thick kraft paper impregnated with LiCl and dried, and the total number of blades is 100.
The height of each blade is 50mm. The outer diameter of the impeller 10 is φ300 mm. It mainly consists of a counterflow total heat exchanger 13, blades 19, and an outer peripheral plate 20. The outer peripheral plate 20 is the counterflow total heat exchanger 1
In addition to holding the blade 19 portion between the impeller 10 and the impeller 10, it also has the role of separating two different air currents on both sides of the impeller 10. The material of the partition plate of the counterflow total heat exchanger 13 is the same thickness that has been impregnated with LiCl and dried.
Made of 0.2mm kraft paper. 14 is a casing surrounding the impeller 10. As in the case of a normal Sirotskov fan or a turbo fan, it has an airflow inlet 15 in the center and an airflow outlet 16 in a part of its outer circumferential direction. Reference numeral 11 denotes a parator (partition plate) which is a part of the casing 14 and, together with the outer circumferential plate 20, serves to prevent mixing between the two air streams on both sides of the impeller 10. In the case of the present invention, the suction port and the discharge port of the casing regarding the same airflow are located on opposite sides of the separator 11. This is because there is a counterflow total heat exchanger 13 in the center. Although metal is used as the material for the casing 14 and the separator 11 in this embodiment, any material may be used as long as it is strong and easy to process.

12は両翼送風機能付全熱交換器すなわちイン
ペラ10と円筒状対向流全熱交換器1に共通の回
転軸である。なお原理的には全熱交換器13は回
転しないでインペラ10のみが回転する構成であ
つてもよい。第2図中の斜線部17および18
は、それぞれ前記羽根19を支持する外側支持板
および内側支持板であるが、インペラ10の両側
面を流れる2つの異なる気流を気密的に分離する
ためのめくら板でもある。なお、これら外周板2
0、外側支持板17、内側支持板18の材質は本
実施例においては樹脂を使用しているが、金属な
ど強度のあるものなら何でもよい。
Reference numeral 12 denotes a rotating shaft common to the double-blade blowing total heat exchanger, that is, the impeller 10 and the cylindrical counterflow total heat exchanger 1. In principle, the total heat exchanger 13 may not rotate, but only the impeller 10 may rotate. Shaded areas 17 and 18 in Figure 2
are an outer support plate and an inner support plate that support the blades 19, respectively, but are also blind plates for airtightly separating two different air currents flowing on both sides of the impeller 10. In addition, these outer peripheral plates 2
0. Although resin is used as the material for the outer support plate 17 and the inner support plate 18 in this embodiment, any strong material such as metal may be used.

以上のような構造をもつた送風機能付全熱交換
器では、インペラ10の回転により、その両側面
の溝21および22内にそれぞれ異なつた気流が
流れる。第4図のAおよびBはそれぞれ両気流の
流れを示したものである。ケーシング14の中心
部のそれぞれの吸込口からケーシング14内に吸
込まれた両気流は、円筒対向流全熱交換器13内
に、その回転軸方向の両側面から入り互いに全熱
交換をした後、対向流全熱交換器13の外周から
出て、今度はインペラ10の透湿性の羽根19を
通して互いに温度と湿度の交換を行つた後、ケー
シング14の外周部にあるそれぞれの吐出口から
それぞれケーシング8外へ排出される。
In the total heat exchanger with air blowing function having the above structure, the rotation of the impeller 10 causes different air currents to flow in the grooves 21 and 22 on both sides thereof. A and B in FIG. 4 show the flows of both air currents, respectively. Both air flows sucked into the casing 14 from the respective suction ports in the center of the casing 14 enter the cylindrical counterflow total heat exchanger 13 from both sides in the rotational axis direction, and after exchanging total heat with each other, After exiting from the outer periphery of the counterflow total heat exchanger 13 and exchanging temperature and humidity with each other through the moisture permeable blades 19 of the impeller 10, the air flows from the respective discharge ports in the outer periphery of the casing 14 to the casing 8. Expelled outside.

なお、上記両気流に33℃、相対湿度60%の気流
と、26℃、相対湿度50%の気流を用いて風量をど
ちらも2m2/mmとした場合、本実施例の送風機能
付全熱交換器を使つて得られる効率の実測値は、
顕熱交換効率で60%、全熱交換効率で30%であつ
た。
In addition, when the airflow is 2m 2 /mm using airflow at 33℃ and 60% relative humidity and airflow at 26℃ and 50% relative humidity for both of the above airflows, the total heat with ventilation function of this example The actual value of efficiency obtained using the exchanger is
The sensible heat exchange efficiency was 60% and the total heat exchange efficiency was 30%.

第6図はインペラの他の実施例の斜視図を示し
たものである。これは複数の溝部分が回転中心側
より直線的に放射状に位置いている形状の波形仕
切板の例である。
FIG. 6 shows a perspective view of another embodiment of the impeller. This is an example of a corrugated partition plate in which a plurality of groove portions are located linearly and radially from the rotation center side.

第7図は本発明の一実施例であり、第4図にお
ける全熱交換器を使用した場合の全熱交換換気装
置の概略構成図である。
FIG. 7 is an embodiment of the present invention, and is a schematic diagram of a total heat exchange ventilation system in which the total heat exchanger shown in FIG. 4 is used.

モータ23が回転すると12および対向流全熱
交換器13を介してインペラ10が回転し室外側
の空気Cが吸気され、対向流全熱交換器13の一
端に入る。と同時に対向流全熱交換器13の他端
から室内側の空気Dが吸気され、室内外からの気
流が対向流で全熱交換される。その後、対向流全
熱交換器13から出た気流CおよびDはインペラ
10を介して再び全熱交換する。なお、24は前
面ルーバ、11は給排両気流を分離するセパレー
タ、25は壁26に接する換気扇のケーシングで
ある。
When the motor 23 rotates, the impeller 10 rotates through the motor 12 and the counterflow total heat exchanger 13, and air C from the outdoor side is taken in and enters one end of the counterflow total heat exchanger 13. At the same time, indoor air D is taken in from the other end of the counterflow total heat exchanger 13, and total heat is exchanged between the airflows from inside and outside the room in the counterflow. Thereafter, the air flows C and D exiting the counterflow total heat exchanger 13 exchange total heat again via the impeller 10. In addition, 24 is a front louver, 11 is a separator which separates both supply and exhaust airflow, and 25 is a casing of a ventilation fan in contact with a wall 26.

この場合、従来の給気用フアン1と排気用フア
ン2と全熱交換器3が一体化されているため、装
置は小形、簡素になり安価になつている。
In this case, since the conventional air supply fan 1, exhaust fan 2, and total heat exchanger 3 are integrated, the device is small, simple, and inexpensive.

なお、上記実施例ではインペラ10の波板およ
び対向流全熱交換器13の仕切板は何れも透湿性
であるが、全熱交換の大部分は対向流全熱交換器
13で負担するのでイペラ10の波板は透湿性で
なくても全熱交換できる。
In the above embodiment, the corrugated plate of the impeller 10 and the partition plate of the counterflow total heat exchanger 13 are both moisture permeable, but since most of the total heat exchange is borne by the counterflow total heat exchanger 13, the impeller The corrugated sheet No. 10 can exchange total heat even if it is not moisture permeable.

発明の効果 以上のように、本発明の全熱交換換気装置は、
別個に送風機を設ける必要もなく、これのみで送
風機と全熱交換器両方の機能を発揮するので、こ
れを使用すれば装置は小形、簡素化され安価にな
る。
Effects of the Invention As described above, the total heat exchange ventilation device of the present invention has the following features:
There is no need to provide a separate blower, and since this alone functions as both a blower and a total heat exchanger, using this will make the device smaller, simpler, and cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全熱交換器を使用した空調換気扇の従
来例の概略構成図、第2図は本発明の一実施例の
全熱交換換気装置の一構成要素であるインペラの
概略斜視図、第3図は同一構成要素である円筒状
対向流全熱交換器の概略外観図、第4図は本発明
の一実施例の全熱交換換気装置の熱交換器の一部
破断斜視図、第5図は同熱交換器部の概略構成
図、第6図はインペラの他の実施例の斜視図、第
7図は本発明の一実施例である全熱交換換気装置
の概略構成図である。 10……インペラ、12……回転軸、13……
対向流全熱交換器、15……吸込口、16……吐
出口。
FIG. 1 is a schematic configuration diagram of a conventional air conditioning ventilation fan using a total heat exchanger, FIG. 3 is a schematic external view of a cylindrical counterflow total heat exchanger that is the same component, FIG. 4 is a partially cutaway perspective view of a heat exchanger of a total heat exchange ventilation system according to an embodiment of the present invention, and FIG. 6 is a perspective view of another embodiment of the impeller, and FIG. 7 is a schematic diagram of a total heat exchange ventilation system according to an embodiment of the present invention. 10... Impeller, 12... Rotating shaft, 13...
Counterflow total heat exchanger, 15...suction port, 16...discharge port.

Claims (1)

【特許請求の範囲】 1 回転中心側から放射状に外側方向にのびる複
数の山および溝部分が、交互に円周方向になら
び、かつ、その両側面において、一方の側面で山
および溝部分が、他方の側面ではそれぞれ溝およ
び山の部分になる形状をした透湿性もしくは非透
湿性の波形状仕切板からなる円板状インペラと、
前記円板状インペラの中央中空部を貫通する円筒
状対向流全熱交換器を具備し、前記円筒状対向流
全熱交換器は、その端面が前記円板状インペラの
異なる面側に位置するとともに、吸気口と、排気
口と、前記吸気口と前記排気口の間に配した透湿
性の仕切板を有し、前記吸気口は、前記円筒状対
向流全熱交換器の各端面に位置し、前記吸気口に
対応する前記排気口は、前記円板状インペラを境
として対応する前記吸気口の位置とは反対側に位
置する前記円筒状対向流全熱交換器の円筒側面に
それぞれ設けられ、前記円筒状対向流全熱交換器
と前記円板状インペラの内少なくとも前記円板状
インペラは回転する構成を有し、前記各吸気口か
ら入つた異なる気流は直接接することなく前記円
筒状対向流全熱交換器で全熱交換されるとともに
前記円筒状対向流全熱交換器を通過後、前記円板
状インペラの異なる面に導かれ、前記円板状イン
ペラの波形状仕切板を介してさらに熱交換される
ことを特徴とする全熱交換換気装置。 2 前記円板状インペラと前記円筒状対向流全熱
交換器は同一回転軸で回転することを特徴とする
特許請求の範囲第1項記載の全熱交換換気装置。 3 前記円筒状対向流全熱交換器は回転せず、前
記円板状インペラのみが回転することを特徴とす
る特許請求の範囲第1項記載の全熱交換換気装
置。
[Scope of Claims] 1. A plurality of ridges and grooves extending radially outward from the rotation center side are arranged alternately in the circumferential direction, and on both sides of the ridges and grooves, one side has the ridges and grooves, On the other side, a disc-shaped impeller consisting of a moisture-permeable or moisture-impermeable wave-shaped partition plate each having a groove and a ridge shape;
The cylindrical counterflow total heat exchanger is provided with a cylindrical counterflow total heat exchanger penetrating the central hollow part of the disc-shaped impeller, and the end surface of the cylindrical counterflow total heat exchanger is located on a different side of the disc-shaped impeller. and an air inlet, an air outlet, and a moisture-permeable partition plate disposed between the air inlet and the air outlet, the air inlet being located at each end surface of the cylindrical counterflow total heat exchanger. The exhaust ports corresponding to the intake ports are respectively provided on a cylindrical side surface of the cylindrical counterflow total heat exchanger located on the opposite side from the position of the corresponding intake port with the disc-shaped impeller as a boundary. The cylindrical counterflow total heat exchanger and the disc-shaped impeller have a configuration in which at least the disc-shaped impeller rotates, and different air flows entering from the respective intake ports flow through the cylindrical shape without directly contacting each other. After the total heat is exchanged in the counterflow total heat exchanger and passes through the cylindrical counterflow total heat exchanger, it is guided to different surfaces of the disc-shaped impeller and passed through the wave-shaped partition plate of the disc-shaped impeller. A total heat exchange ventilation system characterized in that heat is further exchanged through the air. 2. The total heat exchange ventilation system according to claim 1, wherein the disc-shaped impeller and the cylindrical counterflow total heat exchanger rotate on the same rotation axis. 3. The total heat exchange ventilation system according to claim 1, wherein the cylindrical counterflow total heat exchanger does not rotate, and only the disc-shaped impeller rotates.
JP58117609A 1983-06-28 1983-06-28 Total heat-exchanging and ventilating device Granted JPS608639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117609A JPS608639A (en) 1983-06-28 1983-06-28 Total heat-exchanging and ventilating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117609A JPS608639A (en) 1983-06-28 1983-06-28 Total heat-exchanging and ventilating device

Publications (2)

Publication Number Publication Date
JPS608639A JPS608639A (en) 1985-01-17
JPH0549900B2 true JPH0549900B2 (en) 1993-07-27

Family

ID=14715995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117609A Granted JPS608639A (en) 1983-06-28 1983-06-28 Total heat-exchanging and ventilating device

Country Status (1)

Country Link
JP (1) JPS608639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625764B1 (en) * 2014-12-18 2016-06-13 두산중공업 주식회사 A clock for finger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625764B1 (en) * 2014-12-18 2016-06-13 두산중공업 주식회사 A clock for finger

Also Published As

Publication number Publication date
JPS608639A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JPS6080044A (en) Ventilating device
JPH0549900B2 (en)
JPH04190023A (en) Air conditioner
JPH0549901B2 (en)
JP3407735B2 (en) Humidity control device
JPH033158B2 (en)
JPS6110109Y2 (en)
JPH0733058Y2 (en) Dehumidifier
JPS6135867Y2 (en)
JPS59161688A (en) Heat exchanger
JPS5915739A (en) Combined heat exchanger and ventilating device
JPS6234143Y2 (en)
JPS5899627A (en) Ventilation fan
JPH10255U (en) Once-through blast heat exchanger
JPH0155385B2 (en)
JPH033866B2 (en)
JPS6214072B2 (en)
JPH0136013B2 (en)
JPS6212194Y2 (en)
JPS581705Y2 (en) air conditioner
JPS59161689A (en) Full heat exchanger
JPS59231399A (en) Total heat exchanger
JPH0124978B2 (en)
JPS5915740A (en) Combined heat exchanger and ventilating device
JPS59150235A (en) Ventilating apparatus