JPH0549703B2 - - Google Patents

Info

Publication number
JPH0549703B2
JPH0549703B2 JP339282A JP339282A JPH0549703B2 JP H0549703 B2 JPH0549703 B2 JP H0549703B2 JP 339282 A JP339282 A JP 339282A JP 339282 A JP339282 A JP 339282A JP H0549703 B2 JPH0549703 B2 JP H0549703B2
Authority
JP
Japan
Prior art keywords
foam
amount
acid
acid catalyst
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP339282A
Other languages
Japanese (ja)
Other versions
JPS58120644A (en
Inventor
Tsuneo Hogi
Nobuo Miura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP339282A priority Critical patent/JPS58120644A/en
Publication of JPS58120644A publication Critical patent/JPS58120644A/en
Publication of JPH0549703B2 publication Critical patent/JPH0549703B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐炎性に優れ、フオームと接触する金
属の腐触性が無く、独立気泡率が高く、優れた断
熱性能を有するフエノールフオームの製造方法に
関する。 従来、フエノールフオームはポリスチレン系の
熱可塑性樹脂フオーム、あるいは、ポリウレタン
系の硬質フオーム等に比較して耐炎性に優れてい
る事から不燃性に優れている事から不燃性の断熱
材として注目されて来た。しかしながら、従来の
フエノールフオームの不燃性は十分なものでな
く、例えば、JISA1321法による不燃性評価を行
なうと、フオームにき裂が生じ、変形が大きい等
の欠点を有し準不燃材料としての性能を有してい
ない。 又、フエノールフオームの製造において樹脂の
硬化に酸触媒を使用する為、フオーム中にこれら
酸触媒を使用する為、フオーム中にこれら酸触媒
が残存し断熱施工した時に、フオームと接触する
金属類を腐蝕させる欠点も有し、従来のフエノー
ルフオームはその独立気泡率が零ないしは高々50
%程度で断熱性能も劣るものであつた。 一方、これらフエノールフオームの欠点を改良
する為、研究がなされ、たとえば、米国特許
3298973号にはホウ酸と有機ハイドロキシ酸化合
物との混合物を触媒とする方法、特開昭54−
52168号には非揮発性のアミン化合物を添加する
方法、特開昭55−82133号には無機充填材を添加
する方法等が開示されている。しかしながら、こ
れらの方法によつて耐炎性を改良しても、断熱材
として重要な特性である断熱性能は改善されず、
又、金属への腐蝕性も従来品と変わらず実用化さ
れるには到つていない。 本発明は、これらフエノールフオームの欠点を
改良し、耐炎性に優れ独立気泡率が80%以上で断
熱性能に優れ、金属の腐蝕性が無い優れたフエノ
ールフオームを製造する方法に関する。 即ち本発明は、レゾール型フエノール樹脂にエ
ポキシ化合物酸触媒及び発泡剤を混合して発泡体
を製造する方法において、 エポキシ化合物が一般式〔〕で現わされる化
合物であつて、 (ただしnは1以上の整数) エポキシ化合物の添加量により定義されるX軸
と、酸触媒の添加量により定義されるY軸より成
る直交座標において、座標点A(0.060,0.0475),
B(0.079,0.0550),C(0.150,0.070),D(0.060

0.0355)で囲まれる範囲にある組成物を発泡させ
る事を特徴とする耐炎性に優れたフエノールフオ
ームの製造方法 〔ただしX軸はエポキシ化合物の添加量で、モ
ル/100gフエノール樹脂、Y軸は式〔〕で現
わされる酸触媒量(Y)で、モル/100gフエノール
樹脂である。〕 Y=酸触媒添加量+0.047(1−R) ……式 (式中、Rはレゾール型フエノール樹脂の反応活 性指数) エポキシ化合物をフエノール樹脂に添加して物
性を改良する事は米国特許3298973号、特開昭55
−82133号にも記載されているが、本発明で使用
するエポキシ化合物の例示は無く、たとえエポキ
シ化合物のみを変えて上記公知技術を適用しても
本発明の目的は達せられない。 本発明で使用されるエポキシ化合物は、一般式
〔〕で示されるものであつて、たとえば、グリ
セリンジグリシジルエーテル、ジグリセリンジグ
リシジルエーテル、トリグリセリンジグリシジル
エーテル等及びこれらの混合物が使用出来る。そ
の添加量は、レゾール型フエノール樹脂100グラ
ムに対し0.060〜0.150モルであつて0.060モルより
少ない量では耐炎性、独立気泡率、断熱性能が改
善されず好ましくない。又、0.150モルより多い
量を添加すると得られるフオームの気泡が著しく
大きくなり、独立気泡率も低下するので好ましく
ない。 さらに、エポキシ化合物の添加量は、使用する
レゾール型フエノール樹脂の反応活性、及び触媒
の添加量によつて変わり、エポキシ化合物の添加
量をX軸、式で現わされる酸触媒の量(Y)をY軸
とする直交座標(第1図)において座標点A
(0.060,0.0475),B(0.079,0.0550),C(0.150

0.070),D(0.060,0.0355)で囲まれる範囲にす
る事が重要である。 酸触媒量(Y)=酸触媒添加量+0.047(1−R) ……〔〕式 〔式中 酸触媒添加量;モル/100gフエノール樹脂 R:レゾール型フエノール樹脂の反応活性指100
gのレゾール型フエノール樹脂に発泡剤(ト
リクロルトリフルオルエタン)20g、p−ト
ルエンスルホン酸9gを混合し60℃の雰囲気
で発泡硬化させ発泡体が固化(指触)するまで
の時間(t分)を求め次元で示される値。〕 R=20/t 添加量が0.060〜0.150モルの範囲内であつても
第1図の線分CDによつて決められる量より多く
のエポキシ化合物を添加すると、レゾール型フエ
ノール樹脂の硬化が著しく遅くなりフオームが発
泡後収縮したり、まつたく発泡しなくなつたりす
るので好ましくない。又、第1図の線分AB及び
BCより少ない量の添加では独立気泡率が著しく
低下し実質的に連続気泡の発泡体となり、断熱性
能が改善されず、フオームの金属に対する腐蝕性
が著しく好ましくない。 本発明で使用する酸触媒の量を式で規定され
る値を用いる理由は、使用するフエノール樹脂の
反応性とエポキシ化合物の反応性とをバランスさ
せないと本発明で目的とする優れた発泡体が得ら
れない為である。従来、フエノール樹脂の反応性
が高くなれば(Rが大きくなる)、その硬化反応
に必要な酸触媒は少なくて済む為、発泡体の製造
においても、もつぱらこの化学量論に基いた組成
で行なわれていたが、本発明はこれとは逆の関係
にある酸触媒量の範囲でフエノール樹脂組成物の
粘弾性が発泡に適性となる事を見い出し、本発明
を完成するに到つた。 本発明で使用するエポキシ化合物の特異的効果
の理由は現在の所明確でないが、その特異的化学
構造によるレゾール型フエノール樹脂との相溶
性、樹脂混合物の発泡過程における反応硬化特
性、その時の樹脂粘性、弾性の特性、樹脂モルホ
ロジー特性等が発泡現象に適した範囲にあり、発
泡時の気泡膜の破損を抑制し独立気泡率80%以上
にし、フオーム中の残存酸触媒量を極度に少なく
する事に加えて、フオームが燃焼炭化する時の寸
法収縮を小さくし、生成する炭化物の機械的強度
を高め、炭化物の残炎性を小さくする化学構造を
硬化フエノール樹脂構造の内に形成している為と
考えられる。 本発明で使用するレゾール型フエノール樹脂
は、フエノールとホルムアルデヒドとの重縮合反
応によつて得られる液状のフエノール樹脂であつ
て公知の製造方法で製造される。液状のレゾール
型樹脂であれば、適宜使用出来るが、フオームを
製造する操作性上から、25℃における粘度が200
〜300000センチポイズで含水率が10重量%以下で
あるものが好ましい。 本発明で使用する酸触媒は有機カルボン酸、有
機スルホン酸、無機酸等、従来公知の酸が使用さ
れる。たとえば、シユウ酸、ギ酸、パラートルエ
ンスルホン酸、キシレンスルホン酸、フエノール
酸、燐酸、ホウ酸等が使用され、特にパラトルエ
ンスルホン酸、キシレンスルホン酸が発泡速度及
びフオーム硬化速度が速く有用である。 これら酸触媒は単独、又は混合して使用する事
が出来るが、混合する場合は、その各成分の酸に
ついて求めた式〔〕の酸触媒添加量(Y)の和が本
発明の範囲内になる様な混合比で使用する。 本発明で使用する発泡剤は低沸点の揮発性有機
化合物が使用される。好ましくは沸点が−40℃〜
95℃のポリハロゲン化飽和フルオロカーボン、ハ
ロゲン化炭化水素、炭化水素またはそれらの混合
物であつて、特に、ハロゲン化フルオロ炭化水素
が断熱性能を改善する点から好ましい。 使用される発泡剤の例としては、クロロホル
ム、塩化メチル、トリクロロフルオロメタン、塩
化メチル、トリクロロフルオロエタン、テトラフ
ルオロメタン、1,1,2−トリクロロ−1,
2,2−トリフルオロエタン、モノクロロジフル
オロメタン、ジクロロジフルオロメタン、1,1
−ジクロロ−1,2,2,2−テトラフルオロエ
タン、1,2−ジクロロ−1,1,2,2−テト
ラフルオロエタン、1,1,1−トリクロロ−
2,2,2−トリフルオロエタン、1,2−ジフ
ルオロエタン、1,1,1,2−テトラクロロ−
2,2−ジフルオロエタンあるいはこれらの混合
物がある。 本発明のフエノールフオームの製造方法は、従
来公知の方法、たとえば、樹脂組成物と発泡剤及
び硬化触媒を均一に混練し型内に注入し発泡硬化
させる方法、連続混練機を通し、ベルトコンベア
ー上に連続的に吐出させ発泡硬化させる方法、こ
れら発泡時に、フオーム表面にガラス繊維織布、
クラフト紙、メタル積層クラフト紙等補強材面材
を供給し、複合パネルを製造する方法等が適用出
来る。 本発明において使用するフオームの評価方法を
以下に記す。 1 密度 JIS A 9514に準じて測定した。 2 独立気泡率 ASTM D2856に記載のエアーピクノメーター
法で測定した。 3 不燃性試験 JIS A 1321法に記載の難燃2級に相当する試
験条件で評価した。 評 価 良好……難燃2級材料として合格する 不良……試験サンプルに許容値以上のき裂、変
形が発生した。 4 水抽出液の酸量 フオームのサンプルを70℃で恒量になるまで乾
燥し、粉砕し、1.0グラムを精秤し、蒸留水20ml
を加え25℃で30分間振とう抽出し、whatman
1PS紙で過し、液5mlをフエノールフタレ
イン指示薬を使用して0.01規定の水酸化ナトリウ
ム水溶液で滴定しフオーム1グラム当りの残存す
る酸量(モル)を求めた。 5 腐蝕性試験 ブラスト処理した冷間圧延鋼板をフオームサン
プル(長さ100×巾100×厚み20mm)ではさみ、25
℃、65%RHの雰囲気中に1ケ月放置した後、試
験鋼板を取り出しその表面の腐蝕状態を観察し評
価した。 評 価 良好……端部に発錆が認められるが鋼板面は変
化なし。 腐蝕大……鋼板両面に発錆が認められる。 実施例 1 液状レゾール型フエノール樹脂(25℃における
粘度5ポイズ、反応性指数R=0.50)100グラム
にトリクロロモノフルオロメタン15グラム、グリ
セリンジグリシジルエーテル0.06モルを加え、均
一に混合し、パラトルエンスルホン酸の75%水溶
液2.75グラムを加え高速撹拌機で均一に混合し、
一辺200mmの正方形の型わくに流し込み発泡させ
た。 次いで、発泡体を70℃の乾燥機内に20分放置し
硬化を終了させた。(実験No.1) 得られたフオームの物性は密度40Kg/m2、独立
気泡率82%、熱伝導率0.0160(0℃)Kcal/m・
hr℃で、残炎時間20(秒)、発煙係数15、温度時間
面積3(℃分)、き裂、変形のない優れた耐炎性を
示した。 又、フオーム中の残存酸量は4×10-5モル/グ
ラムで、フオームに接触させた鋼板による腐蝕性
評価も良好な結果を示した。 実施例 2 実施例1においてグリセリンジグリシジルエー
テルの添加量と、パラトルエン酸水溶液の添加量
を第1表に示す量に変えた他は同様の方法で発泡
させた。得られたフオームの物性を第1表に示し
た。(実験No.2,3及び4) 比較例1及び2 実施例1において、グリセリンジグリシジルエ
ーテルの量を0.05モルにした他は同様の方法で発
泡させた。(実験No.5) 又、実施例2、実験No.2及びNo.4においてグリ
セリンジグリシジルエーテルの量をそれぞれ0.05
モル、0.16モルに変えた他はそれぞれ同様の方法
で発泡させた。(実験No.6,7) 得られたフオームの物性を第1表に示した。 なお、実験No.7の発泡体は、中心部に大きな空
洞があり、又、気泡の大きさも大きく(5mm以
上)不ぞろいで外観の悪いものであつた。
The present invention relates to a method for producing a phenol foam that has excellent flame resistance, no corrosion of metals that come into contact with the foam, a high closed cell ratio, and excellent heat insulation performance. Conventionally, phenol foam has attracted attention as a non-combustible heat insulating material due to its superior flame resistance and non-combustibility compared to polystyrene-based thermoplastic resin foam or polyurethane-based rigid foam. It's here. However, the nonflammability of conventional phenol foams is not sufficient. For example, when evaluating nonflammability using the JISA1321 method, the foam cracks and deformation is large, and its performance as a quasi-noncombustible material is poor. does not have. In addition, since acid catalysts are used to cure the resin in the production of phenol foam, these acid catalysts are used in the foam, so these acid catalysts remain in the foam and when insulation is applied, metals that come into contact with the foam may be It also has the disadvantage of corrosion, and conventional phenol foam has a closed cell ratio of zero or at most 50.
The insulation performance was also poor. On the other hand, research has been conducted to improve these drawbacks of phenol forms, such as the US patent
No. 3298973 describes a method using a mixture of boric acid and an organic hydroxy acid compound as a catalyst;
No. 52168 discloses a method of adding a non-volatile amine compound, and JP-A-55-82133 discloses a method of adding an inorganic filler. However, even if flame resistance is improved by these methods, the insulation performance, which is an important property for insulation materials, is not improved.
In addition, the corrosion resistance to metals is the same as that of conventional products, and it has not yet been put into practical use. The present invention relates to a method for producing an excellent phenol foam that improves these drawbacks of phenol foam, has excellent flame resistance, has a closed cell ratio of 80% or more, has excellent heat insulation performance, and is free from corrosion of metals. That is, the present invention provides a method for producing a foam by mixing a resol type phenolic resin with an epoxy compound acid catalyst and a blowing agent, wherein the epoxy compound is a compound represented by the general formula [], (However, n is an integer of 1 or more) In the orthogonal coordinates consisting of the X axis defined by the amount of epoxy compound added and the Y axis defined by the amount of acid catalyst added, coordinate point A (0.060, 0.0475),
B (0.079, 0.0550), C (0.150, 0.070), D (0.060

0.0355) A method for producing phenol foam with excellent flame resistance, characterized by foaming a composition within the range surrounded by The amount of acid catalyst (Y) expressed in [ ] is mol/100g of phenolic resin. ] Y = Acid catalyst addition amount + 0.047 (1-R) ...Formula (where R is the reaction activity index of the resol type phenolic resin) It is a U.S. patent to add an epoxy compound to a phenolic resin to improve its physical properties. No. 3298973, Japanese Patent Publication No. 1983
Although it is also described in No. 82133, there are no examples of the epoxy compound used in the present invention, and even if the above-mentioned known technology is applied by changing only the epoxy compound, the object of the present invention cannot be achieved. The epoxy compound used in the present invention is represented by the general formula [], and examples thereof include glycerin diglycidyl ether, diglycerin diglycidyl ether, triglycerin diglycidyl ether, and mixtures thereof. The amount added is 0.060 to 0.150 mol per 100 grams of resol type phenolic resin, and if the amount is less than 0.060 mol, flame resistance, closed cell ratio, and heat insulation performance will not be improved, which is not preferable. Furthermore, if the amount is more than 0.150 mol, the cells in the resulting foam will become significantly larger and the closed cell ratio will also decrease, which is not preferable. Furthermore, the amount of epoxy compound added varies depending on the reaction activity of the resol type phenol resin used and the amount of catalyst added. ) in Cartesian coordinates (Fig. 1) with Y axis as coordinate point A
(0.060, 0.0475), B (0.079, 0.0550), C (0.150

0.070), D(0.060, 0.0355) is important. Acid catalyst amount (Y) = Acid catalyst addition amount + 0.047 (1-R) ... [Formula] [In the formula, acid catalyst addition amount; mol/100g Phenol resin R: Reaction activity index of resol type phenolic resin 100
Mix 20 g of a foaming agent (trichlorotrifluoroethane) and 9 g of p-toluenesulfonic acid with g resol type phenolic resin, foam and cure in an atmosphere of 60°C, and time (t minutes) until the foam solidifies (touch with finger). Find the value indicated by the dimension. ] R = 20/t Even if the amount added is within the range of 0.060 to 0.150 mol, if more epoxy compound is added than the amount determined by line segment CD in Figure 1, the curing of the resol type phenolic resin will be significant. This is not preferable because the foam may shrink after foaming or may not foam properly. Also, line segments AB and
If the amount is less than BC, the closed cell ratio will be significantly lowered, resulting in a substantially open cell foam, the insulation performance will not be improved, and the foam will be extremely corrosive to metals, which is unfavorable. The reason for using the value specified by the formula for the amount of acid catalyst used in the present invention is that unless the reactivity of the phenolic resin and the reactivity of the epoxy compound to be used are balanced, the excellent foam aimed at in the present invention will not be obtained. This is because they cannot be obtained. Conventionally, the higher the reactivity of the phenolic resin (the larger R), the less acid catalyst is required for its curing reaction, so even in the production of foams, compositions based on this stoichiometry have always been used. However, in the present invention, it was discovered that the viscoelasticity of the phenolic resin composition becomes suitable for foaming within the range of the amount of acid catalyst which has an inverse relationship to this, and the present invention has been completed. The reasons for the specific effects of the epoxy compound used in the present invention are not clear at present, but include its compatibility with resol type phenolic resin due to its specific chemical structure, reaction curing characteristics during the foaming process of the resin mixture, and resin viscosity at that time. , elastic properties, resin morphology properties, etc. are within the range suitable for foaming, suppressing damage to the cell membrane during foaming, achieving a closed cell ratio of 80% or more, and extremely reducing the amount of residual acid catalyst in the foam. In addition, a chemical structure is formed within the cured phenolic resin structure that reduces dimensional shrinkage when the foam burns and carbonizes, increases the mechanical strength of the generated carbide, and reduces the afterflame of the carbide. it is conceivable that. The resol type phenolic resin used in the present invention is a liquid phenolic resin obtained by a polycondensation reaction of phenol and formaldehyde, and is manufactured by a known manufacturing method. Liquid resol-type resins can be used as appropriate, but from the viewpoint of operability in manufacturing the foam, the viscosity at 25°C must be 200°C.
~300,000 centipoise and a water content of 10% by weight or less is preferred. As the acid catalyst used in the present invention, conventionally known acids such as organic carboxylic acids, organic sulfonic acids, and inorganic acids are used. For example, oxalic acid, formic acid, para-toluene sulfonic acid, xylene sulfonic acid, phenolic acid, phosphoric acid, boric acid, etc. are used, and para-toluene sulfonic acid and xylene sulfonic acid are particularly useful because of their high foaming rate and foam hardening rate. These acid catalysts can be used alone or in a mixture, but if they are mixed, the sum of the acid catalyst addition amounts (Y) in the formula [] calculated for each component acid is within the scope of the present invention. Use at various mixing ratios. The blowing agent used in the present invention is a volatile organic compound with a low boiling point. Preferably the boiling point is -40℃~
A 95° C. polyhalogenated saturated fluorocarbon, a halogenated hydrocarbon, a hydrocarbon, or a mixture thereof, and a halogenated fluorohydrocarbon is particularly preferred since it improves the heat insulation performance. Examples of blowing agents used are chloroform, methyl chloride, trichlorofluoromethane, methyl chloride, trichlorofluoroethane, tetrafluoromethane, 1,1,2-trichloro-1,
2,2-trifluoroethane, monochlorodifluoromethane, dichlorodifluoromethane, 1,1
-dichloro-1,2,2,2-tetrafluoroethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, 1,1,1-trichloro-
2,2,2-trifluoroethane, 1,2-difluoroethane, 1,1,1,2-tetrachloro-
2,2-difluoroethane or a mixture thereof. The phenol foam of the present invention can be produced by conventionally known methods, such as a method in which a resin composition, a blowing agent, and a curing catalyst are uniformly kneaded, injected into a mold, and foamed and cured; During foaming, glass fiber woven fabric is applied to the surface of the foam.
A method of manufacturing a composite panel by supplying reinforcing material such as kraft paper or metal-laminated kraft paper can be applied. The foam evaluation method used in the present invention will be described below. 1 Density Measured according to JIS A 9514. 2 Closed cell ratio Measured by the air pycnometer method described in ASTM D2856. 3 Non-flammability test Evaluation was made under test conditions equivalent to flame retardant class 2 as described in JIS A 1321 method. Evaluation Good: Passed as a second class flame retardant material. Poor: Cracks and deformation exceeding the allowable value occurred in the test sample. 4 Acid content of water extract Dry the foam sample at 70℃ until it reaches a constant weight, crush it, accurately weigh 1.0 g, and add 20 ml of distilled water.
Extract by shaking for 30 minutes at 25℃ and extract using Whatman
It was filtered through 1PS paper, and 5 ml of the solution was titrated with a 0.01N aqueous sodium hydroxide solution using a phenolphthalein indicator to determine the amount (mol) of acid remaining per gram of foam. 5 Corrosion test A blasted cold-rolled steel plate was sandwiched between form samples (length 100 x width 100 x thickness 20 mm), and 25
After being left in an atmosphere of 65% RH for one month, the test steel plate was taken out and the state of corrosion on its surface was observed and evaluated. Evaluation: Good... Rust is observed on the edges, but there is no change in the surface of the steel plate. Severe corrosion: Rust is observed on both sides of the steel plate. Example 1 15 grams of trichloromonofluoromethane and 0.06 mole of glycerin diglycidyl ether were added to 100 grams of liquid resol type phenolic resin (viscosity at 25° C. 5 poise, reactivity index R = 0.50), mixed uniformly, and para-toluene sulfone was added. Add 2.75 g of a 75% aqueous solution of acid and mix uniformly with a high-speed stirrer.
The mixture was poured into a square mold with sides of 200 mm and foamed. The foam was then left in a dryer at 70°C for 20 minutes to complete curing. (Experiment No. 1) The physical properties of the obtained foam were: density 40Kg/m 2 , closed cell ratio 82%, thermal conductivity 0.0160 (0°C) Kcal/m・
At hr°C, it exhibited excellent flame resistance with an afterflame time of 20 (seconds), a smoke generation coefficient of 15, a temperature time area of 3 (°C minutes), and no cracking or deformation. Further, the amount of residual acid in the foam was 4 x 10 -5 mol/g, and corrosion evaluation using a steel plate brought into contact with the foam also showed good results. Example 2 Foaming was carried out in the same manner as in Example 1 except that the amount of glycerin diglycidyl ether and the amount of para-toluic acid aqueous solution added were changed to the amounts shown in Table 1. The physical properties of the obtained foam are shown in Table 1. (Experiment Nos. 2, 3 and 4) Comparative Examples 1 and 2 Foaming was carried out in the same manner as in Example 1 except that the amount of glycerin diglycidyl ether was changed to 0.05 mol. (Experiment No. 5) In addition, in Example 2, Experiment No. 2 and No. 4, the amount of glycerin diglycidyl ether was 0.05, respectively.
Foaming was carried out in the same manner except that the amount was changed to 0.16 mol and 0.16 mol. (Experiment Nos. 6 and 7) The physical properties of the obtained foams are shown in Table 1. The foam of Experiment No. 7 had a large cavity in the center, and the bubbles were large (5 mm or more) and irregular, giving it a poor appearance.

【表】 実施例 3 実施例1において、グリセリンジグリシジルエ
ーテルとパラトルエン水溶液の添加量を、それぞ
れ 0.06モル、5.5グラム;0.079モル、7.2グラム に変えた他は同様の方法で発泡させた。 結果を第2表、実験No.8,9に示した。 実施例 4 液状レゾール型フエノール樹脂(25℃における
粘度300ポイズ、反応性指数R=1.0)100グラム
に1,1,2−トリクロロ−1,2,2−トリフ
ルオロエタン20グラムグリセリンジグリシジルエ
ーテル0.06モルを加え均一に混合し、パラトルエ
ンスルホン酸の75%水溶液9.76グラムを加え、高
速撹拌機で均一に混合し、一辺200mmの正方形の
型わくに流し込み発泡させた。 次いで、発泡体を70℃の乾燥機内に20分放置し
硬化を終了させた。(実験No.10) 得られたフオームの物性は、第2表No.8に示し
た通りであつた。(残炎時間20秒、発煙係数12温
度時間面積3℃分、き裂、変形認められず) 又、グリセリンジグリシジルエーテルの添加量
と、パラトルエンスルホン酸水溶液の添加量をそ
れぞれ 0.0795モル、11.5グラム;0.10モル、13.5グラ
ム に変えた他は同様の方法で発泡させた。得られた
フオームの物性を第2表実験No.11,12に示した。 比較例 3 実施例1においてグリセリンジグリシジルエー
テルとパラトルエンスルホン酸水溶液の添加量を
第2表実験No.13,14,15,16に示した量に変更し
た他は同様の方法で発泡させた。 実験No.13及び15はフオームの硬化が遅く、70℃
の恒温室で2時間加熱して硬化が完了した。 比較例 4 実施例4においてグリセリンジグリシジルエー
テルとパラトルエンスルホン酸水溶液の添加量を
第2表実験No.17,18に示した量に変更した他は、
同様の方法で発泡させた。 実験No.17は、フオームの硬化が遅く、70℃の恒
温室で1時間加熱して硬化を完了した。
[Table] Example 3 Foaming was carried out in the same manner as in Example 1, except that the amounts of glycerin diglycidyl ether and paratoluene aqueous solution were changed to 0.06 mol and 5.5 g; 0.079 mol and 7.2 g, respectively. The results are shown in Table 2, Experiment Nos. 8 and 9. Example 4 20 grams of 1,1,2-trichloro-1,2,2-trifluoroethane per 100 grams of liquid resol type phenolic resin (viscosity at 25°C 300 poise, reactivity index R=1.0) 0.06 grams of 1,1,2-trichloro-1,2,2-trifluoroethane 9.76 g of a 75% aqueous solution of para-toluenesulfonic acid was added and mixed uniformly using a high-speed stirrer, and the mixture was poured into a square mold with sides of 200 mm and foamed. The foam was then left in a dryer at 70°C for 20 minutes to complete curing. (Experiment No. 10) The physical properties of the obtained foam were as shown in Table 2, No. 8. (Afterflame time 20 seconds, smoke coefficient 12 temperature time area 3℃, no cracks or deformation observed) Also, the amount of glycerin diglycidyl ether and the amount of paratoluenesulfonic acid aqueous solution added were 0.0795 mol and 11.5 mol, respectively. Foaming was carried out in the same manner except that the amount was changed to 0.10 mol and 13.5 grams. The physical properties of the obtained foam are shown in Table 2, Experiment Nos. 11 and 12. Comparative Example 3 Foaming was carried out in the same manner as in Example 1 except that the amounts of glycerin diglycidyl ether and para-toluene sulfonic acid aqueous solution were changed to those shown in Experiment Nos. 13, 14, 15, and 16 in Table 2. . In Experiments No. 13 and 15, the foam hardened slowly at 70°C.
Curing was completed by heating in a constant temperature room for 2 hours. Comparative Example 4 In Example 4, the amounts of glycerin diglycidyl ether and para-toluene sulfonic acid aqueous solution were changed to those shown in Experiment Nos. 17 and 18 in Table 2.
Foaming was carried out in the same manner. In Experiment No. 17, the foam hardened slowly and was completed by heating in a constant temperature room at 70°C for 1 hour.

【表】 第2表の実験No.9(実施例3、フエノール樹脂
の反応活性R=0.5)と、実験No.11(実施例4フエ
ノール樹脂の反応活性R=1.0) 及び、実験No.17(比較例4、フエノール樹脂の
反応活性R=1.0)の比較から 反応活性の異なる樹脂を使用する場合は、同じ
量の酸触媒あるいは反応活性の増加に応じ減じた
量の触媒のを添加しても、独立気泡率の高い発泡
体は得られず、式で現わされるYが同じレベル
範囲である添加量にする事が重要である事が明ら
かである。 第1表、及び第2表の結果を総合的に評価して
低密度の発泡体で、独立気泡率が80%以上で、不
燃性試験が良好で(発煙係数が小さく、温度時間
面積が小さく、残炎時間が短く、き裂・変形がな
い)、残酸量が少なく、中性に近く、金属への腐
蝕性が無いものを〇印、いずれか1つの性能が劣
るものを×印としてエポキシ化合物の添加量をX
軸、酸触媒の添加量(Y)をY軸とする直交座標にプ
ロツトした結果を第2図に示した。 第2図から座標点A(0.060,0.0475)、B
(0.079,0.0550)、C(0.150,0.070)、D(0.060,
0.0355)で囲まれる範囲にある組成で発泡させた
発泡体が優れた性能を有し、反応性の異なるフエ
ノール樹脂を使用した場合も上記範囲内の組成で
発泡させる事により優れた発泡体が製造される事
が明らかである。 実施例 5 液状レゾール型フエノール樹脂(25℃における
粘度300ポイズ、反応性指数R=1.0)100グラム
に1,1,2−トリクロロ−1,2,2−トリフ
ルオロエタン20グラムジグリセリンジグリシジル
エーテル0.08モルを加え、均一に混合し、正リン
酸4.9グラム(0.05モル)を加え高速撹拌機で均
一に混合し発泡させた。次いで、発泡体を70℃の
乾燥機内で20分放置し、硬化を終了させた。 得られたフオームは密度35Kg/m2、独立気泡率
81%、残炎時間22(秒)、発煙係数10、温度時間面
積2(℃分)、き裂・変形認のない優れた耐炎性を
有するものであつた。又、 フオーム中の残存酸量は、1.5×10-4モル/グ
ラムで腐蝕性評価も良好な結果であつた。 比較例 5 液状レゾール型フエノール樹脂(25℃における
粘度300ポイズ、反応性指数R=1.0)100グラム
にトリクロロモノフルオロメタン15グラム、を加
え、パラトルエンスルホン酸の75%水溶液12グラ
ムを加え高速撹拌機で均一に混合し発泡させた。 次いで、70℃の乾燥機内に20分放置し硬化を終
了させた。 得られたフオームの物性は、密度40Kg/m3、独
立気泡率0%、熱伝導率0.035(0℃)Kcal/m・
hr℃で、残炎時間35(秒)、発煙係数10、温度時間
面積2(℃、分)、き裂、変形が大きく、試験後、
フオームサンプルは非常にもろく粉化した。又、
フオーム中の残存酸量は5.0×10-4モル/グラム
でフオームに接触した鋼板による腐蝕試験でも全
面に腐蝕が発生し、鋼板の内部に腐蝕が進行して
もろくなつていた。 比較例 6 実施例4においてグリセリンジグリシジルエー
テル0.06モルを、ビスフエノールAジグリシジル
エーテル0.06モルに替えた他は同様の方法で発泡
させ、密度33Kg/m3、独立気泡率74%の発泡体を
得た。 このものの不燃性を試験した結果、残炎時間33
秒、発煙係数35、温度時間面積20℃分で試験片の
表面に試験片の厚みの1/5の巾を有するき裂が入
り、試験後変形が著しく、又、残査はもろく、粉
化しやすいものであつた。
[Table] Experiment No. 9 in Table 2 (Example 3, reaction activity R of phenolic resin = 0.5), Experiment No. 11 (Example 4, reaction activity R of phenol resin = 1.0), and Experiment No. 17 (Comparative example 4, reaction activity R = 1.0 of phenolic resin) When using resins with different reaction activities, add the same amount of acid catalyst or a reduced amount of catalyst depending on the increase in reaction activity. However, it is not possible to obtain a foam with a high closed cell ratio, and it is clear that it is important to adjust the amount of addition so that Y expressed in the formula is within the same level range. A comprehensive evaluation of the results in Tables 1 and 2 shows that the foam has a low density, a closed cell ratio of 80% or more, and a good nonflammability test (low smoke coefficient, small temperature-time area). , short afterflame time, no cracks or deformation), low residual acid content, near neutrality, and non-corrosive to metals are marked with an ○, and those with poor performance in any one are marked with an x. The amount of epoxy compound added is
Figure 2 shows the results plotted on orthogonal coordinates with the amount of acid catalyst added (Y) as the Y axis. From Figure 2, coordinate points A (0.060, 0.0475), B
(0.079, 0.0550), C (0.150, 0.070), D (0.060,
Foamed with a composition within the range of 0.0355) has excellent performance, and even when using phenolic resins with different reactivity, excellent foamed products can be produced by foamed with a composition within the above range. It is clear that it will be done. Example 5 20 grams of 1,1,2-trichloro-1,2,2-trifluoroethane diglycerin diglycidyl ether per 100 grams of liquid resol type phenolic resin (viscosity at 25°C 300 poise, reactivity index R=1.0) 0.08 mol was added and mixed uniformly, and 4.9 g (0.05 mol) of orthophosphoric acid was added and mixed uniformly with a high-speed stirrer to foam. The foam was then left in a dryer at 70°C for 20 minutes to complete curing. The obtained foam has a density of 35Kg/m 2 and a closed cell ratio.
81%, afterflame time 22 (seconds), smoke generation coefficient 10, temperature time area 2 (°C minutes), and had excellent flame resistance with no cracks or deformation. In addition, the amount of residual acid in the foam was 1.5 x 10 -4 mol/g, which gave good results in the corrosion evaluation. Comparative Example 5 Add 15 grams of trichloromonofluoromethane to 100 grams of liquid resol type phenolic resin (viscosity at 25°C, 300 poise, reactivity index R = 1.0), add 12 grams of a 75% aqueous solution of para-toluenesulfonic acid, and stir at high speed. The mixture was mixed uniformly using a machine and foamed. Then, it was left in a dryer at 70°C for 20 minutes to complete curing. The physical properties of the obtained foam are: density 40Kg/m 3 , closed cell ratio 0%, thermal conductivity 0.035 (0°C) Kcal/m・
At hr℃, afterflame time 35 (seconds), smoke generation coefficient 10, temperature time area 2 (℃, minutes), cracks and deformation are large, after the test,
The foam sample was very brittle and powdered. or,
The amount of residual acid in the foam was 5.0 x 10 -4 mol/g, and even in a corrosion test using a steel plate in contact with the foam, corrosion occurred on the entire surface, and corrosion progressed inside the steel plate, making it brittle. Comparative Example 6 Foaming was carried out in the same manner as in Example 4 except that 0.06 mol of glycerin diglycidyl ether was replaced with 0.06 mol of bisphenol A diglycidyl ether, and a foam with a density of 33 Kg/m 3 and a closed cell ratio of 74% was obtained. Obtained. As a result of testing the nonflammability of this product, the afterflame time was 33
seconds, smoke generation coefficient 35, temperature time area 20℃ minutes, a crack with a width of 1/5 of the thickness of the test piece appeared on the surface of the test piece, and the deformation was significant after the test, and the residue was brittle and powdered. It was easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲に記載の直交座標の座
標点を示す図。第2図は第1図の基となつた、実
施例・比較例の解析図である。
FIG. 1 is a diagram showing coordinate points of orthogonal coordinates described in the claims. FIG. 2 is an analysis diagram of an example/comparative example, which is the basis of FIG. 1.

Claims (1)

【特許請求の範囲】 1 レゾール型フエノール樹脂にエポキシ化合
物、酸触媒及び発泡剤を混合して発泡体を製造す
る方法において エポキシ化合物が一般式〔〕で現わされる化
合物であつて、 〔〕式 (ただしnは1以上の整数) エポキシ化合物の添加量により定義されるX軸
と、酸触媒の添加量により定義されるY軸より成
る直交座標において、座標点A(0.060,0.0475),
B(0.079,0.0550),C(0.150,0.070),D(0.060

0.0355)で囲まれる範囲にある組成物を発泡させ
る事を特徴とする耐炎性に優れたフエノールフオ
ームの製造方法 〔ただしX軸はエポキシ化合物の添加量で、モ
ル/100gフエノール樹脂、Y軸は式〔〕で現
わされる酸触媒量(Y)で、モル/100gフエノール
樹脂である。〕 Y=酸触媒添加量+0.047(1−R) ……式 (式中、Rはレゾール型フエノール樹脂の反応活
性指数) 2 発泡剤が低沸点の揮発性有機化合物である特
許請求の範囲第1項記載の製造方法。 3 エポキシ化合物〔〕がグリセリンジグリシ
ジルエーテルである特許請求の範囲第1項記載の
製造方法。 4 酸触媒がP−トルエンスルホン酸及び/又は
キシレンスルホン酸である特許請求の範囲第1項
記載の製造方法。
[Claims] 1. A method for producing a foam by mixing a resol type phenolic resin with an epoxy compound, an acid catalyst, and a blowing agent, wherein the epoxy compound is a compound represented by the general formula [ ], [] Formula (where n is an integer of 1 or more) In the orthogonal coordinates consisting of the X axis defined by the amount of epoxy compound added and the Y axis defined by the amount of acid catalyst added, coordinate point A (0.060, 0.0475) ,
B (0.079, 0.0550), C (0.150, 0.070), D (0.060

0.0355) A method for producing phenol foam with excellent flame resistance, characterized by foaming a composition within the range surrounded by The amount of acid catalyst (Y) expressed in [ ] is mol/100g of phenolic resin. ] Y = Acid catalyst addition amount + 0.047 (1-R) ...Formula (wherein, R is the reaction activity index of the resol type phenolic resin) 2 Claims in which the blowing agent is a volatile organic compound with a low boiling point The manufacturing method according to item 1. 3. The manufacturing method according to claim 1, wherein the epoxy compound [ ] is glycerin diglycidyl ether. 4. The production method according to claim 1, wherein the acid catalyst is P-toluenesulfonic acid and/or xylenesulfonic acid.
JP339282A 1982-01-14 1982-01-14 Preparation of phenolic resin foam having excellent flame resistance Granted JPS58120644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP339282A JPS58120644A (en) 1982-01-14 1982-01-14 Preparation of phenolic resin foam having excellent flame resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP339282A JPS58120644A (en) 1982-01-14 1982-01-14 Preparation of phenolic resin foam having excellent flame resistance

Publications (2)

Publication Number Publication Date
JPS58120644A JPS58120644A (en) 1983-07-18
JPH0549703B2 true JPH0549703B2 (en) 1993-07-27

Family

ID=11556086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP339282A Granted JPS58120644A (en) 1982-01-14 1982-01-14 Preparation of phenolic resin foam having excellent flame resistance

Country Status (1)

Country Link
JP (1) JPS58120644A (en)

Also Published As

Publication number Publication date
JPS58120644A (en) 1983-07-18

Similar Documents

Publication Publication Date Title
US3389094A (en) Foaming phenol-formaldehyde resins with fluorocarbons
US4122045A (en) Non-punking non-corrosive phenolic foam containing sodium tetraborate
US4530939A (en) Low K-factor closed cell phenol-aldehyde foam and process for preparation thereof
JPS6142549A (en) Production of phenolic resin foam
NZ236825A (en) Blowing agents for producing synthetic resin foams comprising at least one fluorocarbon and at least one chlorofluorohydrocarbon or fluorohydrocarbon or a (cyclo)alkane having a boiling point below 120 o c
NZ204806A (en) Phenolic resole compositions and manufacture of foams therefrom
JPH03190938A (en) Improved closed-cell phenolic foam containing alkyl glucoside
US4001148A (en) Process for the production of flame-resistant phenolic resin foam plastics
EP0170357B1 (en) A process for producing phenolic foams
US4018725A (en) Phenolic foam products and method of making the same
JPH0549703B2 (en)
US3414526A (en) Flame-retardant, nonshrinking ureaformaldehyde foams
GB1604657A (en) Phenolic resins and products prepared therefrom
JPH05500532A (en) Stable foamed amino resin and its manufacturing method
JP2551481B2 (en) Foaming phenolic resin composition
JP3139159B2 (en) Method for producing phenolic resin foam
WO1989012658A1 (en) A process for producing phenolic foams
JPS58120642A (en) Preparation of phenolic resin foam rich in closed cell structure
JPS62501077A (en) Method for producing closed-cell phenolaldehyde foam with low K factor
JPS59164343A (en) Production of phenol resin foam
JPH0364542B2 (en)
JPS6289740A (en) Phenolic resin composition and flame-resistive phenolic resin foam made therefrom
JP2514879B2 (en) Fireproof phenolic resin foamable composition and method for producing foam
JPS60188431A (en) Production of phenolic resin foam
JPS60186542A (en) Production of foamed phenolic resin