JPH054964B2 - - Google Patents

Info

Publication number
JPH054964B2
JPH054964B2 JP11974884A JP11974884A JPH054964B2 JP H054964 B2 JPH054964 B2 JP H054964B2 JP 11974884 A JP11974884 A JP 11974884A JP 11974884 A JP11974884 A JP 11974884A JP H054964 B2 JPH054964 B2 JP H054964B2
Authority
JP
Japan
Prior art keywords
weight
parts
transparency
impact resistance
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11974884A
Other languages
Japanese (ja)
Other versions
JPS61211A (en
Inventor
Tomoji Yamamoto
Tsunemasa Yumoto
Yoshio Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP11974884A priority Critical patent/JPS61211A/en
Publication of JPS61211A publication Critical patent/JPS61211A/en
Publication of JPH054964B2 publication Critical patent/JPH054964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は透明性、耐候性及び耐衝撃性にすぐれ
たゴム変性熱可塑性樹脂の製造方法に関する。 〔従来技術〕 ゴム状重合体で変性されたポリスチレン系など
の熱可塑性樹脂はすぐれた成形性、成形品外観、
機械的強度に加えて耐衝撃性が改善され幅広い用
途を確保している(例えば特公昭46−18491号公
報、特公昭46−9472号公報、特公昭50−37700号
公報など)。しかし乍ら一般的にはブタジエン系
のゴム状重合体をゴム変性物質として用いる場
合、耐候性が良くなく屋外用途に向かないという
欠点が生じている。 又ゴム状物質の変性により透明性が損われるの
が一般的であり、透明性の要求される用途、或い
は高い艷色性の要求される用途には不向きであつ
た。 〔発明の目的〕 本発明の目的はゴム変性熱可塑性樹脂のもつ耐
衝撃性、成形品などを損なうことなく、透明性、
耐候性が付与されたゴム変性熱可塑性樹脂を提供
することにある。 〔発明の構成〕 本発明に従つて、n−プチルアクリレート30〜
70重量%、共役ジエン10〜50重量%および芳香族
ビニル化合物10〜30重量%を乳化重合させて得ら
れる平均粒子径0.15〜0.4μのゴム状重合体ラテツ
クス5〜45重量部(固形分として)の存在下でメ
チルメタクリレート40〜80重量%、シアン化ビニ
ル化合物4〜25重量%、α−メチルスチレン2〜
20重量%およびこれらと共重合可能なビニル系単
量体0〜20重量%よりなる単量体混合物95〜55重
量部を乳化グラフト重合させることを特徴とす
る、熱可塑性樹脂の製造方法が提供される。 〔発明の実施様態〕 本発明で用いられるゴム状重合体を構成するn
−ブチルアクリレートの使用量が30重量未満で
は、十分な耐候性が得られず、一方70重量%をこ
えると、透明性と耐衝撃性とに併せ持たすことが
できない。また共役ジエンとしては1,3−ブタ
ジエン、イソプレン、クロロプレンなどが例示さ
れ、好ましくは1,3−ブタジエンである。その
使用量が50重量%をこえると耐候性が低下し、一
方10%未満では十分な耐衝撃性が得られず透明性
も悪化する。 更に芳香族ビニル化合物としてはスチレン、α
−メチルスチレン、ビニルトルエンなどが例示さ
れ、好ましくはスチレンである。その使用量は10
重量%未満では透明性が悪化し30%をこえると耐
衝撃性が不十分となる。 また本発明ではゴム状重合体ラテツクスは平均
粒子径が0.15〜0.40μ、好ましくは0.18〜0.3μの範
囲にあることが必要である。粒子径が0.15μ未満
であれば透明性は良好であるが、耐衝撃性が発現
されない。一方0.40μをこえると透明性が低下し
またラテツクスの機械的安定性が不良となり乳化
グラフト反応時に凝固物が増大する。 上記のゴム状物質を乳化重合でうる方法は、例
えばn−ブチルアクリレート30〜70%好ましくは
35〜65%、共役ジエン10〜50%、好ましくは15〜
45%、芳香族ビニル化合物10〜30%、好ましくは
15〜25%よりなるモノマー混合物を乳化剤の存在
下で水中に乳化させ、ラジカル開始剤を加えて攪
拌下にて重合反応させる一般的な方法及び条件で
行なわれる。ここで得られるラテツクスの粒子径
は必要に応じて、例えば電解質たとえば塩化カリ
ウム、塩化ナトリウム、硫酸カリウム、硫酸ナト
リウム、炭酸カリウム、炭酸ナトリウムなどを添
加して上記の範囲内に調節される。 他の共重合可能なビニルモノマーを上記の乳化
重合において10重量%以下共重合させることは可
能である。例えばジビニルベンゼン、ジシクロペ
ンタジエン、エチリデンノルポルネン、エチレン
ジメタクリレートなどの2官能性モノマーを共重
合させることはゴム状ラテツクスに架橋構造を持
たせたり、容易にグラフトされるポリマー構造を
形成したりするため時には好結果を与えることも
ある。しかしこれは必ずしも必要ではない。 次に、本発明における乳化グラフト反応は上記
のゴム状重合体ラテツクス5〜45、好ましくは10
〜40重量部(固定分として)の存在下で、メチル
メタクリレート40〜80、好ましくは45〜77重量
%、シアン化ビニル化合物4〜25、好ましくは5
〜20重量%、α−メチルスチレン2〜20、好まし
くは3〜15重量%及びこれらと共重合可能な他の
ビニル単量体0〜20重量%よりなる単量体混合物
95〜55、好ましくは90〜60重量部を乳化状態でラ
ジカル共重合させる方法である。 透明性を発現させるにはゴム状物質とマトリツ
クス樹脂成分の屈折率が同等もしくはかなりの程
度近似しかつ十分なグラフト成分が生成すること
が必要である。屈折率は各ビニルモノマー固有の
値があるので、ビニルモノマーの種類、使用量、
グラフト率などを適宜し選択し、屈折率が同等あ
るいは近似する様調節する。ゴム状物質とマトリ
ツクス樹脂成分の屈折率の差はn25 Dにおいて約
0.02以下であることが好ましい。またグラフト率
は30%以上が好ましい。グラフト率の測定は熱可
塑性樹脂をゾル成分とゲル成分に分離し各成分の
結合アクリロニトリル量を求め計算により算出さ
れる。 透明性、耐候性を発現するために基本的にメチ
ルメタクリレートが必要であり、耐衝撃性、耐薬
品性のためにアクリロニトリルが必要である。更
に本発明の組成においてα−メチネスチレンを本
発明の範囲で用いた場合に驚くべきことに初めて
十分な耐衝撃性が達成される。α−メチルスチレ
ンが本発明の範囲未満であると耐衝撃性が十分で
なく一方範囲をこえると加工性及び熱安定性が低
下する。 乳化グラフト反応の方法は一般の乳化重合法で
あれば特に制限はないが、好適なのはデキストロ
ーズ処方、スルホキシレート処方と呼ばれるレド
ツクス系開始剤を用いる処方であり、ビニルモノ
マーはその全量の80%以上を4時間以上掛けて遂
次的に添加する方法である。乳化剤は脂肪酸アル
カリ金属塩系、ロジン酸アルカリ金属塩、中性乳
化剤などが用いられるがいづれの場合も塩凝固し
てポリマーを回収するのが特に好ましい。 特に、本発明においてはα−メチルスチレンの
効果が特異である。従来ABS樹脂などでスチレ
ンの代りにα−メチルスチレンを使用して耐熱性
を上げることはよく知られているが、本発明では
上記グラフト重合組成においてα−メチルスチレ
ンの共重合によりグラフト共重合体の耐衝撃性が
向上するという従来知られていなかつた特異な効
果が見出された。 水に本発明を実施例により更に詳述する。 製造例 1(ゴムラテツクスA−1) 4段パドル翼を備えた内容積100のステンレ
ス製重合反応器を用いて表−1に示した処方にて
重合反応を実施した。90rpmの攪拌下に昇温し45
℃に達した時点で過硫酸カリウムを添加し以後45
℃一定に保つように制御しながら重合反応を行な
い、重合率90%に達した時点でジエチルヒドロキ
シアミン0.1重量部を添加して反応を停止させ、
水蒸気蒸留により未反応モノマーを実質的に留去
しゴム状物質のラテツクスを得た。平均粒径1950
Å(日化機製のナノサイザーを用いて測定した)
で機械的安定性に優れた凝固物の少ないラテツク
スが得られた。 製造例 2(ゴムラテツクスA−2;B−1〜B
−5) 上記製造例1と同様にしてゴム状物質のラテツ
クスを得た。 処方および結果を表−1にまとめた。
[Technical Field] The present invention relates to a method for producing a rubber-modified thermoplastic resin having excellent transparency, weather resistance, and impact resistance. [Prior art] Thermoplastic resins such as polystyrene modified with rubbery polymers have excellent moldability, appearance of molded products,
In addition to mechanical strength, impact resistance has been improved, ensuring a wide range of uses (for example, Japanese Patent Publication No. 18491/1982, Japanese Patent Publication No. 9472/1972, Japanese Patent Publication No. 37700/1989, etc.). However, when a butadiene-based rubbery polymer is generally used as a rubber-modifying substance, it has the disadvantage that it has poor weather resistance and is not suitable for outdoor use. In addition, transparency is generally impaired due to modification of the rubbery substance, making it unsuitable for applications requiring transparency or high brightness. [Objective of the Invention] The object of the present invention is to improve the impact resistance and transparency of rubber-modified thermoplastic resin without impairing molded products.
An object of the present invention is to provide a rubber-modified thermoplastic resin imparted with weather resistance. [Configuration of the Invention] According to the present invention, n-butyl acrylate 30~
Rubber-like polymer latex with an average particle diameter of 0.15 to 0.4μ obtained by emulsion polymerization of 70% by weight, 10 to 50% by weight of a conjugated diene, and 10 to 30% by weight of an aromatic vinyl compound (5 to 45 parts by weight as solid content) ) in the presence of 40-80% by weight of methyl methacrylate, 4-25% by weight of vinyl cyanide compound, 2-25% by weight of α-methylstyrene.
Provided is a method for producing a thermoplastic resin, comprising emulsion graft polymerization of 95 to 55 parts by weight of a monomer mixture consisting of 20% by weight and 0 to 20% by weight of a vinyl monomer copolymerizable with these. be done. [Embodiments of the invention] n constituting the rubbery polymer used in the invention
- If the amount of butyl acrylate used is less than 30% by weight, sufficient weather resistance cannot be obtained, while if it exceeds 70% by weight, it is impossible to achieve both transparency and impact resistance. Examples of the conjugated diene include 1,3-butadiene, isoprene, and chloroprene, with 1,3-butadiene being preferred. If the amount used exceeds 50% by weight, weather resistance will decrease, while if it is less than 10%, sufficient impact resistance will not be obtained and transparency will deteriorate. Furthermore, as aromatic vinyl compounds, styrene, α
-Methylstyrene, vinyltoluene and the like are exemplified, with styrene being preferred. Its usage is 10
If it is less than 30% by weight, transparency will deteriorate, and if it exceeds 30%, impact resistance will be insufficient. Further, in the present invention, it is necessary that the average particle diameter of the rubbery polymer latex is in the range of 0.15 to 0.40μ, preferably 0.18 to 0.3μ. If the particle size is less than 0.15μ, transparency is good, but impact resistance is not developed. On the other hand, if it exceeds 0.40μ, the transparency will decrease and the mechanical stability of the latex will be poor, resulting in an increase in coagulum during the emulsion graft reaction. A method for obtaining the above rubbery substance by emulsion polymerization is, for example, preferably 30 to 70% n-butyl acrylate.
35~65%, conjugated diene 10~50%, preferably 15~
45%, aromatic vinyl compounds 10-30%, preferably
This is carried out using the general method and conditions of emulsifying a monomer mixture of 15 to 25% in water in the presence of an emulsifier, adding a radical initiator, and carrying out a polymerization reaction under stirring. The particle size of the latex obtained here is adjusted within the above range, if necessary, by adding an electrolyte such as potassium chloride, sodium chloride, potassium sulfate, sodium sulfate, potassium carbonate, sodium carbonate, etc. It is possible to copolymerize other copolymerizable vinyl monomers in an amount of 10% by weight or less in the above emulsion polymerization. For example, copolymerization of difunctional monomers such as divinylbenzene, dicyclopentadiene, ethylidenenorporene, and ethylene dimethacrylate can provide crosslinked structures to rubbery latexes or form polymeric structures that are easily grafted. Sometimes it can give good results. However, this is not necessary. Next, the emulsion grafting reaction in the present invention is carried out using the above-mentioned rubbery polymer latex from 5 to 45, preferably from 10 to 10.
In the presence of ~40 parts by weight (as fixed amount) methyl methacrylate 40-80, preferably 45-77% by weight, vinyl cyanide compound 4-25, preferably 5
~20% by weight of α-methylstyrene, 2 to 20, preferably 3 to 15% by weight, and 0 to 20% by weight of other vinyl monomers copolymerizable therewith.
This method involves radical copolymerization of 95 to 55, preferably 90 to 60 parts by weight in an emulsified state. In order to exhibit transparency, it is necessary that the refractive indexes of the rubber-like substance and the matrix resin component be the same or fairly similar, and that a sufficient amount of the graft component be produced. The refractive index has a value unique to each vinyl monomer, so it depends on the type of vinyl monomer, the amount used,
The graft ratio is appropriately selected and adjusted so that the refractive index is the same or approximate. The difference in refractive index between the rubbery material and the matrix resin component is approximately at n 25 D.
It is preferably 0.02 or less. Moreover, the grafting rate is preferably 30% or more. The graft ratio is calculated by separating the thermoplastic resin into a sol component and a gel component, determining the amount of acrylonitrile bound to each component, and calculating the amount of acrylonitrile bound to each component. Methyl methacrylate is basically required for transparency and weather resistance, and acrylonitrile is required for impact resistance and chemical resistance. Furthermore, sufficient impact resistance is surprisingly only achieved in the compositions of the invention when α-methine styrene is used within the scope of the invention. If the α-methylstyrene content is less than the range of the present invention, the impact resistance will be insufficient, while if it exceeds the range, processability and thermal stability will decrease. There are no particular restrictions on the method of emulsion grafting reaction as long as it is a general emulsion polymerization method, but preferred are formulations using redox initiators called dextrose formulations and sulfoxylate formulations, in which vinyl monomer accounts for 80% of the total amount. This is a method in which the above steps are added sequentially over a period of 4 hours or more. As the emulsifier, fatty acid alkali metal salts, rosin acid alkali metal salts, neutral emulsifiers, etc. are used, but in any case, it is particularly preferable to recover the polymer by salt coagulation. In particular, the effect of α-methylstyrene is unique in the present invention. It is well known that conventional ABS resins etc. use α-methylstyrene instead of styrene to improve heat resistance, but in the present invention, in the above graft polymerization composition, α-methylstyrene is copolymerized to create a graft copolymer. A unique and previously unknown effect of improving the impact resistance of The present invention will be further explained in detail by way of examples. Production Example 1 (Rubber Latex A-1) A polymerization reaction was carried out according to the recipe shown in Table 1 using a stainless steel polymerization reactor with an internal volume of 100 and equipped with four-stage paddle blades. The temperature was increased to 45°C while stirring at 90rpm.
When the temperature reached 45°C, potassium persulfate was added and the temperature was increased to 45°C.
The polymerization reaction was carried out while controlling the temperature to be kept constant, and when the polymerization rate reached 90%, 0.1 part by weight of diethylhydroxyamine was added to stop the reaction.
Unreacted monomers were substantially distilled off by steam distillation to obtain a rubbery latex. Average particle size 1950
Å (measured using Nikkaki Nanosizer)
A latex with low coagulum and excellent mechanical stability was obtained. Production example 2 (rubber latex A-2; B-1 to B
-5) A rubber-like substance latex was obtained in the same manner as in Production Example 1 above. The prescription and results are summarized in Table-1.

【表】 実施例 1 前記製造例で得られたゴムラテツクスを用いて
グラフト重合した例である。攪拌翼を備えた7
ガラス製フラスコに製造例−1で得られたラテツ
クス26重量部(固型分)、ラウリン酸カリウム
0.14重量部とイオン交換水100重量部を加え攪拌
しながら昇温した。45℃に達した時点でピロリン
酸ソーダ0.40重量部、ブドウ糖0.50重量部、硫酸
第一鉄0.005重量部およびイオン交換水30重量部
から成る活性化剤水溶液を添加し同時に下記薬品
の連続的添加を開始した。ラウリン酸カリウム
0.4重量部を含むイオン交換水40重量部溶液、メ
チルメタクリレート56重量部、アクリロニトリル
7重量部、α−メチルスチレン6重量部、スチレ
ン5重量部、ターシヤリードデシルメルカプタン
0.4重量部、上述活性化剤水溶液の1/2相当量およ
びクメンハイドロパーオキサイド0.4重量部を6
時間に亘つて連続的に添加した。添加開始後約1
時間で70℃まで昇温しその後は70℃一定に制御し
た。添加終了後1時間保つた後2,2メチレン−
ビス−(4−エチル−6−t−プチルフエノール)
0.2重量部を添加してフラスコより取り出した。 塩化カルシウム2重量部を用いて凝固し、脱
水、水洗、乾燥を行つて粉末状のグラフト樹脂を
回収した。 得られた粉末に2−(2′−ヒドロキシ−5′−メ
チルフエニル)−ベンゾトリアゾール0.2重量部、
エチレンビスステアロアミド0.3重量部を加え押
出機を用いてペレツトにし、射出成形機を用いて
試験片を作成し物性の測定を実施した。結果は表
−2にまとめて示した通り本例で得られた樹脂は
透明性、耐候性、衝撃強度に優れたものであつ
た。 実施例2;比較例1〜4 表−2に示した以外は実施例1と同様に実施し
た。 これらの例は前記製造例で得られた組成並びに
粒径の異なるゴムラテツクスを用いて実施例−1
と全く同じグラフト組成で重合反応させたもので
ある。 比較例の場合はゴム成分とグラフト成分の屈折
率に差があるためいずれも透明性が十分でない。 比較例 5 実施例−1と同様に実施したが、耐衝撃性に劣
るものであつた。この例で粒径が範囲外に小さい
場合耐衝撃性に劣ることが分る。 実施例3;比較例6〜9 これらの例では異なる組成のゴムラテツクスに
対しグラフト組成として屈折率を合せるようにし
かつ、なるべく本発明で規定した範囲になるよう
にした例であり、それら以外は実施例−1と同様
に実施した。比較例6〜8は耐衝撃性が全く不十
分であり、比較例9は優れた耐衝撃性と透明性を
示すが、耐候性に劣るものであつた。これらの例
から本発明で規定した範囲外のゴムラテツクスを
用いた場合には優れたバランスが得られないこと
が分る。 比較例 10,11 製造例のゴムラテツクス(A−1)を用い、グ
ラフト成分としてそれぞれα−メチルスチレン及
びアクリロニトリルを用いない以外は実施例−1
と同様に実施した。 いづれも十分な衝撃強度が得られなかつた。
[Table] Example 1 This is an example of graft polymerization using the rubber latex obtained in the above production example. 7 equipped with stirring blades
26 parts by weight (solid content) of the latex obtained in Production Example-1 and potassium laurate in a glass flask.
0.14 parts by weight and 100 parts by weight of ion-exchanged water were added, and the temperature was raised while stirring. When the temperature reached 45°C, an activator aqueous solution consisting of 0.40 parts by weight of sodium pyrophosphate, 0.50 parts by weight of glucose, 0.005 parts by weight of ferrous sulfate, and 30 parts by weight of ion-exchanged water was added, and at the same time, the following chemicals were continuously added. It started. potassium laurate
40 parts by weight solution of ion-exchanged water containing 0.4 parts by weight, 56 parts by weight of methyl methacrylate, 7 parts by weight of acrylonitrile, 6 parts by weight of α-methylstyrene, 5 parts by weight of styrene, tertiary lead decyl mercaptan.
0.4 parts by weight, equivalent to 1/2 of the above activator aqueous solution, and 0.4 parts by weight of cumene hydroperoxide.
Additions were made continuously over time. Approximately 1 after starting addition
The temperature was raised to 70°C in an hour and then kept at a constant 70°C. After keeping for 1 hour after addition, 2,2 methylene-
Bis-(4-ethyl-6-t-butylphenol)
0.2 parts by weight was added and taken out from the flask. It was coagulated using 2 parts by weight of calcium chloride, dehydrated, washed with water, and dried to recover a powdery graft resin. To the obtained powder, 0.2 parts by weight of 2-(2'-hydroxy-5'-methylphenyl)-benzotriazole,
0.3 parts by weight of ethylene bisstearamide was added and made into pellets using an extruder. Test pieces were prepared using an injection molding machine and physical properties were measured. As the results are summarized in Table 2, the resin obtained in this example was excellent in transparency, weather resistance, and impact strength. Example 2; Comparative Examples 1 to 4 The same procedure as Example 1 was carried out except as shown in Table 2. These examples were prepared using the rubber latexes obtained in the above production examples with different compositions and particle sizes.
The polymerization reaction was carried out using exactly the same graft composition. In the case of the comparative example, there is a difference in the refractive index between the rubber component and the graft component, so both do not have sufficient transparency. Comparative Example 5 This was carried out in the same manner as in Example-1, but the impact resistance was poor. In this example, it can be seen that if the particle size is too small outside the range, the impact resistance is poor. Example 3; Comparative Examples 6 to 9 In these examples, the refractive indexes of rubber latexes of different compositions were made to match as a graft composition and to be within the range defined by the present invention as much as possible. It was carried out in the same manner as Example-1. Comparative Examples 6 to 8 had completely insufficient impact resistance, and Comparative Example 9 showed excellent impact resistance and transparency, but was inferior in weather resistance. These examples show that excellent balance cannot be obtained when a rubber latex outside the range defined by the present invention is used. Comparative Examples 10 and 11 Example-1 except that the rubber latex (A-1) of Production Example was used and α-methylstyrene and acrylonitrile were not used as graft components, respectively.
It was carried out in the same way. Sufficient impact strength could not be obtained in either case.

【表】【table】

【表】【table】

【表】 物性において“−”は未測定
[Table] In physical properties, "-" means not measured.

Claims (1)

【特許請求の範囲】 1 n−ブチルアクリレート30〜70重量%、共役
ジエン10〜50重量%および芳香族ビニル化合物10
〜30重量%を乳化重合させて得られる平均粒子径
0.15〜0.4μのゴム状重合体ラテツクス5〜45重量
部(固形分として)の存在下でメチルメタクリレ
ート40〜80重量%、シアン化ビニル化合物4〜25
重量%、α−メチルスチレン2〜20重量%および
これらと共重合可能な他のビニル系単量体0〜20
重量%よりなる単量体混合物95〜55重量部を乳化
グラフト重合させることを特徴とする、熱可塑性
樹脂の製造方法。 2 上記共役ジエンが1,3−ブタジエンであり
上記芳香族ビニル化合物がスチレンである特許請
求の範囲第1項記載の製造方法。
[Claims] 1 30-70% by weight of n-butyl acrylate, 10-50% by weight of conjugated diene and 10% by weight of aromatic vinyl compound
Average particle diameter obtained by emulsion polymerization of ~30% by weight
40-80% by weight of methyl methacrylate, 4-25% by weight of vinyl cyanide compound in the presence of 5-45 parts by weight (as solids) of a rubbery polymer latex of 0.15-0.4μ
2-20% by weight of α-methylstyrene and 0-20% of other vinyl monomers copolymerizable therewith.
A method for producing a thermoplastic resin, comprising emulsion graft polymerization of 95 to 55 parts by weight of a monomer mixture consisting of 95 to 55 parts by weight. 2. The manufacturing method according to claim 1, wherein the conjugated diene is 1,3-butadiene and the aromatic vinyl compound is styrene.
JP11974884A 1984-06-13 1984-06-13 Production of thermoplastic resin Granted JPS61211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11974884A JPS61211A (en) 1984-06-13 1984-06-13 Production of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11974884A JPS61211A (en) 1984-06-13 1984-06-13 Production of thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS61211A JPS61211A (en) 1986-01-06
JPH054964B2 true JPH054964B2 (en) 1993-01-21

Family

ID=14769169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11974884A Granted JPS61211A (en) 1984-06-13 1984-06-13 Production of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS61211A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338804A (en) * 1987-12-28 1994-08-16 Mitsubishi Rayon Company, Inc. Methacrylic resin cast plate having transparency and impact resistance, and process for preparation thereof
US5169903A (en) * 1987-12-28 1992-12-08 Mitsubishi Rayon Company Ltd. Methacrylic resin cast plate having transparency and impact resistance and process for preparation thereof
KR20000014173A (en) * 1998-08-18 2000-03-06 성재갑 Thermoplastic resin composition and method for preparing it
KR20030012155A (en) * 2001-07-30 2003-02-12 주식회사 엘지화학 Method for preparing acrylonitrile-butadiene-styrene thermoplastic resin composition for extrusion sheet
DE602004026219D1 (en) 2003-12-30 2010-05-06 Lg Chemical Ltd POLYMER LATEX WITH EXCELLENT IMPACT STRENGTH AND EXCELLENT POWDER CONTENT BEHAVIOR AND METHOD OF MANUFACTURING THEREOF

Also Published As

Publication number Publication date
JPS61211A (en) 1986-01-06

Similar Documents

Publication Publication Date Title
JPS6284109A (en) Production of thermoplastic resin composition
JPS62106915A (en) Transparency and impact property modifier for polyvinyl chloride
JPS6327552A (en) Production of thermoplastic molding composition
US4228256A (en) Transparent blends of resinous copolymers and grafted elastomers
US5382625A (en) Thermoplastic moulding compositions with high notched impact strength
JPH05247148A (en) Methacrylate-butadiene-styrene graft polymer and its pvc blend having low yellowness, good clarity and improved impact strength
JPH054964B2 (en)
JP2637759B2 (en) Method for producing graft polymer
KR100358235B1 (en) Manufacturing method of heat resistant thermoplastic resin excellent in gloss
JP4327198B2 (en) Thermoplastic resin composition
KR100508151B1 (en) Thermoplastic Resin Composition Having Hot Plate Weldability, Colorability And Wettability
KR101161486B1 (en) ABS Graft copolymer, Method for Preparation Thereof and ABS Resin Composition Using the Same
JP2689387B2 (en) Method for producing graft polymer
KR100528779B1 (en) Thermoplastic Resin Composition Having Excellent Heat Resistance and Low Gloss
KR940004852B1 (en) Preparation of thermoplastic resin composition
KR102674487B1 (en) Method for preparing graft copolymer
JPH0674303B2 (en) Method for manufacturing impact resistant resin
JPS63120716A (en) Production of impact-resistant resin
KR102009315B1 (en) Method for preparing high temperature copolymer
US3536786A (en) High-impact,high temperature thermoplastic and method of preparing same
KR100188529B1 (en) The preparation of thermoplastic resin composition having high glossness and high impact strength at low temperature
KR100384383B1 (en) Manufacturing method of thermoplastic resin
KR940011156B1 (en) Process for producing a heat resistant copolymer
KR870000293B1 (en) Method of producing for heat-resisting graft acryl-onitril-butadiene-styren polymer
JPS59155410A (en) Thermoplastic resin and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term