JPH0549473B2 - - Google Patents

Info

Publication number
JPH0549473B2
JPH0549473B2 JP59016437A JP1643784A JPH0549473B2 JP H0549473 B2 JPH0549473 B2 JP H0549473B2 JP 59016437 A JP59016437 A JP 59016437A JP 1643784 A JP1643784 A JP 1643784A JP H0549473 B2 JPH0549473 B2 JP H0549473B2
Authority
JP
Japan
Prior art keywords
medium
naphthoquinone
dye
substrate
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59016437A
Other languages
Japanese (ja)
Other versions
JPS60161192A (en
Inventor
Masaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59016437A priority Critical patent/JPS60161192A/en
Publication of JPS60161192A publication Critical patent/JPS60161192A/en
Publication of JPH0549473B2 publication Critical patent/JPH0549473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B2007/24612Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes two or more dyes in one layer

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレーザ光によつて情報を記録再生する
ことのできる光学記録媒体に関し、さらに詳しく
は有機色素を用いる光学記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording medium on which information can be recorded and reproduced using laser light, and more particularly to an optical recording medium using an organic dye.

(従来技術とその問題点) 従来、この種の光学記録媒体としてTe合金、
Te酸化物及び有機色素等が用いられている。有
機色素は一般に、高感度で無公害な媒体を安価に
製作し得るという優れた特性を有するので、これ
まで種々の媒体の開発が試みられている。それら
を大別すると蒸着型と溶媒塗布型とに分けられ
る。溶媒塗布型はたとえば特開昭55−161690号に
開示されているように高分子樹脂であるポリビニ
ルアセテートに色素としてポリエステルイエロー
を溶剤で相溶し、回転塗布法で基板上に形成され
る。このため、基板に樹脂を使用する場合は、樹
脂を溶解しない溶剤を選択しなければならないと
いう制約がある。一方、蒸着で形成される媒体
は、基板の選択に制約を与えないので実用上望ま
しい媒体である。ただし、蒸着色素膜は一般に会
合(凝集)による表面性の劣化を示す。この劣化
が媒体の寿命を決めるので蒸着型の媒体の場合、
会合性の低い媒体を用いることが重要であるが、
これまで充分な寿命を有する媒体は開発されてい
ない。
(Prior art and its problems) Conventionally, as this type of optical recording medium, Te alloy,
Te oxide and organic dyes are used. Organic dyes generally have excellent properties in that highly sensitive and non-polluting media can be produced at low cost, and various attempts have been made to develop media. They can be roughly divided into vapor deposition type and solvent coating type. In the solvent coating type, for example, as disclosed in JP-A-55-161690, polyvinyl acetate, which is a polymeric resin, is mixed with polyester yellow as a dye using a solvent, and is formed on a substrate by a spin coating method. Therefore, when using resin for the substrate, there is a restriction that a solvent must be selected that does not dissolve the resin. On the other hand, a medium formed by vapor deposition is a practically desirable medium because it does not impose restrictions on the selection of a substrate. However, vapor-deposited dye films generally exhibit deterioration in surface properties due to association (aggregation). This deterioration determines the lifespan of the medium, so in the case of evaporation type media,
Although it is important to use a medium with low association,
Until now, no medium with sufficient longevity has been developed.

(発明の目的) 本発明の目的は、前述の従来技術の欠点を改良
し、長期保存性に優れた有機色素を主成分とする
記録層を有する光学記録媒体を提供することであ
る。
(Objective of the Invention) An object of the present invention is to improve the drawbacks of the prior art described above and to provide an optical recording medium having a recording layer containing an organic dye as a main component and having excellent long-term storage stability.

(発明の構成) 本発明は、基板の片側または両側に記録層を設
け、情報をレーザ光線によつて記録しかつ読み取
る光学記録媒体において、5−アミノ−8−(置
換アニリノ)−2,3−ジシアノ−1,4−ナフ
トキノン色素或いは5,8−(置換アニリノ)−
2,3−ジシアノ−1,4−ナフトキノン色素或
いはこれらの金属錯体と、ポルフィン形化合物と
を混合した層を記録層とすることを特徴とする。
(Structure of the Invention) The present invention provides an optical recording medium in which a recording layer is provided on one or both sides of a substrate, and information is recorded and read by a laser beam. -dicyano-1,4-naphthoquinone dye or 5,8-(substituted anilino)-
It is characterized in that the recording layer is a layer containing a mixture of 2,3-dicyano-1,4-naphthoquinone dye or a metal complex thereof and a porphine type compound.

(構成の詳細な説明) 本発明は上述の構成をとることにより従来技術
の問題点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

5−アミノ−8−(置換アニリノ)−2,3−ジ
シアノ−1,4−ナフトキノン色素或いは5,8
−(置換アニリノ)−2,3−ジシアノ−1,4−
ナフトキノン色素或いはこれらの金属錯体の置換
アニリノの置換基としてアルキル基、アルコキシ
ル基、アリル基、アミノ基、置換アミノ基を選択
することにより、蒸着による成膜性および蒸着膜
の会合性が無置換アニリノ( )より優れる。置換基のアルキル基およびアルコ
キシル基の炭素数は1〜4が望ましが、より望ま
しいのはアルコキシル基である。
5-amino-8-(substituted anilino)-2,3-dicyano-1,4-naphthoquinone dye or 5,8
-(substituted anilino)-2,3-dicyano-1,4-
By selecting an alkyl group, an alkoxyl group, an allyl group, an amino group, or a substituted amino group as a substituent for the substituted anilino of naphthoquinone dyes or metal complexes thereof, the film formability by vapor deposition and the associativity of the vapor deposited film can be improved compared to that of unsubstituted anilino. ( ) better than The alkyl group and alkoxyl group of the substituent preferably have 1 to 4 carbon atoms, and more preferably an alkoxyl group.

これらのナフトキノン色素およびその金属錯体
は、近赤外部に吸収極大を示し、記録・再生のレ
ーザとして半導体レーザを用いるとその発振波長
と良く適合し、高感度媒体を形成し得ることが期
待できる。
These naphthoquinone dyes and their metal complexes exhibit maximum absorption in the near-infrared region, and when a semiconductor laser is used as a recording/reproducing laser, it is expected that the oscillation wavelength will match well with that of a semiconductor laser and a highly sensitive medium can be formed.

前記ナフトキノン色素およびその金属錯体の合
成例を次に示す。
Synthesis examples of the naphthoquinone dye and its metal complex are shown below.

まず公知の2,3−ジクロロ−1,4−ナフト
キノンを硝酸と硫酸でニトロ化して5−ニトロ−
2,3−ジクロロ−1,4−ナフトキノンを得
る。次に、青酸ソーダでシアノ化を行ない5−ニ
トロ−2,3−ジシアノ−1,4−ジヒドロキシ
ナフタレンを得る。つづいて、塩化第1スズと塩
酸で還元処理後、塩化第2鉄で酸化処理して5−
アミノ−2,3−ジシアノ−1,4−ナフトキノ
ン〔〕を得る。〔〕1gをよく粉砕し、エタ
ノール400mlに分散させ還流しておく。これにp
−エトキシアニリン1.23g(2モル比)のエタノ
ール(10ml)溶液を滴下し、還元下に10分かきま
ぜる。反応後熱時過し、液を水冷して生じた
沈殿を過し、乾燥後クロロホルムから再結晶す
ると380mg(収率24%)の精製品(mp254〜256
℃)が得られる。
First, known 2,3-dichloro-1,4-naphthoquinone was nitrated with nitric acid and sulfuric acid to produce 5-nitro-
2,3-dichloro-1,4-naphthoquinone is obtained. Next, cyanation is performed with sodium cyanide to obtain 5-nitro-2,3-dicyano-1,4-dihydroxynaphthalene. Subsequently, after reduction treatment with stannous chloride and hydrochloric acid, oxidation treatment with ferric chloride was performed to obtain 5-
Amino-2,3-dicyano-1,4-naphthoquinone [ ] is obtained. [] Thoroughly crush 1 g, disperse in 400 ml of ethanol, and reflux. p to this
- A solution of 1.23 g (2 molar ratio) of ethoxyaniline in ethanol (10 ml) is added dropwise and stirred for 10 minutes under reducing conditions. After the reaction was heated, the solution was cooled with water, the resulting precipitate was filtered, dried, and recrystallized from chloroform to obtain 380 mg (yield 24%) of the purified product (mp254-256
°C) is obtained.

この精製品の同定結果は、 (1) λmax 760nm(アセトニトリル中) (2) 質量分析(M/e)358,330,329 (3) 元素分析値 計算値 C:67.03% N:15.64% H:3.94
% 実験値 C:67.09% N:15.85% H:3.85
% のようになり、これは5−アミノ−8−(p−エ
トキシアニリノ)−2,3−ジシアノ−1,4−
ナフトキノン〔〕であることが確認された。次
に、〔〕200mgをアセトニトリル300mlに溶かし、
これに50mlのアセトニトリルに溶かした塩化コバ
ルト72mg(1モル比)の溶液を加え、アセトニト
リルの沸点で3時間還流しておく。その後、減圧
蒸留し、残渣をアセトニトリルで洗浄して〔〕
を洗い流し、さらに水洗した後乾燥させると、5
−アミノ−8−(p−エトキシアニリノ)−2,3
−ジシアノ−1,4−ナフトキノン色素のコバル
ト錯体130mgの精製品が得られた。
The identification results of this purified product are: (1) λmax 760nm (in acetonitrile) (2) Mass spectrometry (M/e) 358, 330, 329 (3) Elemental analysis values Calculated values C: 67.03% N: 15.64% H: 3.94
% Experimental value C: 67.09% N: 15.85% H: 3.85
%, which is 5-amino-8-(p-ethoxyanilino)-2,3-dicyano-1,4-
It was confirmed to be naphthoquinone. Next, dissolve 200mg of [] in 300ml of acetonitrile,
A solution of 72 mg (1 molar ratio) of cobalt chloride dissolved in 50 ml of acetonitrile is added to this, and the mixture is refluxed for 3 hours at the boiling point of acetonitrile. After that, it was distilled under reduced pressure and the residue was washed with acetonitrile.
When washed, washed with water, and dried, 5
-amino-8-(p-ethoxyanilino)-2,3
130 mg of a purified cobalt complex of -dicyano-1,4-naphthoquinone dye was obtained.

この精製品をシリカゲル薄層クロマトグラフ法
でアセトニトリルを展開剤として分析したとこ
ろ、錯体は展開しなかつた。なお、〔〕のRf
は0.9である。
When this purified product was analyzed by silica gel thin layer chromatography using acetonitrile as a developing agent, no complex was developed. Note that the R f value of [] is 0.9.

他の前記ナフトキノン色素およびその金属錯体
も上記合成例と同様に合成することができる。
Other naphthoquinone dyes and metal complexes thereof can also be synthesized in the same manner as in the above synthesis example.

本発明で使用される安定化材料としては、B、
Al、Mg、Si、Ca、Sc、Ti、V、Cr、Mn、Fe、
Co、NiCu、Zn、Ga、Ge、Sm、Sr、Y、Zr、
Nb、Tc、Ru、Rh、Pd、Ag、In、Sn、Ba、
La、Hf、Ta、Re、Ir、Pb、BiDy、Er、Gd、
Nd、Prなどの元素の窒化物、弗化物、酸化物、
炭化物や各種有機物から選ばれる。特に望ましい
のはGeO2、SiO、SiO2、Al2O3、Cr2O3Y2O3
La2O3、CeO2、Sm2O3、ZnO、TiO2
MgF2CaF2、ポルフイン形化合物などである。と
くにポルフイン形化合物のなかでもさらに望まし
いの無金属フタロシアニンや中心原子(分子)が
Li、Na、Mg、Al、K、Ca、Ti、TiO、V、
VO、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、
Ge、Y、Mo、Rh、Pd、Ag、In、Sn、Ba、La、
Ce、Pr、Nd、Sm、Eu、Gd、Dy、Tb、ErYb、
Hf、Os、Pt、Pbであるフタロシアニ化合物、或
いはそれらの弗素置換物、塩素置換物である。
The stabilizing materials used in the present invention include B,
Al, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Fe,
Co, NiCu, Zn, Ga, Ge, Sm, Sr, Y, Zr,
Nb, Tc, Ru, Rh, Pd, Ag, In, Sn, Ba,
La, Hf, Ta, Re, Ir, Pb, BiDy, Er, Gd,
Nitride, fluoride, oxide of elements such as Nd and Pr,
Selected from carbides and various organic materials. Particularly desirable are GeO 2 , SiO, SiO 2 , Al 2 O 3 , Cr 2 O 3 Y 2 O 3 ,
La 2 O 3 , CeO 2 , Sm 2 O 3 , ZnO, TiO 2 ,
MgF 2 CaF 2 , porphin type compounds, etc. In particular, metal-free phthalocyanines and central atoms (molecules) are more desirable among porphyne type compounds.
Li, Na, Mg, Al, K, Ca, Ti, TiO, V,
VO, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga,
Ge, Y, Mo, Rh, Pd, Ag, In, Sn, Ba, La,
Ce, Pr, Nd, Sm, Eu, Gd, Dy, Tb, ErYb,
These are phthalocyanine compounds such as Hf, Os, Pt, and Pb, or fluorine-substituted products and chlorine-substituted products thereof.

前記ナフトキノン色素或いはその金属錯体と安
定化材料との混合比率は安定化材料の混入量が1
〜50vol%の範囲に選択するのが望ましい。
The mixing ratio of the naphthoquinone dye or its metal complex and the stabilizing material is such that the amount of the stabilizing material mixed is 1
It is desirable to select a range of ~50vol%.

混合層を作製する最も一般的な方法は、共蒸着
である。これは、前記ナフトキノン色素或いはそ
の金属錯体と安定化材料とを別個の蒸発源から同
時に蒸発させることにより、蒸発源上に保持され
た基板上に混合層を得る方法である。或いは、50
Å以下の薄膜を交互に積層して疑似混合層を形成
してもよい。蒸発源の加熱方法としては、抵抗加
熱、電子ビーム加熱などが使用できる。また、ス
パツタリング、イオンビームデポジシヨン、クラ
スターイオンビームデポジシヨン、イオンプレー
テイングなどが使用でき、前記ナフトキノン色素
或いはその金属錯体と安定化材料とを別々の付着
法で形成してもよい。
The most common method of making mixed layers is codeposition. This is a method in which the naphthoquinone dye or its metal complex and the stabilizing material are simultaneously evaporated from separate evaporation sources to obtain a mixed layer on a substrate held above the evaporation source. Or 50
A pseudo-mixed layer may be formed by alternately stacking thin films of Å or less. As a heating method for the evaporation source, resistance heating, electron beam heating, etc. can be used. Further, sputtering, ion beam deposition, cluster ion beam deposition, ion plating, etc. can be used, and the naphthoquinone dye or its metal complex and the stabilizing material may be formed by separate deposition methods.

記録層を支持する基板としては種々のものが使
用できるが、一般にはガラス、アルミニウム合
金、合成樹脂が望ましい。合成樹脂としてはポリ
メチルメタクリレート(PMMA)ポリカーボネ
ート、エポキシ、ポリエーテルイミド、ポリサル
ホン、ポリビニルクロライド等がある。基板形状
は円板形状、テーブ形状、シート形状が適用でき
る。
Although various substrates can be used to support the recording layer, glass, aluminum alloy, and synthetic resin are generally preferred. Examples of synthetic resins include polymethyl methacrylate (PMMA), polycarbonate, epoxy, polyetherimide, polysulfone, and polyvinyl chloride. The substrate shape can be a disk shape, a table shape, or a sheet shape.

基板上に形成された記録層に半導体レーザ光を
レンズで収光して照射すると、照射部の記録層が
除去されて孔が形成される。この孔形成の機構は
明確ではないが、蒸発(昇華)をともなう融解凝
集に因ると考えられる。形成される孔の大きさ
は、レーザ光の収光径、レーザパワー、照射時間
に依存するが、大体0.2〜3μmであることが望ま
しい。このような孔形成に必要なレーザエネルギ
ーは小さなものであり、したがつて、短時間で孔
形成が可能である。具体的には、波長830nmの
AlGaAs半導体レーザ光をビーム径1.4μmに収光
した場合、記録層でのパワーは2〜13mW、照射
時間は50〜300nsecの範囲で孔を形成することが
できる。当然のことながら、上記パワーあるいは
照射時間の上限値以上の条件でも孔を形成するこ
とができるが、上記条件は望ましい使用条件であ
る。情報の記録は、2進情報を孔の有無に対応さ
せることによりなされる。通常円板状媒体を等速
回転させて、記録情報に合わせて孔を形成して情
報を記録する。なお、以上の場合において記録層
の厚さは0.01〜0.5μmで、好適には0.02〜0.2μm
である。このように記録された情報(孔)の読み
出しは、媒体からの反射光又は透過光の光量変化
を検出することによりなされる。一般に反射光を
検出する方法が採用される。これは、反射光検出
の方が光学系が簡単になるためである。即ち、一
つの光学系で投光と集光が可能であるためであ
る。読み出しはレーザ光を連続させて照射する。
その時の光量は媒体に何らの形状変化が起らない
弱いエネルギーに設定され、通常記録時の光量の
1/5〜1/10である。
When a semiconductor laser beam is focused by a lens and irradiated onto a recording layer formed on a substrate, the recording layer in the irradiated area is removed and a hole is formed. Although the mechanism of this pore formation is not clear, it is thought to be due to melting and aggregation accompanied by evaporation (sublimation). The size of the hole formed depends on the focused diameter of the laser beam, laser power, and irradiation time, but it is preferably about 0.2 to 3 μm. The laser energy required to form such a hole is small, and therefore the hole can be formed in a short time. Specifically, the wavelength is 830nm.
When AlGaAs semiconductor laser light is focused to a beam diameter of 1.4 μm, holes can be formed in the recording layer with a power of 2 to 13 mW and an irradiation time of 50 to 300 nsec. Naturally, holes can be formed under conditions that exceed the upper limits of the power or irradiation time, but the above conditions are desirable usage conditions. Information is recorded by associating binary information with the presence or absence of holes. Information is usually recorded by rotating a disk-shaped medium at a constant speed and forming holes in accordance with the recorded information. In the above case, the thickness of the recording layer is 0.01 to 0.5 μm, preferably 0.02 to 0.2 μm.
It is. The information (holes) recorded in this manner is read out by detecting changes in the amount of light reflected or transmitted from the medium. Generally, a method of detecting reflected light is adopted. This is because the optical system for reflected light detection is simpler. That is, this is because one optical system can project and collect light. For reading, laser light is continuously irradiated.
The amount of light at this time is set to a weak energy that does not cause any shape change to the medium, and is 1/5 to 1/10 of the amount of light during normal recording.

記録再生時の光の入射方向として、媒体面側と
基板面側の2通りがある。本例の如き単層媒体で
は両方向の配置とも使用可能である。基板面側入
射では、媒体面上に付着した塵埃に影響されるこ
となく記録、再生が可能であり、より望ましい形
態である。なお、媒体が形成されている面の反対
側の基板面上に付着した塵埃及びその面のキズ等
の欠陥は、基板厚さが1mm以上であれば、その面
でのビーム径が充分大きいので記録、再生に悪影
響を与えることは少ない。
There are two directions of incidence of light during recording and reproduction: toward the medium surface and toward the substrate surface. Both orientations can be used with single layer media such as the present example. When the light is incident on the substrate surface side, recording and reproduction are possible without being affected by dust attached to the medium surface, which is a more desirable form. Note that if the substrate thickness is 1 mm or more, the beam diameter on that surface is sufficiently large to prevent dust adhering to the surface of the substrate opposite to the surface on which the medium is formed, as well as defects such as scratches on that surface. It has little negative effect on recording and playback.

情報は孔列として記録される。孔列は一般に同
心円状又はスパイラル状の多数のトラツクを形成
する。再生する場合、光ビームは特定トラツクの
孔列上を精度良く追跡する必要がある。これを実
現する一つの手段として、回転機構の精度を空気
軸受などを使用して高めるという方法がある。し
かし、この場合は、回転系が複雑となり、又高価
となるので実用的ではない。より望ましいのは、
基板上に光の案内溝を設ける方法である。ビーム
径程度の溝に光が入射すると、光が回折される。
ビーム中心が溝からずれるにつれて回折光強度の
空間分布が異なり、これを検出して、ビームを溝
の中心に入射させるようにサーボ系を構成するこ
とができる。通常溝の幅は、0.4〜1.2μm、その
深さは使用する記録再生波長の1/8〜1/4の範囲に
設定される。したがつて記録層は溝付基板面上に
形成される。
Information is recorded as a series of holes. The rows of holes generally form a number of concentric or spiral tracks. When reproducing, the light beam needs to accurately track the hole rows of a specific track. One way to achieve this is to increase the precision of the rotation mechanism by using air bearings or the like. However, in this case, the rotation system becomes complicated and expensive, so it is not practical. More desirable is
This is a method of providing light guide grooves on a substrate. When light enters a groove about the diameter of a beam, it is diffracted.
The spatial distribution of the diffracted light intensity changes as the beam center shifts from the groove, and a servo system can be configured to detect this and direct the beam to the center of the groove. Usually, the width of the groove is set in the range of 0.4 to 1.2 μm, and the depth is set in the range of 1/8 to 1/4 of the recording/reproducing wavelength used. The recording layer is therefore formed on the grooved substrate surface.

以下本発明の実施例について図面を参照して詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例 1 2つの抵抗加熱ボートを有する蒸着装置の一方
のボートに5−アミノ−8−(p−エトキシアニ
リノ)−2,3−ジシアノ−1,4−ナフトキノ
ン色素を入れ、他方のボートに酸化バナジウムフ
タロシアニン色素を入れ、両ボートを独立に加熱
して上記ナフトキノン色素と上記フタロシアニン
色素とを基板に共に蒸着した。基板として直径
120mm、厚さ1.2mmのアクリル板を用い、10rpmで
回転させた。図はこのようにして得られた媒体の
断面を示している。アクリル基板10の上に混合
層20が記録層として設けられている。この混合
層の厚さは810Åであり、上記ナフトキノン色素
と上記フタロシアニン色素の混合比率は、単層膜
厚の比率でおよそ10対1である。この媒体の光学
特性を波長830nmで測定すると、基板入射の時、
反射率は18%、吸収率は54%であつた。波長
830nmの半導体レーザ光を光学系(図示せず)で
集光して媒体に矢印30の方向から照射した。レ
ーザ光の媒体面上でのパワーを10mWとし、記録
周波数2.5MHz、線速度13m/secの条件で記録を
行うと、混合層20の中に孔(ピツト)40が形
成された。このような記録は、媒体の表面側、即
ち矢印50の方向から光を入射しても同様に可能
であつた。記録したピツトを0.9mWの連続光で
再生すると53dBのC/Nが得られた。媒体の長期
保存性は次の方法で評価した。混合膜を1000倍の
光学顕微鏡で観察し、膜表面に発生する凝集粒の
有無を劣化の判定基準として、加速試験を行な
い、上記ナフトキノン色素のみの場合と比較した
ところ、混合層の方が劣化しにくかつた。寿命を
比較すると、前記ナフトキノン色素のみの場合、
約10年程度であつたものが本発明に係る混合層に
すると約20年以上の寿命が確認された。
Example 1 In a vapor deposition apparatus having two resistance heating boats, 5-amino-8-(p-ethoxyanilino)-2,3-dicyano-1,4-naphthoquinone dye was placed in the other boat and A vanadium oxide phthalocyanine dye was placed in the boat, and both boats were heated independently to deposit the naphthoquinone dye and the phthalocyanine dye on the substrate together. Diameter as substrate
An acrylic plate of 120 mm and 1.2 mm thickness was used and rotated at 10 rpm. The figure shows a cross section of the medium thus obtained. A mixed layer 20 is provided on the acrylic substrate 10 as a recording layer. The thickness of this mixed layer is 810 Å, and the mixing ratio of the naphthoquinone dye and the phthalocyanine dye is approximately 10:1 in terms of the monolayer thickness ratio. When the optical properties of this medium are measured at a wavelength of 830 nm, when it is incident on the substrate,
The reflectance was 18% and the absorption was 54%. wavelength
Semiconductor laser light of 830 nm was focused by an optical system (not shown) and irradiated onto the medium from the direction of arrow 30. When recording was performed under the conditions of a laser beam power of 10 mW on the medium surface, a recording frequency of 2.5 MHz, and a linear velocity of 13 m/sec, holes (pits) 40 were formed in the mixed layer 20. Such recording was similarly possible even when light was incident from the front side of the medium, that is, from the direction of arrow 50. When the recorded pits were played back with 0.9mW continuous light, a C/N of 53dB was obtained. The long-term storage stability of the medium was evaluated by the following method. The mixed layer was observed under a 1000x optical microscope, and the presence or absence of aggregate particles generated on the surface of the film was used as a criterion for determining deterioration. An accelerated test was performed, and the mixed layer was compared with the case of only the naphthoquinone dye, showing that the mixed layer deteriorated more. It was difficult. Comparing the lifespan, when using only the naphthoquinone dye,
It was confirmed that the mixed layer according to the present invention had a lifespan of about 20 years or more, compared to about 10 years.

(実施例 2) 実施例1と同様にして、5−アミノ−8−(p
−エトキシアニリノ)−2,3−ジシアノ−1,
4−ナフトキノン色素とMgF2との混合層を作製
した。膜厚は900Å、混合比率はおよそ10対1で
ある。実施例1と同様にして記録・再生したとこ
ろ、49dBのC/Nが得られ、保存性も良好であつ
た。また実施例1と同様の寿命が確認できた。
(Example 2) In the same manner as in Example 1, 5-amino-8-(p
-ethoxyanilino)-2,3-dicyano-1,
A mixed layer of 4-naphthoquinone dye and MgF2 was prepared. The film thickness is 900 Å, and the mixing ratio is approximately 10:1. When recorded and reproduced in the same manner as in Example 1, a C/N of 49 dB was obtained, and the storage stability was also good. Furthermore, the same lifespan as in Example 1 was confirmed.

実施例 3 実施例1と同様にして、5−アミノ−8−(p
−メトキシアニリノ)−2,3−ジシアノ−1,
4−ナフトキノン色素のコバルト錯体と銅フタロ
シアニン色素との混合層を作製した。膜厚は860
Å、混合比率はおよそ8対1である。実施例1と
同様にして記録・再生したところ、52dBのC/N
が得られ、保存性も良好であつた。次に実施例1
と同様の方法で寿命を調べたところ前記ナフトキ
ノン色素の錯体のみでは約25年であつたが本発明
の場合は30年以上の寿命が予測された。
Example 3 In the same manner as in Example 1, 5-amino-8-(p
-methoxyanilino)-2,3-dicyano-1,
A mixed layer of a cobalt complex of 4-naphthoquinone dye and a copper phthalocyanine dye was prepared. Film thickness is 860
Å, the mixing ratio is approximately 8:1. When recorded and played back in the same manner as Example 1, the C/N was 52 dB.
was obtained and had good storage stability. Next, Example 1
When the lifespan was investigated using the same method as above, it was found that the naphthoquinone dye complex alone had a lifespan of about 25 years, but in the case of the present invention, a lifespan of more than 30 years was predicted.

(発明の効果) 上記実施例から明らかなように、本発明により
安定でかつ良好な記録特性の光学記録媒体が得ら
れる。
(Effects of the Invention) As is clear from the above examples, the present invention provides an optical recording medium that is stable and has good recording characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による光学記録媒体の一実施例を示
す概略図であり、図において、10は基板、20
は混合層、30,50は光の入射方向、40は孔
を示す。
The figure is a schematic diagram showing an embodiment of the optical recording medium according to the present invention, and in the figure, 10 is a substrate, 20
is a mixed layer, 30 and 50 are light incident directions, and 40 is a hole.

Claims (1)

【特許請求の範囲】[Claims] 1 基板の片側または両端に記録層を設け、情報
をレーザ光線によつて記録しかつ読み取る光学記
録媒体において、5−アミノ−8−(置換アニリ
ノ)−2,3−ジシアノ−1,4−ナフトキノン
色素或いは5,8−(置換アニリノ)−2,3−ジ
シアノ−1,4−ナフトキノン色素或いはこれら
の金属錯体と、ポルフイン形化合物とを混合した
層を記録層とすることを特徴とする光学記録媒
体。
1. In an optical recording medium in which a recording layer is provided on one or both ends of a substrate and information is recorded and read by a laser beam, 5-amino-8-(substituted anilino)-2,3-dicyano-1,4-naphthoquinone Optical recording characterized in that the recording layer is a layer containing a mixture of a dye, a 5,8-(substituted anilino)-2,3-dicyano-1,4-naphthoquinone dye, or a metal complex thereof, and a porphine type compound. Medium.
JP59016437A 1984-01-31 1984-01-31 Optical recording medium Granted JPS60161192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016437A JPS60161192A (en) 1984-01-31 1984-01-31 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016437A JPS60161192A (en) 1984-01-31 1984-01-31 Optical recording medium

Publications (2)

Publication Number Publication Date
JPS60161192A JPS60161192A (en) 1985-08-22
JPH0549473B2 true JPH0549473B2 (en) 1993-07-26

Family

ID=11916204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016437A Granted JPS60161192A (en) 1984-01-31 1984-01-31 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS60161192A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312889A (en) * 1987-06-17 1988-12-21 Agency Of Ind Science & Technol Optical recording material

Also Published As

Publication number Publication date
JPS60161192A (en) 1985-08-22

Similar Documents

Publication Publication Date Title
JPS6052940A (en) Optical recording medium
JP2662399B2 (en) Infrared absorbing compound and optical recording medium using the same
JPH0530394B2 (en)
US20070300248A1 (en) New Monosubstituted Squaric Acid Metal Complex Dyes and Their Use in Optical Layers for Optical Data Recording
JPS63227569A (en) Metal-containing indoaniline compound
EP0995612A1 (en) Optical recording medium and method of producing the same
JPH0549473B2 (en)
JP2007063444A (en) Complex compound and optical recording medium using the same
JPH0549471B2 (en)
WO2005000972A2 (en) Optical recording materials having high storage density
JP2514677B2 (en) Optical recording medium
EP0623923A1 (en) Optical recording medium
JPH0551471B2 (en)
JPH11254827A (en) Information recording method and optical recording medium employed therein
JP2901477B2 (en) Optical recording medium
JP3732528B2 (en) Light absorbing compound and optical recording medium containing the same
JPS60161195A (en) Information writing and erasing system
JPH0441672B2 (en)
JPS60190388A (en) Optical recording medium
JP2007063443A (en) Complex compound and optical recording medium using the same
JPS60150241A (en) Optical recording medium and its manufacture
JPH0771869B2 (en) Optical recording medium
JP2512075B2 (en) Optical recording medium
JP2890407B2 (en) Optical recording medium
JPS60150242A (en) Optical recording medium and its manufacture