JPH054935A - Production of phenols - Google Patents

Production of phenols

Info

Publication number
JPH054935A
JPH054935A JP3311359A JP31135991A JPH054935A JP H054935 A JPH054935 A JP H054935A JP 3311359 A JP3311359 A JP 3311359A JP 31135991 A JP31135991 A JP 31135991A JP H054935 A JPH054935 A JP H054935A
Authority
JP
Japan
Prior art keywords
reaction
containing gas
silica
catalyst
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3311359A
Other languages
Japanese (ja)
Other versions
JP3123157B2 (en
Inventor
Michiyuki Hamada
道幸 濱田
Yoshifumi Sasaki
好文 佐々木
Takanori Miyake
孝典 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JPH054935A publication Critical patent/JPH054935A/en
Application granted granted Critical
Publication of JP3123157B2 publication Critical patent/JP3123157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce phenols which are very important in chemical industry as an intermediate for aniline, bisphenols, alkyl phenols and phenol resin. CONSTITUTION:An aromatic compound is reacted with a mixed gas consisting of an oxygen-containing gas and hydrogen-containing gas or alternately reacted therewith using a catalyst obtained by supporting a noble metal of the group VIII of periodic table and oxide of base metal consisting of one or more kinds of substances selected from these groups IIIa, IVa, Va, VIa, VIIa, IIb, IVb and Vb to produce phenols.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアニリン、ビスフェノー
ル類、アルキルフェノール類およびフェノール樹脂の中
間体として化学工業において非常に重要なフェノール類
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing phenols which are very important in the chemical industry as intermediates for aniline, bisphenols, alkylphenols and phenol resins.

【0002】[0002]

【従来の技術】芳香環にヒドロキシル基を有するフェノ
ール類のうち、最も代表的な化合物であるフェノ−ルは
その大部分がキュメン法により製造されている。しか
し、キュメン法フェノ−ル製造プロセスはアルキル化、
酸化、分解等の多段の工程からなり、また、フェノ−ル
と等モルのアセトンを副生するといった問題を抱えてい
る。
BACKGROUND OF THE INVENTION Most of phenols, which are the most representative compounds among phenols having a hydroxyl group on an aromatic ring, are produced by the cumene method. However, the cumene phenol manufacturing process is alkylated,
It is composed of multiple steps such as oxidation and decomposition, and it has a problem that acetone of equimolar amount to phenol is produced as a by-product.

【0003】このキュメン法に代わるものとしてはベン
ゼンからクロルベンゼンを経るラシッヒ法、トルエンか
ら安息香酸を経るトルエン酸化法などのプロセスがあ
り、工業化されている。しかし、これらの既存プロセス
も装置の腐食、多段工程による設備費の増加、固体やス
ラリーを扱うための煩雑さ等の問題がある。
As an alternative to the cumene method, there are processes such as the Raschig method in which benzene is converted to chlorobenzene and the toluene oxidation method in which toluene is converted to benzoic acid, which have been industrialized. However, these existing processes also have problems such as corrosion of the equipment, increase of equipment cost due to multi-step process, and complexity of handling solids and slurries.

【0004】また、芳香環にヒドロキシル基を有する多
環式芳香族化合物に関しては、非縮合環式化合物である
ジフェニルや、縮合環式化合物であるナフタレンを原料
にスルホン化し、それぞれナフトールやフェニルフェノ
ールを製造する方法が工業的に確立されている。しか
し、このプロセスでも同様に酸、アルカリによる装置の
腐食等がある。
Regarding the polycyclic aromatic compound having a hydroxyl group on the aromatic ring, diphenyl, which is a non-condensed cyclic compound, or naphthalene, which is a condensed cyclic compound, is sulfonated to give naphthol and phenylphenol, respectively. The manufacturing method is industrially established. However, in this process as well, there is corrosion of the device due to acid and alkali.

【0005】この様に、ヒドロキシル基を有する芳香族
化合物の既存プロセスは多くの問題点がある為、対応す
る芳香族化合物を直接酸化して、目的とするフェノ−ル
類を得ようとする試みが成されてきた。例えば、フェノ
−ル類の最も代表的化合物であるフェノ−ルを得る方法
として、ベンゼンを600℃前後の高温で酸化する方法
や、室温付近の温和な条件で酸化する反応も報告されて
いる。例えば、特開昭56−87527号公報は、燐お
よび亜鉛等あるいは燐、銀および亜鉛等の金属酸化物又
は燐酸塩を触媒としてメタノール共存下で直接酸化しフ
ェノ−ルを製造している。また、特開昭61−8533
8号公報は液相中、金属ポルフィリン、イミダゾール、
白金および水素存在下、ベンゼンと酸素を反応させフェ
ノールを製造する方法を開示している。
As described above, since the existing process of the aromatic compound having a hydroxyl group has many problems, it is attempted to directly oxidize the corresponding aromatic compound to obtain a desired phenol. Has been done. For example, as a method of obtaining phenol, which is the most representative compound of phenols, a method of oxidizing benzene at a high temperature of about 600 ° C. and a reaction of oxidizing it under mild conditions near room temperature have been reported. For example, in JP-A-56-87527, phenol is produced by direct oxidation in the presence of methanol using a metal oxide or phosphate such as phosphorus and zinc or phosphorus, silver and zinc as a catalyst. Also, JP-A-61-2533
No. 8 discloses that in a liquid phase, metal porphyrin, imidazole,
A method for producing phenol by reacting benzene with oxygen in the presence of platinum and hydrogen is disclosed.

【0006】[0006]

【発明が解決しようとする課題】前述のように、既存プ
ロセスに代わって芳香族化合物を直接酸化することによ
りフェノール類を製造する方法について、従来より種々
提案されているが、対応するフェノール類への転化率や
選択率等については、未だ多くの改良すべき点が残って
いる。
As described above, various methods for producing phenols by directly oxidizing aromatic compounds instead of existing processes have been proposed in the past. There are still many points that need to be improved regarding the conversion rate and selectivity of.

【0007】[0007]

【課題を解決するための手段】このような現状に鑑み、
本発明者らは、芳香族化合物類の酸化を効率よく行う方
法につき鋭意研究を進め、本発明を完成するに至った。
[Means for Solving the Problems] In view of such a current situation,
The present inventors have earnestly conducted research on a method for efficiently oxidizing aromatic compounds, and completed the present invention.

【0008】即ち、本発明は周期律表第VIII族の貴
金属とIIIa,IVa,Va,VIa,VIIa,I
Ib,IVbおよびVb族より選ばれた一種以上からな
る卑金属酸化物を担体に担持した触媒を用い、芳香族化
合物を含酸素ガスと含水素ガスからなる混合ガスと反応
させるか又は、含酸素ガスと含水素ガスに交互に反応さ
せフェノール類を製造する方法を提供する。
That is, the present invention relates to noble metals of Group VIII of the periodic table and IIIa, IVa, Va, VIa, VIIa, I.
An aromatic compound is reacted with a mixed gas consisting of an oxygen-containing gas and a hydrogen-containing gas using a catalyst in which a base metal oxide consisting of one or more selected from the group Ib, IVb and Vb is supported on a carrier, or an oxygen-containing gas And a hydrogen-containing gas are alternately reacted to produce a phenol.

【0009】以下に本発明について、更に詳細に説明す
る。
The present invention will be described in more detail below.

【0010】本発明の方法において、触媒として共存さ
せ使用される周期律表第VIII族の貴金属としてはパ
ラジウム、ロジウム、ルテニウム、白金、イリジウム、
およびこれらの混合物を挙げることができる。これらの
金属を担持する場合、原料としては、ハロゲン化物、硝
酸塩、硫酸塩、無機錯塩、有機酸塩などが挙げらる。例
えば、パラジウムの場合、塩化パラジウム、硝酸パラジ
ウム、硫酸パラジウム等各種の無機酸塩、テトラアンミ
ンジクロロパラジウム等の無機錯体、酢酸パラジウム等
の有機酸塩が挙げられる。これらの貴金属成分の担持量
は、全触媒重量に対し、金属として通常0.01〜20
重量%であり、好ましくは0.01〜15重量%であ
る。担持する貴金属の量が20重量%を越えると、反応
速度が大きくなる傾向があるものの、高価な貴金属を多
量に使用するため、製造コストの上昇を招くことにな
る。一方、貴金属が0.1重量%より少ないと反応速度
が遅くなり、工業プロセス上経済性が失われる。これら
の貴金属を触媒として使用する時に、還元処理が必要で
ある。この還元処理は反応前に行なっても、反応中に還
元することによって活性化しても、差し支えない。この
還元方法に特に制限はないが、通常の方法、例えばギ酸
ナトリウム、ホルムアルデヒドやヒドラジン等の溶液で
行う湿式還元法、または、水素や一酸化炭素等を窒素や
ヘリウム等の不活性ガスで希釈した還元性ガスで行う乾
式還元法を用いることができる。還元処理温度は周期律
表第VIII族の貴金属が還元されれば特に制限はない
が、通常、湿式還元法では0〜200℃、乾式還元法で
は0〜500℃で行なえばよい。
In the method of the present invention, the noble metal of Group VIII of the Periodic Table used together as a catalyst is palladium, rhodium, ruthenium, platinum, iridium,
And mixtures thereof. When supporting these metals, examples of the raw material include halides, nitrates, sulfates, inorganic complex salts, organic acid salts and the like. For example, in the case of palladium, various inorganic acid salts such as palladium chloride, palladium nitrate and palladium sulfate, inorganic complexes such as tetraamminedichloropalladium, and organic acid salts such as palladium acetate can be used. The loading amount of these noble metal components is usually 0.01 to 20 as a metal based on the total weight of the catalyst.
% By weight, preferably 0.01 to 15% by weight. When the amount of the noble metal to be supported exceeds 20% by weight, the reaction rate tends to increase, but a large amount of expensive noble metal is used, resulting in an increase in manufacturing cost. On the other hand, when the content of the noble metal is less than 0.1% by weight, the reaction rate becomes slow and the economical efficiency in the industrial process is lost. When using these noble metals as catalysts, reduction treatment is necessary. This reduction treatment may be carried out before the reaction or may be activated by reduction during the reaction. This reduction method is not particularly limited, but a conventional method, for example, a wet reduction method using a solution of sodium formate, formaldehyde, hydrazine, or the like, or hydrogen or carbon monoxide or the like diluted with an inert gas such as nitrogen or helium A dry reduction method using a reducing gas can be used. The reduction temperature is not particularly limited as long as the noble metal of Group VIII of the periodic table is reduced, but it is usually 0 to 200 ° C. in the wet reduction method and 0 to 500 ° C. in the dry reduction method.

【0011】本発明の方法において、共存させ使用され
るもう一方の触媒成分である卑金属酸化物は、周期律表
IIIa,IVa,Va,VIa,VIIa,IIb,
IVbおよびVb族の卑金属酸化物より選ばれた一種以
上からなる。卑金属酸化物の例として、周期律表III
a族の酸化イットリウム、酸化ランタン、酸化セリウ
ム、IVa族の酸化ジルコニウム、Va族の五酸化バナ
ジウム、VIa族の酸化クロム、酸化モリブデン、酸化
タングステン、VIIa族の酸化マンガン、IIb族の
酸化亜鉛、IVb族の酸化すず、Vb族の酸化ビスマス
等の単一成分の卑金属酸化物や酸化モリブデン−酸化ビ
スマス、酸化モリブデン−酸化リン等の二種以上の卑金
属酸化物から成るものをあげることができる。卑金属酸
化物の成分の担持量は全触媒重量に対し卑金属酸化物と
して、通常1〜99重量%で好ましくは5〜20重量%
である。
In the method of the present invention, the base metal oxide, which is the other catalyst component used together, is the periodic table IIIa, IVa, Va, VIa, VIIa, IIb,
It is composed of one or more selected from the group IVb and Vb group base metal oxides. As an example of a base metal oxide, the periodic table III
Group a yttrium oxide, lanthanum oxide, cerium oxide, group IVa zirconium oxide, group Va vanadium pentoxide, group VIa chromium oxide, molybdenum oxide, tungsten oxide, group VIIa manganese oxide, group IIb zinc oxide, IVb. Examples thereof include a single-component base metal oxide such as tin oxide of group I and bismuth oxide of group Vb, and two or more base metal oxides such as molybdenum oxide-bismuth oxide and molybdenum oxide-phosphorus oxide. The amount of the base metal oxide component supported is usually 1 to 99% by weight, preferably 5 to 20% by weight, based on the total weight of the catalyst.
Is.

【0012】卑金属酸化物を担持する場合、その原料と
しては、例えば、アンモニウム塩、硝酸塩、塩化物、無
機酸塩、酢酸塩、酸化物等が利用できる。これらの例と
しては、メタバナジン酸アンモニウム、モリブデン酸ア
ンモニウム、パラタングステン酸アンモニウム、硝酸イ
ットリウム、硝酸ランタン、硝酸亜鉛、硝酸ビスマス、
オキシ硝酸ジルコニウム、塩化クロム、塩化スズ、酢酸
マンガン、酸化ニオブ等が挙げられる。これらの卑金属
酸化物の原料は常法により、担持した後、熱処理して対
応する卑金属酸化物とする。最終的に卑金属酸化物が得
られれば熱処理の方法に特に制限はないが、例えば、酸
素含有ガス等の流通下あるいは非流通下において、20
0〜1000℃の温度で熱処理すればよい。
In the case of supporting the base metal oxide, as the raw material thereof, for example, ammonium salt, nitrate, chloride, inorganic acid salt, acetate, oxide and the like can be used. Examples of these are ammonium metavanadate, ammonium molybdate, ammonium paratungstate, yttrium nitrate, lanthanum nitrate, zinc nitrate, bismuth nitrate,
Examples thereof include zirconium oxynitrate, chromium chloride, tin chloride, manganese acetate, niobium oxide and the like. The raw materials for these base metal oxides are supported by a conventional method and then heat-treated to obtain the corresponding base metal oxides. The method of heat treatment is not particularly limited as long as the base metal oxide is finally obtained. For example, when heat treatment is performed with or without circulation of an oxygen-containing gas,
The heat treatment may be performed at a temperature of 0 to 1000 ° C.

【0013】本発明の方法においては貴金属及び卑金属
酸化物は担体に担持させて使用する。この担体として
は、例えば、シリカ、アルミナ、チタニアあるいはこれ
らの複合酸化物、および、活性炭など一般に担体として
使用されているものを例示できる。使用できる担体に
は、先に挙げた卑金属酸化物と同一のものもあるが、担
体と同じ卑金属酸化物が担持されても何ら差し支えな
い。これらの担体に触媒成分を担持させる方法に特に制
限はなく、公知の手法であれば良い。例えば、貴金属の
原料及び/あるいは卑金属酸化物の原料の水溶液、懸濁
液、酸性溶液、アルカリ性溶液、有機溶液に担体を浸漬
する、いわゆる含浸法で調製することができる。担体に
触媒成分を担持する場合には、全触媒成分を同時に担持
させても、あるいは、逐次的に担持してもいっこうに差
し支えない。
In the method of the present invention, the noble metal and base metal oxide are used by being supported on a carrier. Examples of the carrier include silica, alumina, titania or composite oxides thereof, and activated carbon, which are generally used as carriers. Some of the carriers that can be used are the same as the above-mentioned base metal oxides, but there is no problem even if the same base metal oxide as the carrier is carried. The method for supporting the catalyst component on these carriers is not particularly limited, and any known method may be used. For example, it can be prepared by a so-called impregnation method in which a carrier is immersed in an aqueous solution, suspension, acidic solution, alkaline solution, or organic solution of a noble metal raw material and / or a base metal oxide raw material. When the catalyst component is loaded on the carrier, all the catalyst components may be loaded simultaneously or sequentially.

【0014】反応に使用する触媒量は、反応を連続式に
行う場合には反応速度や熱収支により決定される為、一
概に規定することは難しい。また、回分式あるいは半回
分式に反応を行う場合には、反応溶液に対して0.01
〜30重量%で良く、これ以上用いると反応装置の攪拌
に支障をきたす場合がある。
When the reaction is carried out continuously, the amount of the catalyst used in the reaction is determined by the reaction rate and the heat balance, so it is difficult to unconditionally specify. When the reaction is performed in a batch system or a semi-batch system, 0.01% of the reaction solution is used.
The amount may be up to 30% by weight, and if it is used in excess, it may hinder the stirring of the reactor.

【0015】本発明の方法において、原料として使用で
きる芳香族化合物は、少なくとも1つ以上の芳香族環を
有する芳香族化合物であり、これらは、アルキル基、ヒ
ドロキシル基等の置換基で置換されていてもよい。この
ような、芳香族化合物として、例えば、ベンゼン、トル
エン、キシレンおよびアニソール等の単環式芳香族化合
物、ジフェニル、ジフェニルメタン、ジフェニルエーテ
ル等の非縮合多環式芳香族化合物、ナフタレン、インデ
ン等の縮合多環式芳香族化合物を挙げることができる。
In the method of the present invention, the aromatic compound which can be used as a raw material is an aromatic compound having at least one aromatic ring, which is substituted with a substituent such as an alkyl group or a hydroxyl group. May be. Examples of such aromatic compounds include monocyclic aromatic compounds such as benzene, toluene, xylene, and anisole, non-condensed polycyclic aromatic compounds such as diphenyl, diphenylmethane, diphenyl ether, and condensed polycyclic compounds such as naphthalene and indene. Mention may be made of cyclic aromatic compounds.

【0016】本発明の方法において、反応は液相で行
い、必要なら溶媒を用いてもよい。溶媒としては、原料
である芳香族化合物それ自体を溶媒としてもよいし、ま
たは、他の適当な溶媒を用いてもよい。溶媒として使用
できるものとしては、例えば、有機溶媒としてはペンタ
ン、シクロヘキサンなどの飽和炭化水素類、アセトニト
リルなどのニトリル類、メチルエーテル、エチルエーテ
ルなどのエーテル類、アセトン、メチルエチルケトンな
どのケトン類、酢酸エチル、酢酸ブチルなどのエステル
類、アセトアミド、N,N−ジメチルアセトアミドなど
のアミド類、ギ酸、酢酸、プロピオン酸などの有機酸が
挙げられ、これらのいずれか一種あるいは二種以上を混
合して溶媒とすることもできる。また、本反応は溶媒と
して水を使用することもできる。勿論、前述した有機溶
媒類に水を混合して用いても良い。また、これらの反応
溶媒に必要なら無機酸を添加することもできる。添加で
きる酸としては、リン酸、硫酸、硝酸などの無機酸を挙
げることができる。無機酸を添加する場合には、触媒の
成分の溶出、装置の腐蝕等の問題から0.5N以下の濃
度となるように用いるのが好ましい。溶媒の量にとくに
制限はないが、多すぎる場合は反応速度が遅くなるの
で、好ましくは溶媒濃度が反応溶液全体の1〜60重量
%となるように添加量を調整する。本発明の方法におい
ては、反応方法に特に制限はなく、例えば、反応は原料
である芳香族化合物、触媒、含酸素ガス、含水素ガス及
び必要であれば溶媒を一度に反応装置に仕込む回分式で
あっても、反応装置に含酸素ガス及び/又は含水素ガス
を連続的に吹込む半回分式であっても、あるいは、芳香
族化合物、含酸素ガス、含水素ガス等を連続的に供給す
ると共に未反応ガス及び、反応液を連続的に抜出す連続
式であってもよい。また、供給するガスは窒素、へリウ
ム、アルゴン、二酸化炭素等の不活性ガスで希釈されて
いても構わない。含酸素ガスは空気を利用することもで
きる。含酸素ガスの供給量は、反応方法や反応条件によ
り変化するので、一概には決められないが、触媒単位重
量(g)当りの酸素ガス供給量は、0.01ml/mi
n〜1000ml/minで良い。0.01ml/mi
n未満では生産性が不充分となり、また、1000ml
/minを越えるとそれ以上供給する効果が小さい。1
000ml/minを越えると、ガスの転化率が小さく
なり経済的でなくなる。含酸素ガスと含水素ガス中の酸
素と水素の割合は特に制限はなく任意に変えることがで
きるが水素/酸素(モル比)は好ましくは0.1〜10
である。芳香族化合物を連続的に供給する場合、触媒単
位重量(g)当りの芳香族化合物供給速度は1×10
−5g/min〜10g/minで良い。1×10
−5g/min未満では生産性が不充分となり、また、
10g/minを越えると、未反応芳香族化合物の量
が多くなり、経済的に不都合となる場合がある。
In the method of the present invention, the reaction is carried out in the liquid phase, and a solvent may be used if necessary. As the solvent, the aromatic compound itself which is the raw material may be used as the solvent, or another suitable solvent may be used. Examples of the solvent that can be used as the solvent include pentane, saturated hydrocarbons such as cyclohexane, nitriles such as acetonitrile, ethers such as methyl ether and ethyl ether, ketones such as acetone and methyl ethyl ketone, and ethyl acetate as the organic solvent. , Esters such as butyl acetate, amides such as acetamide and N, N-dimethylacetamide, and organic acids such as formic acid, acetic acid, and propionic acid. Any one or a mixture of two or more of these may be used as a solvent. You can also do it. In addition, water can be used as a solvent in this reaction. Of course, water may be mixed with the above-mentioned organic solvents. If necessary, an inorganic acid may be added to these reaction solvents. Examples of the acid that can be added include inorganic acids such as phosphoric acid, sulfuric acid and nitric acid. When an inorganic acid is added, it is preferable to use it at a concentration of 0.5 N or less in view of problems such as elution of catalyst components and apparatus corrosion. The amount of the solvent is not particularly limited, but if it is too large, the reaction rate will be slow, so the amount added is preferably adjusted so that the solvent concentration is 1 to 60% by weight of the entire reaction solution. In the method of the present invention, the reaction method is not particularly limited, and for example, the reaction is a batch system in which an aromatic compound as a raw material, a catalyst, an oxygen-containing gas, a hydrogen-containing gas and, if necessary, a solvent are charged into a reaction apparatus at once. Even if it is a semi-batch method in which oxygen-containing gas and / or hydrogen-containing gas is continuously blown into the reaction apparatus, or aromatic compounds, oxygen-containing gas, hydrogen-containing gas, etc. are continuously supplied. In addition, it may be a continuous type in which the unreacted gas and the reaction liquid are continuously extracted. Further, the supplied gas may be diluted with an inert gas such as nitrogen, helium, argon, carbon dioxide or the like. Air can also be used as the oxygen-containing gas. The amount of oxygen-containing gas supplied varies depending on the reaction method and reaction conditions, so it cannot be determined unconditionally, but the amount of oxygen gas supplied per unit weight (g) of the catalyst is 0.01 ml / mi.
It may be n to 1000 ml / min. 0.01 ml / mi
If it is less than n, the productivity will be insufficient and 1000 ml
If it exceeds / min, the effect of supplying more than that is small. 1
If it exceeds 000 ml / min, the gas conversion rate becomes small, which is not economical. The ratio of oxygen and hydrogen in the oxygen-containing gas and the hydrogen-containing gas is not particularly limited and can be arbitrarily changed, but the hydrogen / oxygen (molar ratio) is preferably 0.1 to 10.
Is. When the aromatic compound is continuously supplied, the aromatic compound supply rate per unit weight (g) of the catalyst is 1 × 10.
It is a -5 g / min~10 2 g / min . 1 x 10
If it is less than -5 g / min, the productivity will be insufficient, and
If it exceeds 10 2 g / min, the amount of unreacted aromatic compound increases, which may be economically inconvenient.

【0017】反応温度及び圧力は原料である反応溶液が
反応中に液相であれば特に制限されない。反応速度を速
くする為に反応温度を高くする場合には加圧下での反応
を行なえばよい。実用的な温度範囲としては常温〜20
0℃である。反応温度が常温より低いと、芳香族化合物
の転化率が低くなり。一方、反応温度を200℃より高
くすると、生成物の選択率が低くなる場合がある。ま
た、圧力は通常、常圧〜200Kg/cmであるが、
好ましくは常圧〜50Kg/cmである。
The reaction temperature and pressure are not particularly limited as long as the reaction solution as a raw material is in the liquid phase during the reaction. When the reaction temperature is raised to increase the reaction rate, the reaction may be performed under pressure. As a practical temperature range, room temperature to 20
It is 0 ° C. If the reaction temperature is lower than room temperature, the conversion rate of the aromatic compound will be low. On the other hand, if the reaction temperature is higher than 200 ° C, the selectivity of the product may be lowered. The pressure is usually from normal pressure to 200 Kg / cm 2 ,
It is preferably normal pressure to 50 Kg / cm 2 .

【0018】[0018]

【実施例】以下に実施例を用いて本発明を具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 メタバナジン酸アンモニウム3.16gとシュウ酸1.
77gを蒸溜水40mlに溶かし、ここにシリカ(CA
RIACT−15;FUJI−DAVISON社製)
9.81gを加えた。湯浴上で蒸発乾固したのち、空気
流通下400℃で1時間加熱分解して、20wt%−V
/シリカを調製した。
Example 1 3.16 g of ammonium metavanadate and oxalic acid 1.
Dissolve 77 g in 40 ml of distilled water and add silica (CA
RIACT-15; FUJI-DAVISON)
9.81 g was added. After evaporating to dryness on a hot water bath, it is decomposed by heating at 400 ° C. for 1 hour under air flow to give 20 wt% -V.
2 O 5 / silica was prepared.

【0020】テトラアンミンジクロロパラジウム79.
0mgを蒸溜水25mlに溶かしたものに上記の20w
t%−V/シリカ6.31gを浸漬し湯浴上で蒸
発乾固したのち、水素流通下150℃で1時間還元して
0.5wt%−Pd/20wt%−V/シリカ触
媒を調製した。
Tetraamminedichloropalladium 79.
20 mg of the above was prepared by dissolving 0 mg in 25 ml of distilled water.
After dipping t% -V 2 O 5 /6.31 g of silica and evaporating to dryness on a hot water bath, the mixture was reduced at 150 ° C. for 1 hour under hydrogen flow to 0.5 wt% -Pd / 20 wt% -V 2 O 5 / A silica catalyst was prepared.

【0021】還流冷却器を取付けた100mlガラス製
反応器に反応溶液としてベンゼン20ml、酢酸25m
lを混合し、ここに上記の触媒1gを加えた。溶液の温
度を60℃としてマグネチックスターラーで撹拌しなが
ら水素40ml/minを30min供給して触媒の活
性化をおこなった。続いて、水素24ml/min,空
気38ml/minを同時に供給し1時間後に溶液中の
生成物をガスクロマトグラフィーで分析した。その結果
フェノ−ルが0.302mmol,ベンゾキノンが微少
量(<0.010mmol)生成していた。反応後カー
ルフィッシャー水分測定器により水分量を測定したとこ
ろ,水が1.58mmol生成していた。
In a 100 ml glass reactor equipped with a reflux condenser, 20 ml of benzene and 25 m of acetic acid were used as a reaction solution.
1 of the above catalyst was added thereto. The temperature of the solution was set to 60 ° C., and 40 ml / min of hydrogen was supplied for 30 min while stirring with a magnetic stirrer to activate the catalyst. Subsequently, 24 ml / min of hydrogen and 38 ml / min of air were simultaneously supplied, and 1 hour later, the products in the solution were analyzed by gas chromatography. As a result, 0.302 mmol of phenol and a very small amount (<0.010 mmol) of benzoquinone were formed. After the reaction, when the amount of water was measured by a Karl Fischer water content meter, 1.58 mmol of water was produced.

【0022】実施例2 実施例1において、テトラアンミンジクロロパラジウム
の代わりにテトラアンミンジクロロ白金58.5mgを
用い、また還元温度を250℃として0.5wt−Pt
/20wt5−V/シリカ触媒を調製した以外は
実施例1と全く同様にして反応を行なった。結果を表−
1にしめす。
Example 2 In Example 1, 58.5 mg of tetraamminedichloroplatinum was used instead of tetraamminedichloropalladium, and the reduction temperature was 250 ° C. and 0.5 wt-Pt.
The reaction was performed in exactly the same manner as in Example 1 except that a / 20 wt5-V 2 O 5 / silica catalyst was prepared. Table of results
Shown as 1.

【0023】実施例3〜4 実施例2において、テトラアンミンジクロロ白金の代わ
りに塩化ロジウムまたは、塩化イリジウムを用いて0.
5wt%−Rh/20wt%−V/シリカ及び
0.5wt%−Ir/20wt%−V/シリカ触
媒をそれぞれ調製した。これらを触媒として用いた以外
は実施例2と全く同様にして反応を行なった。結果を表
−1にしめす。
Examples 3 to 4 In Example 2, rhodium chloride or iridium chloride was used in place of tetraamminedichloroplatinum to give a pH value of 0.
5wt% -Rh / 20wt% -V 2 O 5 / silica and 0.5wt% -Ir / 20wt% -V 2 O 5 / silica catalyst was prepared. The reaction was carried out in exactly the same manner as in Example 2 except that these were used as catalysts. The results are shown in Table 1.

【0024】実施例5 実施例2において、テトラアンミンジクロロ白金水溶液
の代わりに塩化ルテニウムエタノール溶液を用いて0.
5wt%−Ru/20wt%−V/シリカ触媒を
調製した。これを触媒として用いた以外は実施例2と全
く同様にして反応を行なった。結果を表−1にしめす。
Example 5 In Example 2, a ruthenium chloride ethanol solution was used in place of the tetraamminedichloroplatinum aqueous solution to give a 0.1.
The 5wt% -Ru / 20wt% -V 2 O 5 / silica catalyst was prepared. The reaction was carried out in exactly the same manner as in Example 2 except that this was used as a catalyst. The results are shown in Table 1.

【0025】実施例6 実施例1において、メタバナジン酸アンモニウムの代わ
りにパラタングステン酸アンモニウムを用いて調製した
0.5wt−Pd/20wt%WO/シリカ触媒を用
いた以外は実施例1と全く同様にして反応を行なった。
結果を表−2にしめす。
Example 6 Exactly the same as Example 1 except that 0.5 wt-Pd / 20 wt% WO 3 / silica catalyst prepared by using ammonium paratungstate in place of ammonium metavanadate was used. The reaction was carried out.
The results are shown in Table-2.

【0026】実施例7〜14 実施例1において、メタバナジン酸アンモニウムシュウ
酸溶液の代わりに硝酸イットリウム水溶液,硝酸ランタ
ン水溶液、モリブデン酸アンモニウム水溶液、オキシ硝
酸ジルコニウム水溶液,塩化クロム(III)水溶液、
硝酸セリウム水溶液,酢酸マンガン水溶液または硝酸亜
鉛水溶液を用いてそれぞれ調製した0.5wt%−Pd
/20wt%−Y/シリカ、0.5wt%−Pd
/20wt%−La/シリカ、0.5wt%−P
d/20wt%−MoO/シリカ、0.5wt%−P
d/20wt%−ZrO/シリカ、0.5wt%−P
d/20wt%−Cr/シリカ、0.5wt%−
Pd/20wt%−CeO/シリカ、0.5wt%−
Pd/20wt%−Mn/シリカまたは、0.5
wt%−Pd/20wt%−ZnO/シリカ触媒を用い
た以外は実施例1と全く同様にして反応を行なった。結
果を表−2にしめす。
Examples 7 to 14 In Example 1, instead of ammonium metavanadate oxalic acid solution, yttrium nitrate aqueous solution, lanthanum nitrate aqueous solution, ammonium molybdate aqueous solution, zirconium oxynitrate aqueous solution, chromium (III) chloride aqueous solution,
0.5 wt% -Pd prepared using cerium nitrate aqueous solution, manganese acetate aqueous solution or zinc nitrate aqueous solution, respectively
/ 20wt% -Y 2 O 3 / silica, 0.5 wt% -Pd
/ 20wt% -La 2 O 3 / silica, 0.5 wt% -P
d / 20wt% -MoO 3 / silica, 0.5 wt% -P
d / 20wt% -ZrO 2 / silica, 0.5 wt% -P
d / 20wt% -Cr 2 O 3 / silica, 0.5 wt% -
Pd / 20wt% -CeO 2 / silica, 0.5 wt% -
Pd / 20wt% -Mn 2 O 3 / silica or, 0.5
The reaction was performed in exactly the same manner as in Example 1 except that the wt% -Pd / 20 wt% -ZnO / silica catalyst was used. The results are shown in Table-2.

【0027】実施例15〜16 実施例1において、メタバナジン酸アンモニウムシュウ
酸溶液の代わりに硝酸ビスマス硝酸溶液及び、硝酸ビス
マス−モリブデン酸アンモニウム硝酸液を用いてそれぞ
れ調製した0.5wt%−Pd/20wt%−Bi
/シリカまたは0.5wt%−Pd/20wt%−B
・2MO/シリカ触媒を用いた以外は実施例
1と全く同様にして反応を行なった。結果を表−2にし
めす。
Examples 15 to 16 In Example 1, 0.5 wt% Pd / 20 wt prepared by using a bismuth nitrate nitric acid solution and a bismuth nitrate-ammonium molybdate nitric acid solution instead of the ammonium metavanadate oxalic acid solution, respectively. % -Bi 2 O
3 / silica or 0.5 wt% -Pd / 20 wt% -B
The reaction was carried out in exactly the same manner as in Example 1 except that i 2 O 3 .2MO 3 / silica catalyst was used. The results are shown in Table-2.

【0028】実施例17 実施例1において、メタバナジン酸アンモニウムシュウ
酸溶液の代わりに塩化すず(II)塩酸溶液を用い0.
5wt%−Pd/20wt%−SnO/シリカ触媒を
用いた以外は実施例1と全く同様にして反応を行なっ
た。結果を表−2にしめす。
Example 17 In Example 1, tin (II) chloride solution was used instead of ammonium metavanadate oxalic acid solution.
The reaction was performed in exactly the same manner as in Example 1 except that 5 wt% -Pd / 20 wt% -SnO 2 / silica catalyst was used. The results are shown in Table-2.

【0029】実施例18 パラジウムの担持率を2.5重量%にした以外は実施例
1と全く同様にして触媒を調製し、反応を行ったところ
フェノ−ルが0.516mmol、ベンゾキノンが0.
017mmol、水が2.73mmol生成した。
Example 18 A catalyst was prepared and reacted in exactly the same manner as in Example 1 except that the loading ratio of palladium was 2.5% by weight. When the reaction was carried out, phenol was 0.516 mmol and benzoquinone was 0.1.
017 mmol and 2.73 mmol of water were produced.

【0030】実施例19 実施例1においてテトラアンミンジクロロパラジウム水
溶液の代わりに、酢酸パラジウムアセトン溶液により調
製した触媒を用いた以外は実施例1と全く同様にして反
応を行ったところ、フェノ−ルが0.421mmol、
ベンゾキノンが0.041mmol、水が1.88mm
ol生成した。
Example 19 The reaction was carried out in the same manner as in Example 1 except that a catalyst prepared by using a solution of palladium acetate in acetone was used instead of the aqueous solution of tetraamminedichloropalladium in Example 1, and the phenol was 0. .421 mmol,
Benzoquinone 0.041mmol, water 1.88mm
ol generated.

【0031】実施例20〜23 五酸化バナジウムの担持率を5、8、50、及び99.
5重量%に変更し、それぞれ触媒を調製した。これらを
触媒として用いた以外は実施例1と同様にして反応を行
なった。結果を表−3にしめす。
Examples 20 to 23 The loading rates of vanadium pentoxide were 5, 8, 50, and 99.
The amount was changed to 5% by weight and each catalyst was prepared. The reaction was carried out in the same manner as in Example 1 except that these were used as catalysts. The results are shown in Table-3.

【0032】実施例24 担体のシリカの代わりにアルミナ(Neobead−
C;水沢化学社製)を用いた以外は実施例1と全く同様
にして触媒を調製し反応を行ったところフェノ−ルが
0.155mmol、ベンゾキノンが0.011mmo
l、水が0.12mmol生成した。
Example 24 Instead of silica as a carrier, alumina (Neobead-
C; manufactured by Mizusawa Chemical Co., Ltd.) was used to prepare a catalyst and carry out the reaction in exactly the same manner as in Example 1. As a result, phenol was 0.155 mmol and benzoquinone was 0.011 mmo.
1, 0.12 mmol of water was produced.

【0033】実施例25〜28 水素、空気(酸素量を21mmol/hrに固定)の供
給比を変更した以外は実施例1と全く同様にして反応を
行なった。結果を表−4にしめす。
Examples 25 to 28 Reactions were carried out in exactly the same manner as in Example 1 except that the feed ratios of hydrogen and air (oxygen amount was fixed at 21 mmol / hr) were changed. The results are shown in Table-4.

【0034】実施例29〜30 反応温度を20℃及び80℃に変更した以外は実施例1
と全く同様にして反応を行なった。結果を表−5にしめ
す。
Examples 29 to 30 Example 1 except that the reaction temperature was changed to 20 ° C. and 80 ° C.
The reaction was carried out in exactly the same manner as. The results are shown in Table-5.

【0035】実施例31 反応溶媒としてベンゼン20mlのみを用いた以外は実
施例1と全く同様にして反応を行なったところフェノ−
ルが0.109mmol、ベンゾキノンが0.075m
mol、水が4.15mmol生成した。
Example 31 The reaction was carried out in the same manner as in Example 1 except that only 20 ml of benzene was used as the reaction solvent.
0.109 mmol for benzoquinone and 0.075 m for benzoquinone
4.15 mmol of water and water were produced.

【0036】実施例32〜33 実施例1において、反応圧力を2又は4kg/cm
Gに変更した以外は実施例1と全く同様にして反応を行
ななった。結果を表−6にしめす。
Examples 32 to 33 In Example 1, the reaction pressure was 2 or 4 kg / cm 2 −.
The reaction was carried out in exactly the same manner as in Example 1 except that G was changed. The results are shown in Table-6.

【0037】実施例34 実施例2において、触媒量を1gから0.1gに変更し
た以外は実施例2と全く同様にして反応を行ったところ
フェノ−ルが0.224mmol、水が0.59mmo
l生成した。
Example 34 The reaction was carried out in exactly the same manner as in Example 2 except that the amount of catalyst was changed from 1 g to 0.1 g, but phenol was 0.224 mmol and water was 0.59 mmo.
l produced.

【0038】実施例35〜36 実施例34において、反応圧力を2又は4kg/cm
−Gに変更した以外は実施例34と全く同様にして反応
を行ななった。結果を表−7にしめす。
Examples 35 to 36 In Example 34, the reaction pressure was set to 2 or 4 kg / cm 2.
The reaction was carried out in exactly the same manner as in Example 34 except that -G was changed. The results are shown in Table-7.

【0039】実施例37 実施例34においてベンゼンの代わりにトルエンを用い
た以外は実施例34と全く同様にして反応を行ったとこ
ろベンズアルデヒドが0.086mmol、ベンジルア
ルコールが0.012mmol、o−クレゾールが0.
172mmol、m,p−クレゾールが0.178mmo
l、酢酸クレシルが0.011mmol、水が2.3m
mol生成した。
Example 37 A reaction was carried out in exactly the same manner as in Example 34 except that toluene was used instead of benzene in Example 34. As a result, 0.086 mmol of benzaldehyde, 0.012 mmol of benzyl alcohol and o-cresol were obtained. 0.
172 mmol, 0.178 mmo of m, p-cresol
1, cresyl acetate 0.011 mmol, water 2.3 m
mol produced.

【0040】実施例38 実施例37において、反応圧力を4kg/cm−Gに
変更した以外は実施例37と全く同様にして反応を行っ
たところベンズアルデヒドが0.277mmol、ベン
ルアルコールが0.076mmol、0−クレゾールが
0.537mmol、m,p−クレゾールが0.546
mmol、酢酸クレシルが0.035mmol、水が
9.4mmol生成した。
Example 38 A reaction was carried out in exactly the same manner as in Example 37 except that the reaction pressure was changed to 4 kg / cm 2 -G in Example 37, and 0.277 mmol of benzaldehyde and 0. 076 mmol, 0-cresol 0.537 mmol, m, p-cresol 0.546
mmol, cresyl acetate 0.035 mmol, and water 9.4 mmol.

【0041】実施例39 実施例34においてベンゼンの代わりに12.5mmo
lのジフェニルを用いた以外は実施例34と全く同様にし
て反応を行ったところo−ヒドロキジフェニルが0.0
69mmol、m,p−ヒドロキシジフェニルが0.0
71mmol、水が2.4mmol生成した。
Example 39 In Example 34, 12.5 mmo was used instead of benzene.
When the reaction was carried out in exactly the same manner as in Example 34 except that 1 diphenyl was used, o-hydroxydiphenyl was 0.0.
69 mmol, 0.0 of m, p-hydroxydiphenyl
71 mmol and 2.4 mmol of water were produced.

【0042】実施例40 実施例34においてベンゼンの代わりに12.5mmo
lのナフタレンを用いた以外は実施例34と全く同様に
して反応を行ったところ1−ナフトールが0.049m
mol、ナフトキノンが0.029mmol、水が0.
60mmol生成した。
Example 40 In Example 34, 12.5 mmo was used instead of benzene.
When the reaction was carried out in the same manner as in Example 34 except that 1 naphthalene was used, 1-naphthol was 0.049 m.
mol, naphthoquinone 0.029 mmol, water 0.
60 mmol was produced.

【0043】比較例1〜3 貴金属を担持することなく、さらに、メタバナジン酸ア
ンモニウムシュウ酸溶液をメタバナジン酸アンモニウム
塩酸溶液、塩化クロム水溶液又は酢酸マンガン水溶液か
らそれぞれ調製した20wt%−V/シリカ、2
0wt%−Cr/シリカまたは20wt%−Mn
/シリカを用いた以外は実施例1と全く同様にし
て反応を行なった。結果を表−8にしめす。
Comparative Examples 1 to 3 20 wt% -V 2 O 5 / silica prepared without supporting a noble metal and prepared with ammonium metavanadate oxalic acid solution from ammonium metavanadate hydrochloric acid solution, chromium chloride aqueous solution or manganese acetate aqueous solution, respectively. Two
0wt% -Cr 2 O 3 / silica or 20 wt% -Mn
The reaction was carried out in exactly the same manner as in Example 1 except that 2 O 3 / silica was used. The results are shown in Table-8.

【0044】比較例4 塩化鉄(III)0.1595gを蒸溜水20mlに溶
かした溶液にシリカ(CARIACT−50;FUJI
−DAVISON社製)5.40gを浸漬し湯浴上で蒸
発乾固したのち、水素流通下450℃で1時間還元して
1.0wt%−Fe/シリカを調製し、反応温度を20
℃とした以外は実施例1と全く同様にして反応を行なっ
た。結果を表−9にしめす。
Comparative Example 4 0.1595 g of iron (III) chloride was dissolved in 20 ml of distilled water to prepare a solution of silica (CARIACT-50; FUJI).
-Manufactured by DAVISON) 5.40 g was immersed, evaporated to dryness in a hot water bath, and reduced at 450 ° C for 1 hour under hydrogen flow to prepare 1.0 wt% -Fe / silica, and the reaction temperature was 20.
The reaction was carried out in exactly the same manner as in Example 1 except that the temperature was changed to ° C. The results are shown in Table-9.

【0045】比較例5〜7 塩化鉄(III)水溶液の代わりに硝酸ニッケル水溶
液、硝酸銀水溶液及び、テトラクロロ金(III)酸水
溶液からそれぞれ調製した1.0wt%−Ni/シリ
カ、2.5wt%−Ag/シリカ及び、2.5wt%−
Au/シリカを用いた以外は実施例1と全く同様にして
反応を行なった。結果を表−9にしめす。
Comparative Examples 5 to 7 1.0 wt% -Ni / silica, 2.5 wt% prepared respectively from an aqueous solution of nickel nitrate, an aqueous solution of silver nitrate and an aqueous solution of tetrachloroauric acid (III) instead of the aqueous solution of iron (III) chloride. -Ag / silica and 2.5 wt%-
The reaction was carried out in exactly the same manner as in Example 1 except that Au / silica was used. The results are shown in Table-9.

【0046】比較例8〜10 塩化鉄(III)水溶液の代わりに塩化ルテニウム塩酸
溶液、塩化ロジウム塩酸溶液及び、塩化パラジウム塩酸
溶液からそれぞれ調製した0.5wt%−Ru/シリ
カ、0.5wt%−Rh/シリカ及び、0.5wt%−
Rd/シリカを用いた以外は実施例1と全く同様にして
反応を行なった。結果を表−10にしめす。
Comparative Examples 8 to 10 0.5 wt% -Ru / silica, 0.5 wt% -prepared from a ruthenium chloride hydrochloric acid solution, a rhodium chloride hydrochloric acid solution, and a palladium chloride hydrochloric acid solution instead of the iron (III) chloride aqueous solution. Rh / silica and 0.5 wt%-
The reaction was carried out in exactly the same manner as in Example 1 except that Rd / silica was used. The results are shown in Table-10.

【0047】比較例11〜12 塩化鉄(III)水溶液の代わりに塩化イリジウム水溶
液及び、テトラアンミンジクロロ白金水溶液からそれぞ
れ調製した0.5wt%−Ir/シリカ及び、0.5w
t%−Rt/シリカを用いた以外は実施例1と全く同様
にして反応を行なった。結果を表−10にしめす。
Comparative Examples 11 to 12 0.5 wt% -Ir / silica prepared from an iridium chloride aqueous solution and a tetraamminedichloroplatinum aqueous solution instead of the iron (III) chloride aqueous solution, and 0.5 w, respectively.
The reaction was carried out in exactly the same manner as in Example 1 except that t% -Rt / silica was used. The results are shown in Table-10.

【0048】[0048]

【発明の効果】本発明の方法によれば、含酸素ガスと含
水素ガスにより芳香族化合物を温和な条件で液相酸化し
てフェノール類を製造することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, phenols can be produced by liquid-phase oxidation of an aromatic compound with an oxygen-containing gas and a hydrogen-containing gas under mild conditions.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 [Table 10]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/64 X 8017−4G C07C 37/58 9159−4H 39/07 9159−4H // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B01J 23/64 X 8017-4G C07C 37/58 9159-4H 39/07 9159-4H // C07B 61 / 00 300

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】芳香族化合物を含酸素ガスと含水素ガスか
らなる混合ガスと反応させるか又は、含酸素ガスと含水
素ガスを交互に反応させてフェノール類を製造するにあ
たり、周期律表第VIII族の貴金属と、IIIa,I
Va,Va,VIa,VIIa,IIb,IVbおよび
Vb族より選ばれた一種以上からなる卑金属酸化物を担
体に担持した触媒を用いることを特徴とするフェノール
類の製造方法。
1. A method for producing a phenol by reacting an aromatic compound with a mixed gas comprising an oxygen-containing gas and a hydrogen-containing gas, or alternately reacting an oxygen-containing gas and a hydrogen-containing gas, to produce a phenol. Group VIII noble metals and IIIa, I
A process for producing phenols, which comprises using a catalyst in which a base metal oxide comprising at least one selected from the group consisting of Va, Va, VIa, VIIa, IIb, IVb and Vb is supported on a carrier.
【請求項2】特許請求の範囲第1項において反応を常圧
以上で行うことを特徴とするフェノール類の製造方法。
2. A method for producing phenols according to claim 1, wherein the reaction is carried out at atmospheric pressure or higher.
JP03311359A 1990-11-01 1991-10-31 Method for producing phenols Expired - Fee Related JP3123157B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29370590 1990-11-01
JP2-293705 1990-11-01

Publications (2)

Publication Number Publication Date
JPH054935A true JPH054935A (en) 1993-01-14
JP3123157B2 JP3123157B2 (en) 2001-01-09

Family

ID=17798171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03311359A Expired - Fee Related JP3123157B2 (en) 1990-11-01 1991-10-31 Method for producing phenols

Country Status (1)

Country Link
JP (1) JP3123157B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638536A1 (en) * 1993-08-10 1995-02-15 Tosoh Corporation Process for producing phenols
WO2006054643A1 (en) * 2004-11-17 2006-05-26 Asahi Kasei Chemicals Corporation Oxidation catalyst and oxidation method
JP2006247496A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Catalyst for synthesizing phenol and method for producing phenol using the same
JP2009249332A (en) * 2008-04-04 2009-10-29 Univ Of Tokyo Method for producing phenol by direct oxidation of benzene
US8309750B2 (en) 2007-08-20 2012-11-13 Shell Oil Company Process for the preparation of a diaryl carbonate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638536A1 (en) * 1993-08-10 1995-02-15 Tosoh Corporation Process for producing phenols
US5426245A (en) * 1993-08-10 1995-06-20 Tosoh Corporation Process for producing phenols
EP0885865A1 (en) * 1993-08-10 1998-12-23 Tosoh Corporation Process for producing phenols
WO2006054643A1 (en) * 2004-11-17 2006-05-26 Asahi Kasei Chemicals Corporation Oxidation catalyst and oxidation method
JPWO2006054643A1 (en) * 2004-11-17 2008-05-29 旭化成ケミカルズ株式会社 Oxidation catalyst and oxidation method
US8614349B2 (en) 2004-11-17 2013-12-24 Asahi Kasei Chemicals Corporation Oxidation catalyst and oxidation method
JP2006247496A (en) * 2005-03-09 2006-09-21 National Institute Of Advanced Industrial & Technology Catalyst for synthesizing phenol and method for producing phenol using the same
JP4586193B2 (en) * 2005-03-09 2010-11-24 独立行政法人産業技術総合研究所 Method for producing phenol
US8309750B2 (en) 2007-08-20 2012-11-13 Shell Oil Company Process for the preparation of a diaryl carbonate
JP2009249332A (en) * 2008-04-04 2009-10-29 Univ Of Tokyo Method for producing phenol by direct oxidation of benzene

Also Published As

Publication number Publication date
JP3123157B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
Grennberg et al. Mechanism of palladium‐catalyzed allylic acetoxylation of cyclohexene
JP4169070B2 (en) Method for producing phenol
US6458737B1 (en) Catalyst for oxidizing methylbenzenes and method for producing aromatic aldehyde
JP3123157B2 (en) Method for producing phenols
TW200948768A (en) Method for producing carbonyl compound
JP3161035B2 (en) Production of phenols
JP3211371B2 (en) Method for producing phenols
US4347383A (en) Process for producing benzophenone-azines
JP3619902B2 (en) Production of phenols
EP1408023A1 (en) Process for producing adamantanol and adamantanone
JP3473037B2 (en) Method for hydroxylating aromatic compounds
JPH07238042A (en) Production of phenols
US6958407B2 (en) Process for producing phenyl ester, and catalyst
JPH07238052A (en) Production of hydroxy benzoic acid
JPH06256242A (en) Hydroxylation of aromatic compound
US6342620B1 (en) Process for producing phenyl ester
JP2001198464A (en) Catalyst for oxidation of methylbenzenes and method for preparation of aromatic aldehyde
JP2507026B2 (en) Aromatic compound oxidation method
JPH08151346A (en) Production of ketomalonic acid
JP2010064972A (en) Method for producing oxygen-containing compound
EP1669340A1 (en) Method for oxidizing aromatic compound having alkyl substituent, method for producing aromatic aldehyde compound and method for producing aromatic carboxylic acid ester
JPH07173099A (en) Production of glyoxylic acid
JPS60332B2 (en) Manufacturing method of cyclohexanone
JPH1192418A (en) Production of unsaturated glycol diester
JPH11158113A (en) Production of unsaturated glycol diester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees