JPH0549234U - Lead screw device - Google Patents
Lead screw deviceInfo
- Publication number
- JPH0549234U JPH0549234U JP9899691U JP9899691U JPH0549234U JP H0549234 U JPH0549234 U JP H0549234U JP 9899691 U JP9899691 U JP 9899691U JP 9899691 U JP9899691 U JP 9899691U JP H0549234 U JPH0549234 U JP H0549234U
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- screw shaft
- slide
- screw device
- nut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Transmission Devices (AREA)
Abstract
(57)【要約】
【構成】送りねじ装置におけるねじ軸1を支持する軸受
4を、ねじ軸1の軸芯と垂直な方向に移動可能とする。
【効果】ねじ軸1回転時に生じるフレ回り現象を上記軸
受4部で吸収することができるため、ねじ軸1に螺合さ
れたナットおよび該ナットに結合された直動スライドに
フレ回り現象を伝えにくく、直動スライドの真直性能を
高くすることができる。
(57) [Summary] [Structure] The bearing 4 supporting the screw shaft 1 in the feed screw device is movable in a direction perpendicular to the axis of the screw shaft 1. [Effect] Since the whirling phenomenon occurring when the screw shaft 1 rotates can be absorbed by the bearing 4 part, the whirling phenomenon is transmitted to the nut screwed to the screw shaft 1 and the linear slide connected to the nut. It is difficult and the straightness of the linear slide can be improved.
Description
【0001】[0001]
本考案は、半導体製造装置、精密加工機械、精密測定装置等に使用される送り ねじ装置に関するものである。 The present invention relates to a lead screw device used in semiconductor manufacturing equipment, precision processing machines, precision measuring equipment, and the like.
【0002】[0002]
従来より、静圧流体軸受装置においてガイド軸上で支持された直動スライドを 駆動させるために、送りねじ装置が用いられていた。この送りねじ装置の構造は 、図3に示す様に、ねじ軸1と、これに螺合されたナット2および該ナット2に 連結した直動スライド3からなっていた。そして、モータ(不図示)によりねじ 軸1を回転させ、この回転運動をナット2の直線運動に変換し、該ナット2に連 結された直動スライド3を駆動するようになっていた。また、図示していないが 、この直動スライド3はガイド軸上で静圧流体で支持して静圧流体軸受を構成し てあり、滑らかで精密な駆動を行うことができるものであった。 Conventionally, in a hydrostatic bearing device, a feed screw device has been used to drive a linear motion slide supported on a guide shaft. As shown in FIG. 3, the structure of the feed screw device is composed of a screw shaft 1, a nut 2 screwed to the screw shaft 1, and a linear slide 3 connected to the nut 2. Then, the screw shaft 1 is rotated by a motor (not shown), this rotational movement is converted into a linear movement of the nut 2, and the linear motion slide 3 connected to the nut 2 is driven. Although not shown, the linear motion slide 3 is supported by hydrostatic pressure fluid on the guide shaft to form a hydrostatic fluid bearing, and smooth and precise driving can be performed.
【0003】 また、上記ねじ軸1の両端は、球軸受をなす軸受4の内輪4aに締め付けナッ ト5で結合され、この軸受4の外輪4bはプレート6をボルト8で締め付けるこ とによって軸受ハウジング7に結合されている。つまり、ねじ軸1は軸受4によ って回転方向の自由度はあるが、それ以外は拘束された状態で支持されていた。Both ends of the screw shaft 1 are connected to an inner ring 4 a of a bearing 4 which is a ball bearing by a tightening nut 5, and an outer ring 4 b of the bearing 4 is a bearing housing by tightening a plate 6 with a bolt 8. It is connected to 7. In other words, the screw shaft 1 is supported by the bearing 4 in a state in which it has a degree of freedom in the rotation direction, but is otherwise constrained.
【0004】[0004]
ところが、上記の送りねじ装置において、ねじ軸1を回転させると、図4に示 すようにフレ回り現象が生じ、ねじ軸1の中央部がフレ回り量δだけ大きく膨ら んで回転することを避けられなかった。このフレ回り現象は、ナット2を通じて 直動スライド3に伝わるため、直動スライド3は本来の移動方向と垂直な方向に も微小に移動するようになっていた。実際に直動スライド3の運動真直度を測定 してみると、図5にチャート図を示すように、ねじ軸1のリードと合致する周期 でフレ回り現象が見られ、真直性能を低下させているという問題点があった。 However, in the above feed screw device, when the screw shaft 1 is rotated, a whirling phenomenon occurs as shown in FIG. 4, and the central portion of the screw shaft 1 is greatly swollen by the whirling amount δ to rotate. It was inevitable. Since this whirling phenomenon is transmitted to the linear slide 3 through the nut 2, the linear slide 3 is designed to move slightly in a direction perpendicular to the original moving direction. When the straightness of motion of the linear motion slide 3 was actually measured, as shown in the chart of FIG. 5, a deflection phenomenon was observed at a cycle that coincides with the lead of the screw shaft 1 and the straightness performance was degraded. There was a problem that
【0005】 このフレ回り量δの大きさは、直動スライド3の移動方向と垂直な方向におけ る、ねじ軸1の剛性と直動スライド3の支持剛性との比で決定され、ねじ軸1の 剛性に比べて直動スライド3の支持剛性が低い程フレ回り量δは大きくなる。そ して、この直動スライド3を静圧流体軸受で支持した場合は、支持剛性が低くな るため、特に上記フレ回り現象が顕著になるという問題点があった。The amount of the deflection amount δ is determined by the ratio between the rigidity of the screw shaft 1 and the supporting rigidity of the linear slide 3 in the direction perpendicular to the moving direction of the linear slide 3, and The lower the supporting rigidity of the linear motion slide 3 compared to the rigidity of 1, the larger the amount of deflection δ becomes. Further, when the linear motion slide 3 is supported by the hydrostatic bearing, the supporting rigidity becomes low, so that there has been a problem that the above-mentioned whirling phenomenon becomes remarkable.
【0006】 また、送りねじ装置の組立時に上記ねじ軸1の軸芯と直動スライド3の移動方 向を完全に一致させる必要があるが、実際には両者を完全に一致させることは困 難であり、数十μm程度の誤差が出ることを避けられず、そのため直動スライド 3自体の真直性能を低下させてしまうという問題点もあった。Further, when the feed screw device is assembled, it is necessary to completely match the moving axis of the screw shaft 1 with the moving direction of the direct-acting slide 3, but it is difficult to actually match the both. However, there is a problem in that an error of about several tens of μm cannot be avoided, and thus the straightness performance of the linear motion slide 3 itself is deteriorated.
【0007】[0007]
上記に鑑みて本考案は、送りねじ装置におけるねじ軸を支持する軸受部を、ね じ軸の軸芯と垂直な方向に移動可能としたものである。 In view of the above, the present invention makes the bearing portion supporting the screw shaft in the feed screw device movable in a direction perpendicular to the axis of the screw shaft.
【0008】[0008]
本考案によれば、両端の軸受部が軸芯と垂直な方向に移動可能であることから 、ねじ軸の回転時にフレ回り現象が生じたとしても、両端の軸受部がフレ回り方 向に移動することでナットに伝わるフレ回り量を減らすことができる。 According to the present invention, since the bearing portions at both ends can move in the direction perpendicular to the shaft core, even if a whirling phenomenon occurs when the screw shaft rotates, the bearing portions at both ends move in the whirling direction. By doing so, it is possible to reduce the amount of deflection that is transmitted to the nut.
【0009】[0009]
以下、実施例に基づき本考案を詳述する(従来例と同一部分は同一符号を用い る)。 Hereinafter, the present invention will be described in detail based on embodiments (the same portions as those in the conventional example are denoted by the same reference numerals).
【0010】 本考案の送りねじ装置は、図3に示す従来例と同様に、螺旋溝を備えたねじ軸 1と、これに螺合されたナット2および該ナット2に連結された直動スライド3 からなっており、この直動スライド3はガイド軸上で静圧軸受によって支持され ている。そして、ねじ軸1の軸受部分の断面を図1に示すように、ねじ軸1の端 部は球軸受をなす軸受4の内輪4aに締め付けナット5で結合されている。一方 、この軸受4の外輪4bは、軸受ハウジング7とこれにボルト8で取り付けられ たプレート6によって形成される空間内に取り付けられているが、上記外輪4b の外周と軸受ハウジング7の内周との間には0.2〜0.3mm程度の隙間dを 形成してあり、かつ外輪4bの両端面と、軸受ハウジング7およびプレート6と のそれぞれの間には球9を円周上均等に配置するとともに、この球9の位置決め のためのキャリア10を備えている。そして、プレート6をボルト8で締め付け ることによって、球9を介して軸受4の外輪4bを保持するようになっている。The feed screw device of the present invention is similar to the conventional example shown in FIG. 3, in which a screw shaft 1 having a spiral groove, a nut 2 screwed into the screw shaft 1, and a linear motion slide connected to the nut 2 are provided. 3, the linear slide 3 is supported on the guide shaft by hydrostatic bearings. Then, as shown in FIG. 1 which is a sectional view of the bearing portion of the screw shaft 1, the end portion of the screw shaft 1 is connected to an inner ring 4a of a bearing 4 which is a ball bearing by a tightening nut 5. On the other hand, the outer ring 4b of the bearing 4 is mounted in the space formed by the bearing housing 7 and the plate 6 mounted on the bearing housing 7 with bolts 8. A gap d of about 0.2 to 0.3 mm is formed between them, and spheres 9 are evenly distributed on the circumference between both end surfaces of the outer ring 4b and the bearing housing 7 and the plate 6. A carrier 10 for positioning and positioning the sphere 9 is provided. Then, by tightening the plate 6 with the bolts 8, the outer ring 4b of the bearing 4 is held via the balls 9.
【0011】 そのため、この軸受4の外輪4bは、軸受ハウジング7に完全に固定されてお らず、上記球9が転がることにより、ねじ軸1の軸芯と垂直な方向に、上記隙間 dの範囲内で移動可能となっている。また、上記ボルト8の締め付け力を強くす れば、プレート6により球9を介して外輪4bを保持する力が強くなることから 、上記軸受4が軸芯と垂直な方向へ移動しにくくなる。即ち、ボルト8の締め付 け力で、軸受4の軸芯と垂直な方向への支持剛性を調整することができる。Therefore, the outer ring 4b of the bearing 4 is not completely fixed to the bearing housing 7, and the ball 9 rolls, so that the gap d is formed in the direction perpendicular to the axis of the screw shaft 1. It is possible to move within the range. Further, if the tightening force of the bolt 8 is increased, the force of holding the outer ring 4b through the ball 9 by the plate 6 is increased, so that the bearing 4 becomes difficult to move in the direction perpendicular to the axis. In other words, the tightening force of the bolt 8 can adjust the support rigidity in the direction perpendicular to the axis of the bearing 4.
【0012】 いま、この送りねじ装置においてねじ軸1を回転させると、螺旋溝に螺合した ナット2およびこれに連結した直動スライド3を直線方向に移動させることがで きる。そして、このときねじ軸1にフレ回り現象が生じるが、上記のようにねじ 軸1の軸受4が軸芯と垂直方向に移動可能となっていることから、この軸受4が 軸芯と垂直な方向に移動することでフレ回り現象を吸収し、ナット2や直動スラ イド3にフレ回り現象が伝わることを防止できる。また、この送りねじ装置を組 み立てる際には、直動スライド3の移動方向とねじ軸1の軸芯との間に数十μm 程度の誤差が生じるが、上記軸受4と軸受ハウジング7との隙間dでこの誤差を 吸収し、直動スライド3の真直性能を劣化させることはない。Now, when the screw shaft 1 is rotated in this feed screw device, the nut 2 screwed into the spiral groove and the direct-acting slide 3 connected thereto can be linearly moved. At this time, a whirling phenomenon occurs in the screw shaft 1, but since the bearing 4 of the screw shaft 1 is movable in the direction perpendicular to the shaft core as described above, this bearing 4 is not perpendicular to the shaft core. By moving in the direction, the whirling phenomenon is absorbed, and it is possible to prevent the whirling phenomenon from being transmitted to the nut 2 and the linear motion slide 3. When the feed screw device is assembled, an error of about several tens of μm occurs between the moving direction of the linear motion slide 3 and the axis of the screw shaft 1. The clearance d absorbs this error and does not deteriorate the straightness performance of the linear motion slide 3.
【0013】 次に本考案の他の実施例を説明する。図2に軸受部分の断面を示すように、ね じ軸1の端部は軸受4の内輪4aに締め付けナット5で結合され、一方該軸受4 の外輪4bの外周と軸受ハウジング7の内周との間には0.2〜0.3mm程度 の隙間dが形成され、かつ外輪4bの両端面と、軸受ハウジング7およびプレー ト6とのそれぞれの間には滑り軸受部材11が介在されている。そして、プレー ト6をボルト8で軸受ハウジング7に締結することで、上記滑り軸受部材11を 介して軸受4の外輪4bを保持している。Next, another embodiment of the present invention will be described. As shown in the cross section of the bearing portion in FIG. 2, the end of the shaft 1 is connected to the inner ring 4a of the bearing 4 by a tightening nut 5, while the outer circumference of the outer ring 4b of the bearing 4 and the inner circumference of the bearing housing 7 are A gap d of about 0.2 to 0.3 mm is formed between them, and a slide bearing member 11 is interposed between both end surfaces of the outer ring 4b and the bearing housing 7 and the plate 6. .. Then, the plate 6 is fastened to the bearing housing 7 with bolts 8 to hold the outer ring 4 b of the bearing 4 via the plain bearing member 11.
【0014】 この滑り軸受部材11は、カーボンやフッ素系樹脂などの摺動性に優れた材質 からなり、軸受ハウジング7やプレート6との摩擦係数が0.2以下となるよう にしてある。したがって、この送りねじ装置は、軸受4の外輪4bが軸受ハウジ ング7に完全に固定されず、上記滑り軸受部材11を介して摺動することにより 、外輪4bがねじ軸1の軸芯に対して垂直方向に移動可能となっており、前記実 施例と同様に、ねじ軸1のフレ回り現象を吸収することができる。The sliding bearing member 11 is made of a material having excellent slidability such as carbon or fluorine resin, and has a friction coefficient with the bearing housing 7 or the plate 6 of 0.2 or less. Therefore, in this feed screw device, the outer ring 4b of the bearing 4 is not completely fixed to the bearing housing 7, but slides through the slide bearing member 11, whereby the outer ring 4b moves relative to the axis of the screw shaft 1. It is possible to move vertically in the vertical direction, and it is possible to absorb the whirling phenomenon of the screw shaft 1 as in the above-described embodiment.
【0015】 なお、図1、2に示すような軸受4の支持構造は、ねじ軸1の一方端のみに形 成すればよいが、両端を共にこのような支持構造とすればより効果を高くできる 。また、上記実施例において、各部材の材質は金属、セラミックスなどさまざま なものを用いることができ、特に軸受4の内輪4a、外輪4bや球9などの部材 をセラミックスで形成すれば耐摩耗性を高くすることができる。The supporting structure for the bearing 4 as shown in FIGS. 1 and 2 may be formed only on one end of the screw shaft 1. However, if both ends are formed into such a supporting structure, the effect is further enhanced. it can . Further, in the above embodiment, various materials such as metal and ceramics can be used as the material of each member. Particularly, if the members such as the inner ring 4a, the outer ring 4b and the ball 9 of the bearing 4 are made of ceramics, wear resistance is improved. Can be higher.
【0016】 さらに、上記実施例では直動スライド3を静圧流体で支持したものを示したが 、本考案の送りねじ装置は静圧流体軸受装置の駆動に限るものではなく、さまざ まな直線案内装置に用いることができる。Further, although the linear motion slide 3 is supported by the hydrostatic fluid in the above-mentioned embodiment, the feed screw device of the present invention is not limited to the drive of the hydrostatic bearing device, and various linear lines are used. It can be used as a guide device.
【0017】実験例 本考案の送りねじ装置において、フレ回り現象を吸収するためには、直動スラ イド3の移動方向に対して垂直な方向の支持剛性A(kgf/μm)と、軸受4 の軸芯と垂直方向の支持剛性B(kgf/μm)との比B/Aが重要である。そ こで、図1に示す本考案の送りねじ装置を試作し、各支持剛性A、Bの値を変化 させて真直性能を比較する実験を行った。各部分の寸法は表1に示す通りとし、 直動スライド3は静圧空気で支持して、この空気圧によって支持剛性Aを決定し た。一方、軸受4の支持剛性Bは、図1におけるプレート6を取り付けるボルト 8の締め付け力で調整した。結果は表2に示す通りである。 Experimental Example In the feed screw device of the present invention, in order to absorb the whirling phenomenon, the supporting rigidity A (kgf / μm) in the direction perpendicular to the moving direction of the linear slide 3 and the bearing 4 are used. The ratio B / A between the shaft center of and the supporting rigidity B (kgf / μm) in the vertical direction is important. Then, the feed screw device of the present invention shown in FIG. 1 was prototyped, and an experiment was conducted to compare the straightness performance by changing the values of the support stiffnesses A and B. The dimensions of each part are as shown in Table 1, and the linear motion slide 3 was supported by static pressure air, and the supporting rigidity A was determined by this air pressure. On the other hand, the support rigidity B of the bearing 4 was adjusted by the tightening force of the bolt 8 for mounting the plate 6 in FIG. The results are shown in Table 2.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】 表2より明らかに、直動スライド3の支持剛性Aと、軸受4の支持剛性Bとの 比B/Aを小さくするほど優れた真直性能が得られることがわかる。これは、支 持剛性の比B/Aが小さいほど、軸受4が軸芯と垂直方向に移動しやすくフレ回 り現象の吸収量が大きくなるためである。また、通常静圧流体軸受に求められる 真直度は100mmあたり0.2μm以下であるが、上記支持剛性の比B/Aを 1/5以下とすれば、この要求特性を満たすことがわかる。It is apparent from Table 2 that the smaller the ratio B / A of the supporting rigidity A of the linear motion slide 3 and the supporting rigidity B of the bearing 4, the better the straightness performance. This is because the smaller the supporting rigidity ratio B / A is, the easier the bearing 4 is to move in the direction perpendicular to the shaft core, and the larger the absorption amount of the swinging phenomenon is. Further, the straightness normally required for a hydrostatic bearing is 0.2 μm or less per 100 mm, but it can be seen that this required characteristic is satisfied if the ratio B / A of the supporting rigidity is 1/5 or less.
【0021】 さらに、表2中No.5の例について、直動スライド3の運動真直度を調べた ところ、図6にチャート図を示すように、フレ回り現象はほとんど見られなくな り、図5に示す従来例と比較して、はるかに優れた真直性能となることがわかる 。Further, in Table 2, No. When the straightness of motion of the linear slide 3 was examined for the example of No. 5, as shown in the chart diagram of FIG. 6, almost no fringing phenomenon was observed, and in comparison with the conventional example shown in FIG. It can be seen that the straightness performance is far superior.
【0022】 さらに、上記実験例では図1に示す球9を配置した構造のものについて示した が、図2に示す滑り軸受部材11を配置した構造のものであっても同様に、直動 スライド3の支持剛性Aと、軸受4の支持剛性Bとの比B/Aを1/5以下とす れば真直度を100mmあたり0.2μm以下とすることができた。Further, in the above experimental example, the structure in which the sphere 9 shown in FIG. 1 is arranged is shown, but the structure in which the sliding bearing member 11 shown in FIG. By setting the ratio B / A of the support rigidity A of No. 3 and the support rigidity B of the bearing 4 to be 1/5 or less, the straightness could be 0.2 μm or less per 100 mm.
【0023】[0023]
このように本考案によれば、送りねじ装置におけるねじ軸を支持する軸受を、 ねじ軸の軸芯と垂直な方向に移動可能としたことによって、ねじ軸の回転時に生 じるフレ回り現象を上記軸受部で吸収することができる。そのため、ねじ軸に螺 合されたナットおよび該ナットに結合された直動スライドにフレ回り現象を伝え にくく、直動スライドの真直性能を高くすることができ、特に静圧流体で支持し た直動スライドの駆動に好適に用いることができる。 As described above, according to the present invention, the bearing that supports the screw shaft in the feed screw device is movable in the direction perpendicular to the axis of the screw shaft, so that the whirling phenomenon that occurs when the screw shaft rotates is prevented. It can be absorbed by the bearing portion. Therefore, it is difficult to transmit the whirling phenomenon to the nut screwed to the screw shaft and the linear motion slide connected to the nut, and the straightness performance of the linear motion slide can be improved. It can be suitably used for driving a dynamic slide.
【図1】本考案の送りねじ装置における、ねじ軸の軸受
部を示す断面図である。FIG. 1 is a sectional view showing a bearing portion of a screw shaft in a feed screw device of the present invention.
【図2】本考案の他の実施例を示す断面図である。FIG. 2 is a cross-sectional view showing another embodiment of the present invention.
【図3】従来の送りねじ装置を示す概略図である。FIG. 3 is a schematic view showing a conventional feed screw device.
【図4】従来の送りねじ装置におけるフレ回り現象を説
明するための図である。FIG. 4 is a diagram for explaining a whirling phenomenon in a conventional feed screw device.
【図5】従来の送りねじ装置により駆動した直動スライ
ドの運動真直度を示すチャート図である。FIG. 5 is a chart showing the straightness of motion of a linear slide driven by a conventional feed screw device.
【図6】本考案の送りねじ装置により駆動した直動スラ
イドの運動真直度を示すチャート図である。FIG. 6 is a chart showing the straightness of motion of a linear slide driven by the feed screw device of the present invention.
1・・・ねじ軸 2・・・ナット 3・・・直動スライド 4・・・軸受 4a・・内輪 4b・・外輪 5・・・締め付けナット 6・・・プレート 7・・・軸受ハウジング 8・・・ボルト 9・・・球 10・・キャリア 11・・滑り軸受部材 1 ... Screw shaft 2 ... Nut 3 ... Linear slide 4 ... Bearing 4a ... Inner ring 4b ... Outer ring 5 ... Tightening nut 6 ... Plate 7 ... Bearing housing 8 ... ..Bolts 9 ... Spheres 10 ... Carriers 11 ... Slide bearing members
Claims (1)
螺合されたナットを直線方向に移動させるようにした送
りねじ装置において、前記ねじ軸の端部を支持する軸受
部をねじ軸の軸芯と垂直な方向に移動可能としたことを
特徴とする送りねじ装置。1. A feed screw device in which a nut screwed on a screw shaft is moved in a linear direction by rotating the screw shaft, and a bearing portion for supporting an end portion of the screw shaft is provided in the feed screw device. A feed screw device characterized in that it is movable in a direction perpendicular to the axis of the.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991098996U JP2601939Y2 (en) | 1991-11-29 | 1991-11-29 | Lead screw device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1991098996U JP2601939Y2 (en) | 1991-11-29 | 1991-11-29 | Lead screw device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0549234U true JPH0549234U (en) | 1993-06-29 |
JP2601939Y2 JP2601939Y2 (en) | 1999-12-13 |
Family
ID=14234591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1991098996U Expired - Fee Related JP2601939Y2 (en) | 1991-11-29 | 1991-11-29 | Lead screw device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2601939Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5937030A (en) * | 1982-08-23 | 1984-02-29 | Matsushita Electric Ind Co Ltd | Screw feeder |
JPH01135960A (en) * | 1987-11-20 | 1989-05-29 | Toyoda Mach Works Ltd | Table driving gear |
-
1991
- 1991-11-29 JP JP1991098996U patent/JP2601939Y2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5937030A (en) * | 1982-08-23 | 1984-02-29 | Matsushita Electric Ind Co Ltd | Screw feeder |
JPH01135960A (en) * | 1987-11-20 | 1989-05-29 | Toyoda Mach Works Ltd | Table driving gear |
Also Published As
Publication number | Publication date |
---|---|
JP2601939Y2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089732A (en) | Spindle motor | |
US4998033A (en) | Gas dynamic bearing for spindle motor | |
US3464283A (en) | Gimballing means for a movable carriage | |
US20020170188A1 (en) | Table system with angular position controls | |
US6176620B1 (en) | Composite bearing structure | |
CN111015253A (en) | Five-axis structure of cam-type cradle | |
GB2117082A (en) | Ball screw drive | |
US20110016999A1 (en) | Cylinder device | |
US4440038A (en) | Lead screw and follower assembly | |
US3974709A (en) | Screw and follower positioning device | |
JPH09239635A (en) | Xy positioning table device | |
JPH0549234U (en) | Lead screw device | |
CN109955079A (en) | A kind of unloading mechanism driven type heavy caliber gas-static turntable | |
JP2002005158A (en) | Bearing device | |
JP2002158274A (en) | Positioning device | |
CN109139845A (en) | A kind of screw bearing transmission system | |
JP5744645B2 (en) | Hydrostatic gas bearing spindle | |
CN104589126B (en) | Ball screw integral bearing mechanism | |
JP5394831B2 (en) | Ball screw drive | |
JPH08184360A (en) | Frictional forward and backward movement drive device | |
CN114110127B (en) | Double deep groove ball bearing pretension eccentric cam follower | |
JPS6157141B2 (en) | ||
JP3786215B2 (en) | Drive unit for linear motion gas bearing | |
JPS63251621A (en) | Linear driving type bearing unit | |
JPH01307563A (en) | Feed screw |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |