JPH0549106B2 - - Google Patents

Info

Publication number
JPH0549106B2
JPH0549106B2 JP60013425A JP1342585A JPH0549106B2 JP H0549106 B2 JPH0549106 B2 JP H0549106B2 JP 60013425 A JP60013425 A JP 60013425A JP 1342585 A JP1342585 A JP 1342585A JP H0549106 B2 JPH0549106 B2 JP H0549106B2
Authority
JP
Japan
Prior art keywords
layer
charge
charge transport
coating
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60013425A
Other languages
Japanese (ja)
Other versions
JPS61173255A (en
Inventor
Masakazu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60013425A priority Critical patent/JPS61173255A/en
Publication of JPS61173255A publication Critical patent/JPS61173255A/en
Publication of JPH0549106B2 publication Critical patent/JPH0549106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真感光体に関し、詳しくは改善
された電子写真特性を与える有機光導電体を有す
る電子写真感光体に関する。 〔従来技術〕 従来、電子写真感光体に用いられる光導電材料
としてセレン硫化カドミウム、酸化亜鉛などの無
機光導電性材料が知られている。一方ポリビニル
カルバゾールを始めとして多数の有機光導電性ポ
リマーが提案されてきたが、これらは未だ十分な
成膜性が得らておらず、また感度、耐久性及び環
境変化による安定性の点で無機光導電性材料に比
べ劣つている。またヒドラゾン化合物、トリアリ
ールピラゾリン化合物、スチリルアントラセン化
合物などの低分子の有機光導電性材料が提案され
てきた。この様な低分子の有機光導電体は使用す
べきバインダーを適当に選択することによつて有
機光導電性ポリマーの分野で問題となつていた成
膜性の欠点を解消することができたが、感度の点
でまだ充分とはいえない。 このようなことから、近年感光層を電荷発生層
と電荷輸送層に機能分離させた積層構造体が提案
された。この積層構造を感光層とした電子写真感
光体は、可視光に対する感度、電荷保持力、表面
強度などの点で改善できる様になつた。この様な
電子写真感光体は、例えば米国特許第3837851号、
同第3871882号公報などに開示されている。 しかし乍ら、従来の低分子の有機光導電体を電
荷輸送層に用いた電子写真感光体では感度は決し
て満足すべきものではなく、更に繰返し帯電及び
露光を行なつたさいに電位特性が劣化するという
問題があり、特に繰返し回数が大きくなると明部
電位と暗部電位の変動が大きく、低分子の有機光
導電体の基本的欠陥となつている。 〔発明が解決しようとする問題点〕 本発明の目的は良好な感度を有しかつ繰返し使
用に対する耐久性にすぐれた新規な有機光導電体
を提供することにある。 本発明の別の目的は電荷発生層と電荷輸送層に
機能分離した積層型感光層における新規な電荷輸
送物質を提供することにある。 〔問題点を解決するための手段〕 本発明に従つて、下記の一般式又はで示さ
れる化合物を光導電性物質として含有する感光層
を有することを特徴とする電子写真感光体: 〔式中R1は水素原子又は置換基を有してよいア
ルキル基、アリール基又はアラルキル基を示し、
R2は水素原子又はアルキル基を示し、X1及びX2
はそれぞれ水素原子又はアルキル基、アラルキル
基、アルコキシ基又はハロゲン原子を示し、Aは
Ar1−CH=CH−あるいはAr1−CH=CH−Ar2
−(ここでAr1及びAr2はそれぞれ置換基を有して
もよい芳香族環又は複素環を示す)を示し、nは
1以上の整数である〕が提供される。 一般式及びにおけるR1の定義においてア
ルキル基はメチル、エチル、プロピル、ブチルな
どでありアリール基はフエニル、ナフチルなどが
例示され、アラルキル基はベンジル、フエネチ
ル、ナフチルメチルなどが例示される。上記アル
キル基は例えばメトキシ、エトキシ、プロポキ
シ、ブトキシなどとアルコキシ基又はフツ素、塩
素、臭素、沃素のハロゲン原子で置換されていて
もよい。また上記アリール基、アラルキル基はメ
トキシ、エトキシ、プロポキシ、ブトキシなどの
アルコキシ基、フツ素、塩素、臭素などのハロゲ
ン原子又はジメチルアミノ、ジエチルアミノ、ジ
プロピルアミノなどのジアルキルアミノ基で置換
されていてもよい。R2においてアルキル基は例
えばメチル、エチル、プロピル、ブチルなどであ
る。X1及びX2においてアルキル基、アルコキシ
基、アラルキル及びハロゲンはそれぞれ上記と同
じものが例示される。また、Ar1及びAr2の定義
において芳香族環はたとえばフエニル、ナフチル
などであり、複素環はピリジン、キノリンなどが
例示され、更にこれら芳香族環及び複素環はアル
コキシ基、ハロゲン、あるいはアルキル、アラル
キル又はアリール基で置換されたアミノ基あるい
は環状アミノ基などで置換されてもよい。 以下に一般式及びで示す化合物についての
代表例を挙げる。 次に前記化合の合成例を示す。 化合物(1)、(27)、(28)、(29)の合成 N−メチルジフエニルアミン18.3g(0.1mol)、
農塩酸7ml、エタノール40mlとシンナムアルデヒ
ド9.9g(0.075mol)を撹拌下に80℃で30時間加
熱し、冷却後デカントして液相部分を除き、熱エ
タノールで十分洗浄して淡黄色塊状生成物を得
た。真空乾燥後熱ベゼンに溶解し、希力性ソーダ
液で処理し、脱水後アルミナカラムにて展開、初
期溶出分1.2を濃縮して析出する粉末を熱エタ
ノールで洗浄し目的物23.7gを得た。生成物の構
造は、NMR測定からアミンベース対ベンズアル
デヒドベースはモル比で約4対3と判明、即ちn
数は2であることがわかつた。 N−メチルジフエニルアミン量を15.4g
(0.0844mol)14.8g(0.0808mol)14.2g
(0.0774mol)と変えて同上に処理することによ
りそれぞれ化合物(27)、(28)、(29)が合成され
た。ただし、(28)及び(29)は反応時間はそれ
ぞれ60時間、100時間を要した。また(27)、
(28)、(29)についてはn数にNMRと共にGPC
による分子量測定と併用した。 他の化合物についても基本的には上記合成法に
準じ、アルデヒド誘導対とジフエニルアミンの誘
導体又はカルバゾール誘導体の縮合反応で合成さ
れた。n数のコントロールは仕込みモル比及び、
加熱時間調整で達成される。 なお、上記合成法による生成物は高分子成分を
含むことが多く必らずしもn数が単一ではない
が、通常高分子成分は微量の為、そのまま使用す
る。n数が10以下であれば分取GPCにより高分
子成分を除去し単一体とすることも可能である
が、単一体でも混合体でも有機感光体としての特
性はほとんど差がない。 本発明に好ましい実施態様では、電荷発生層と
電荷輸送層に機能分離した電子写真感光体におい
て前記一般式及びの化合物を電荷輸送物質兼
バインダーとして用いることができる。一般式
及びにおけるnの数が大である程化合物のバイ
ンダーとしての性能が高まるが、一方光導電性体
としての特性が低下するので、n数は30以下が好
適である。但しnが0では低分子の電荷輸送物質
の欠陥が強く現われるのでnは1以上であること
が必要である。本発明の更に好ましい実施態様と
して、n数の小さい化合物を適当なバインダーと
共に用いること、n数の大きい化合物を既知の低
分子の電荷輸送物質と共に用いること、また適当
なバインダー、既知の低分子電荷輸送物質及び本
発明による化合物を混合して用いることなどが挙
げられる。 本発明による有機光導電体を感光層に用いるこ
とにより感光性成分となり得ないバインダーの量
をなくすか、又は大巾に低減させることができる
ので、まづ高感度の達成が可能となり、また従来
の低分子電荷輸送物質より安定性にすぐれている
ため帯電、露光の繰返しによる電位特性の劣化が
少ないという特徴がある。 本発明による電荷輸送層は前記一般式及び
で示される化合物と必要に応じて既知のバインダ
ー及び必要に応じて既知の低分子の電荷輸送物質
とを適当な溶剤に溶解又は分散させた塗工液を基
体上に直接あるいは他の層を介して塗布し乾燥せ
しめることにより形成させることが好ましい。こ
こで用いるバインダーとしては例えばポリアリレ
ート樹脂、ポリスルホン樹脂、ポリアミド樹脂、
アクリル樹脂、アクリロニトリル樹脂、メタクリ
ル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フエ
ノール樹脂、エポキシ樹脂、ポリエステル樹脂、
アルキド樹脂、ポリカーボネート、ポリウレタン
あるいはこれらの樹脂の繰り返し単位のうち2つ
以上を含む共重合体樹脂例えばスチレン−ブタジ
エンコポリマー、スチレン−アクリロニトリルコ
ポリマー、スチレン−マレイン酸コポリマーなど
を挙げることができる。 また低分子の他の電荷輸送物質としては電荷輸
送物質として、クロルアニル、プロモアニル、ト
テラシアノエチレン、テトラシアノキノジメタ
ン、2,4,7−トリニトロ−9−フルオレノ
ン、2,4,5,7−テトラニトロ−9−フルオ
レノン、2,4,7−トリニトロ−9−ジシアノ
メチレンフルオレノン、2,4,5,7−テトラ
ニトロキサントン、2,4,8−トリニトロチオ
キサントン等の電子吸引性物質がある。 また正孔輸送性物質としては、ピレン、N−メ
チル−N−フエニルヒドラジノ−3−メチリデン
−9−エチルカルバゾール、N,N−ジフエニル
ヒドラジノ−3−メチリデン−9−エチルカルバ
ゾール、N,N−ジフエニルヒドラジノ−3−メ
チリデン−10−エチルフエノチアジン、N,N−
ジフエニルヒドラジノ−3−メチリデン−10−エ
チルフエノキサジン、P−ジエチルアミノベンズ
アルデヒド−N,N−ジフエニルヒドラゾン、P
−ジエチルアミノベンズアルデヒド−N−α−ナ
フチル−N−フエニルヒドラゾン、P−ピロリジ
ノベンズアルデヒド−N,N−ジフエニルヒドラ
ゾン、1,3,3−トリメチルインドレニン−ω
−アルデヒド−N,N−ジフエニルヒドラゾン、
P−ジエチルベンズアルデヒド−3−メチルベン
ズチアゾリノ−2−ヒドラゾン等のヒドラゾン
類、2,5−ビス(P−ジエチルアミノフエニ
ル)−1,3,4−オキサジアゾール、1−フエ
ニル−3−(P−ジエチルアミノスチリル)−5−
(P−ジエチルアミノフエニル)ピラゾリン、1
−〔キノリル(2)〕−3−(P−ジエチルアミノスチ
ルリ)−5−(P−ジエチルアミノフエニル)ピラ
ゾリン、1−〔ピリジル(2)〕−3−(P−ジエチル
アミノスチリル)−5−(P−ジエチルアミノフエ
ニル)ピラゾリン、1−〔6−メトキシ−ピリジ
ル(2)〕−3−(P−ジエチルアミノスチリル)−5
−(P−ジエチルアミノフエニル)ピラゾリン、
1−〔ピリジル(3)〕−3−(P−ジエチルアミノス
チリル)−5−(P−ジエチルアミノフエニル)ピ
ラゾリン、1−〔レピジル(2)〕−3−(P−ジエチ
ルアミノスチリル)−5−(P−ジエチルアミノフ
エニル)ピラゾリン、1−〔ピリジル(2)〕−3−
(P−ジエチルアミノスチリル)−4−メチル−5
−(P−ジエチルアミノフエニル)ピラゾリン、
1−〔ピリジル(2)〕−3−(α−メチル−P−ジエ
チルアミノスチリル)−5−(P−ジエチルアミノ
フエニル)ピラゾリン、1−フエニル−3−(P
−ジエチルアミノスチリル)−4−メチル−5−
(P−ジエチルアミノフエニル)ピラゾリン、1
−フエニル−3−(α−ペンジル−P−ジエチル
アミノスチリル)−5−(P−ジエチルアミノフエ
ニル)ピラゾリン、スピロピラゾリンなどのピラ
ゾリン類、2−(P−ジエチルアミノスチリル)−
6−ジエチルアミノベンズオキサゾール、2−
(P−ジエチルアミノフエニル)−4−(P−ジメ
チルアミノフエニル)−5−(2−クロロフエニ
ル)オキサゾール等のオキサゾール系化合物、2
−(P−ジエチルアミノスチリル)−6−ジエチル
アミノベンゾチアゾール等のチアゾール系化合
物、ビス(4−ジエチルアミノ−2−メチルフエ
ニル)−フエニルメタン等のトリアリールメタン
系化合物、1,1−ビス(4−N,N−ジエチル
アミノ−2−メチルフエニル)ヘプタン、1,
1,2,2−テトラキス(4−N,N−ジメチル
アミノ−2−メチルフエニル)エタン等のポリア
リールアルカン類等が使用できる。 本発明になる一般式及びの化合物を電荷輸
送物質として用いる場合は、バインダーとの配合
割合はバインダー100重量部当り、該化合物100〜
500重量部とすることが好ましい。また、該化合
物をバインダーを兼ねて電荷輸送物質として用い
る場合は、他の低分子の電荷輸送物質との配合割
合は該化合物100重量部当り、他の低分子の電荷
輸送物質を0〜300重量部とすることが好ましい。
この場合該化合物のn数は7以上であると必要な
バインダー性能が付与される。更に既知のバイン
ダーも加えて3成分系として使用する場合はバイ
ンダーの割合は固形分の40%以下が好適である。 電荷輸送層は、下述の電荷発生層と電気的に接
続されており、電界の存在下で電荷発生層から注
入された電荷キヤリアを受け取るとともに、これ
らの電荷キヤリアを表面まで輸送できる機能を有
している。この際、この電荷輸送層は、電荷発生
層の上に積層されていてもよく、またのその下に
積層されていてもよい。この電荷輸送層は、電荷
キヤリアを輸送できる限界があるので、必要以上
に膜厚を厚くすることができない。一般的には、
5ミクロン〜30ミクロンであるが、好ましい範囲
は8ミクロン〜20ミクロンである。 この様な電荷輸送層を形成する際に用いる有機
溶剤は、使用するバインダーの種類によつて異な
り、又は電荷発生層や後述の下引層を溶解しない
ものから選択することが好ましい。具体的な有機
溶剤としては、アセトン、メチルエチルケトン、
シクロヘキサノンなどのケトン類、N,N−ジメ
チルホルムアミド、N,N−ジメチルアセトアミ
ドなどのアミド類、ジメチルスルホキシドなどの
スルホキシ類、テトラヒドロフラン、ジオキサ
ン、エチレングリコールモノメチルエーテルなど
のエーテル類、酢酸メチル、酢酸エチルなどのエ
ステル類、クロロホルム、塩化メチレン、ジクロ
ルエチレン、四塩化炭素、トリクロルエチレンな
どの脂肪族ハロゲン化炭化水素類あるいはベンゼ
ン、トルエン、キシレン、リグロイン、モノクロ
ルベンゼン、ジクロルベンゼンなどの芳香族類な
どを用いることができる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテーイング法などのコーテイン
グ法を用いて行なうことができう。乾燥は、室温
における指触乾燥後、加熱乾燥する方法が好まし
い。加熱乾燥は、30℃〜200℃の温度で5分〜2
時間の範囲の時間で、静止または送風下で行なう
ことができる。 本発明の電荷輸送層には、種々の添加剤を含有
させることができる。かかる添加剤としては、ジ
フエニル、塩化ジフエニル、O−ターフエニル、
P−ターフエニル、ジブチルフタレート、ジメチ
ルグリコールフタレート、ジオクチルフタレー
ト、トリフエニル燐酸、メチルナフタリン、ベン
ゾフエノン、塩素化パラフイン、ジラウリルチオ
プロピオネート、3,5−ジニトロサリチル酸、
各種フルオロカーボン類などを挙げることができ
る。 本発明で用いる電荷発生層はアモルフアスシリ
コン、セレン−ヒ素、セレン−テルル、硫化カド
ミウム、ピリリウム、チオピリリウム、アズレニ
ウム系染料、フタロシアニン系顔料、アントアン
トロン顔料、ジベンズピレンキノン顔料、ピラン
トロン顔料、トリスアゾ顔料、ジスアゾ顔料、ア
ゾ顔料、インジゴ顔料、キナクリドン系顔料、チ
アシアニン非対称キノシアニン、キノシアニンあ
るいは特開昭54−143645号公報に記載のアモルフ
アスシリコンなどの電荷発生物質から選ばれた別
個の蒸着層あるいは樹脂分散層を用いることがで
きる。 電荷発生層は、前述の電荷発生物質を適当な結
着剤に分散させ、これを基体の上に塗工すること
によつて形成でき、また真空蒸着装置により蒸着
膜を形成することによつて得ることができる。電
荷発生層を塗工によつて形成する際に用いうる結
着剤としては広範な絶縁性樹脂から選択でき、ま
たポリ−N−ビニルカルバゾール、ポリビニルア
ントラセンやポリビニルピレンなどの有機光導電
性ポリマーから選択できる。好ましくは、ポリビ
ニルブチラール、ポリアリレート(ビスフエノー
ルAとフタル酸の縮重合体など)、ポリカーボネ
ート、ポリエステル、フエノキシ樹脂、ポリ酢酸
ビニル、アクリル樹脂、ポリアクリルアミド樹
脂、ポリアミド、ポリビニルピリジン、セルロー
ス系樹脂、ウレタン樹脂、エポキシ樹脂、カゼイ
ン、ポリビニルアルコール、ポリビニルピロリド
ンなどの絶縁性樹脂を挙げることができる。電荷
発生層に含有する樹脂は、80重量%以下、好まし
くは40重量%以下が適している。塗工の際に用い
る有機溶剤はとしては、メタノール、エタノー
ル、イソプロパノールなどのアルコール類、アセ
トン、メチルエチルケトン、シクロヘキサノンな
どのケトン類、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミドなどのアミド類、
ジメチルスルホキシドなどのスルホキシド類、テ
トラヒドロフラン、ジオキサン、エチレングリコ
ールモノメチルエーテルなどのエーテル類、酢酸
メチル、酢酸エチルなどのエステル類、クロロホ
ルム、塩化メチレン、ジクロルエチレン、四塩化
炭素、トリクロルエチレンなどの脂肪族ハロゲン
化炭化水素類あるいはベンゼン、トルエン、キシ
レン、リグロイン、モノクロルベンゼン、ジクロ
ルベンゼンなどの芳香族類などを用いることがで
きる。 塗工は電荷輸送層の場合と同じ様な方法で行な
うことができる。 電荷発生層は、十分な吸光度を得るために、で
きる限り多くの前記有機光導電体を含有し、且つ
発生した電荷キヤリアの飛程を短かくするため
に、薄膜層、例えば5ミクロン以下、好ましくは
0.01ミクロン〜1ミクロンの膜厚をもつ薄膜層と
することが好ましい。このことは、入射光量の大
部分が電荷発生層で吸収されて、多くの電荷キヤ
リアを生成すること、さらに発生した電荷キヤリ
アを再結合や補獲(トラツプ)により失活するこ
となく電荷輸送層に注入する必要があることに帰
因している。 この様な電荷発生層と電荷輸送層の積層構造か
らなる感光層は、導電層を有する基体の上に設け
られる。導電層を有する基体としては、基体自体
が導電性をもつもの、例えばアルミニウム、アル
ミニウム合金、銅、亜鉛、ステンレス、バナジウ
ム、モリブデン、クロム、チタン、ニツケル、イ
ンジウム、金や白金などを用いることができ、そ
の他にアルミニウム、アルミニウム合金、酸化イ
ンジウム、酸化錫、酸化インジウム−酸化錫合金
などを真空蒸着法によつて被膜形成された層を有
するプラスチツク(例えば、ポリエチレン、ポリ
プロピレン、ポリ塩化ビニル、ポリエチレンテレ
フタレート、アタリル樹脂、ポリフツ化エチレン
など)、あるいは導電性粒子(例えば、カーボン
ブラツク、銀粒子など)を適当なバインダーとと
もににプラスチツクの上に被覆した基体、導電性
粒子をプラスチツクや紙に含浸した基体や導電性
ポリマーを有するプラスチツクなどを用いること
ができる。 導電層と感光層の中間に、バリヤー機能と接着
機能をもつ下引層を設けることもできる。下引層
は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポ
リアミド(ナイロン6、ナイロン66、ナイロン
610、共重合ナイロン、アルコキシメチル化ナイ
ロンなど)、ポリウレタン、ゼラチン、酸化アル
ミニウムなどによつて形成できる。 導電層、電荷発生層、電荷輸送層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷輸送層表面
を正に帯電する必要があり、帯電後露光すると露
光部では電荷発生層において生成した電子が電荷
輸送層に注入され、そのあと表面に達して正電荷
を中和し、表面電位の減衰が生じ未露光部との間
に静電コントラストが生じる。この様にしてでき
た静電潜像を負荷電性のトナーで現像すれば可視
像が得られる。これを直接定着するか、あるいは
トナー像を紙やプラスチツクフイルム等に転写
後、現像し定着することができる。 また、感光体上の静電潜像を転写紙の絶縁層上
に転写後現像し、定着する方法もとれる。現像剤
の種類や現像方法、定着方法は公知のものや公知
の方法のいずれを採用しても良く、特定のものに
限定されるものではない。 一方、電荷輸送物質が正孔輸送物質から成る場
合、電荷輸送層表面を負に帯電する必要があり、
帯電後、露光すると露光部では電荷発生層におい
て生成した正孔が電荷輸送層に注入され、その後
表面に達して負電荷を中和し、表面位の減衰が生
じ未露光部との間に静電コントラストが生じる。
現像時には電子輸送物質を用いた場合とは逆に正
電荷性トナーを用いる必要がある。 本発明によれば、高感度の電子写真感光体を与
えることができ、また繰り返し帯電および露光を
10万回以上行つた時の明部電位と暗部電位の変動
が小さい、高耐久性の電子写真感光体を与える利
点を有している。 以下、本発明を実施例に従つて説明する。 実施例 1 東洋インキ製造(株)製のβ型銅フタロシアニン
(商品名Lionol Blue NCB Toner)を水、エタ
ノールおよびベンゼン中で順次還流後、過して
精製した顔料7g;デユポン社製の「商品名:ポ
リエステルアドヒーシブ49000(固形分20%)」14
g;トルエン35g;ジオキサン35gを混合し、ボ
ールミルで6時間分散することによつて塗工液を
調製した。この塗工液をアルミニウムシート上に
乾燥膜厚が0.5ミクロンとなる様にマイヤーバー
で塗布して電荷発生層を作成した。 次に、電荷輸送化合物として前記例示化合物(1)
を7gとポリカーボネート樹脂(帝人化成(株)製の
商品名(パンライトK−1300」)7gとをテトラ
ヒドロフラン35gとクロロベンゼン35gの混合溶
媒中に撹拌溶解させて得た溶液を先の電荷発生層
の上に、マイヤーバーで乾燥膜厚が15ミクロンと
なる様に塗工して、2層構造からなる感光層をも
つ電子写真感光体を作成した。 この様にして作成した電子写真感光体を川口電
機(株)製静電複写紙試験装置Model−SP−428を用
いてスタチツク方式で−5kVでコロナ帯電し、暗
所で1秒間保持した後、照度5luxで露光して帯電
特性を調べた。 帯電特性としては、表面電位(V0)と1秒間
暗減衰させた時の電位(V1)を1/2に減衰するに
必要な露光量(E1/2)を測定した。 さらに、繰り返し使用した時の明部電位と暗部
電位の変動を測定するために、本実施例で作成し
た感光体をキヤノン(株)製PPC複写機NP−105Zの
感光ドラム用シリンダーに貼り付けて、同機で
100000枚複写を行ない、初期と100000枚複写後の
明部電位(VL)及び暗部電位(VD)の変動を測
定した。 また前記例示化合物(1)の代りにN,N−ジフエ
ニルヒドラジノ−3−メチリデン−9−エチルカ
ルバゾールを用いた外は実施例1と全く同様の操
作により比較試料−1を作成、同様に測定した。
この結果を次に示す。
FIELD OF THE INVENTION This invention relates to electrophotographic photoreceptors, and more particularly to electrophotographic photoreceptors having an organic photoconductor that provides improved electrophotographic properties. [Prior Art] Conventionally, inorganic photoconductive materials such as cadmium selenium sulfide and zinc oxide have been known as photoconductive materials used in electrophotographic photoreceptors. On the other hand, many organic photoconductive polymers, including polyvinylcarbazole, have been proposed, but these have not yet achieved sufficient film-forming properties, and they have problems with sensitivity, durability, and stability against environmental changes. Inferior to photoconductive materials. Furthermore, low-molecular organic photoconductive materials such as hydrazone compounds, triarylpyrazoline compounds, and styryl anthracene compounds have been proposed. These low-molecular organic photoconductors have been able to overcome the film-forming problems that had been a problem in the field of organic photoconductive polymers by appropriately selecting the binder to be used. , it is still not sufficient in terms of sensitivity. For these reasons, a laminated structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer has been proposed in recent years. Electrophotographic photoreceptors using this laminated structure as a photosensitive layer can now be improved in terms of sensitivity to visible light, charge retention, surface strength, and the like. Such an electrophotographic photoreceptor is disclosed in, for example, US Pat. No. 3,837,851;
This is disclosed in Publication No. 3871882, etc. However, the sensitivity of conventional electrophotographic photoreceptors using low-molecular organic photoconductors in the charge transport layer is not satisfactory, and the potential characteristics deteriorate when repeatedly charged and exposed. In particular, as the number of repetitions increases, the bright area potential and the dark area potential vary greatly, which is a fundamental defect of low-molecular organic photoconductors. [Problems to be Solved by the Invention] An object of the present invention is to provide a novel organic photoconductor that has good sensitivity and excellent durability against repeated use. Another object of the present invention is to provide a novel charge transport material in a laminated photosensitive layer in which a charge generation layer and a charge transport layer are functionally separated. [Means for Solving the Problems] According to the present invention, an electrophotographic photoreceptor is provided, which is characterized by having a photosensitive layer containing a compound represented by the following general formula or as a photoconductive substance: [In the formula, R 1 represents a hydrogen atom or an alkyl group, an aryl group, or an aralkyl group that may have a substituent,
R 2 represents a hydrogen atom or an alkyl group, and X 1 and X 2
each represents a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, or a halogen atom;
Ar 1 −CH=CH− or Ar 1 −CH=CH−Ar 2
- (where Ar 1 and Ar 2 each represent an aromatic ring or a heterocycle which may have a substituent), and n is an integer of 1 or more]. In the definition of R 1 in the general formulas and formulas, the alkyl group is methyl, ethyl, propyl, butyl, etc., the aryl group is exemplified by phenyl, naphthyl, etc., and the aralkyl group is exemplified by benzyl, phenethyl, naphthylmethyl, etc. The above alkyl group may be substituted with an alkoxy group such as methoxy, ethoxy, propoxy, butoxy, or a halogen atom such as fluorine, chlorine, bromine, or iodine. Furthermore, the above aryl group and aralkyl group may be substituted with an alkoxy group such as methoxy, ethoxy, propoxy, or butoxy, a halogen atom such as fluorine, chlorine, or bromine, or a dialkylamino group such as dimethylamino, diethylamino, or dipropylamino. good. The alkyl group in R 2 is, for example, methyl, ethyl, propyl, butyl. Examples of the alkyl group, alkoxy group, aralkyl, and halogen in X 1 and X 2 are the same as those mentioned above. Furthermore, in the definitions of Ar 1 and Ar 2 , aromatic rings are, for example, phenyl, naphthyl, etc., heterocycles are exemplified by pyridine, quinoline, etc., and furthermore, these aromatic rings and heterocycles are alkoxy groups, halogens, alkyl, It may be substituted with an amino group substituted with an aralkyl or aryl group, or a cyclic amino group. Representative examples of compounds represented by the general formulas and are shown below. Next, a synthesis example of the above compound will be shown. Synthesis of compounds (1), (27), (28), (29) N-methyldiphenylamine 18.3g (0.1mol),
7 ml of agricultural hydrochloric acid, 40 ml of ethanol, and 9.9 g (0.075 mol) of cinnamaldehyde were heated at 80°C for 30 hours with stirring, and after cooling, the liquid phase was removed by decantation, and the mixture was thoroughly washed with hot ethanol to obtain a pale yellow lumpy product. I got it. After vacuum drying, it was dissolved in hot bezene, treated with diluted soda solution, dehydrated, developed in an alumina column, the initial eluate fraction 1.2 was concentrated, and the precipitated powder was washed with hot ethanol to obtain 23.7 g of the target product. . The structure of the product was determined by NMR measurements to have a molar ratio of amine base to benzaldehyde base of approximately 4:3, i.e. n
It turns out that the number is 2. 15.4g of N-methyldiphenylamine
(0.0844mol) 14.8g (0.0808mol) 14.2g
Compounds (27), (28), and (29) were synthesized by changing (0.0774 mol) and treating the same as above. However, (28) and (29) required reaction times of 60 hours and 100 hours, respectively. Also (27),
For (28) and (29), NMR and GPC are used for n number.
It was used in conjunction with molecular weight measurement by Other compounds were basically synthesized by condensation reactions of aldehyde derivatives and diphenylamine derivatives or carbazole derivatives in accordance with the above synthesis method. The control of n number is the charging molar ratio and
This can be achieved by adjusting the heating time. Note that the products obtained by the above synthesis method often contain a polymeric component and the number n is not necessarily single, but since the polymeric component is usually in a small amount, it is used as is. If the number n is 10 or less, it is possible to remove the polymer component by preparative GPC to obtain a single product, but there is almost no difference in the properties as an organic photoreceptor whether it is a single product or a mixture. In a preferred embodiment of the present invention, a compound of the above general formula can be used as a charge transport substance and binder in an electrophotographic photoreceptor having functionally separated charge generation layer and charge transport layer. The larger the number of n in the general formula and, the higher the performance of the compound as a binder, but on the other hand, the properties as a photoconductor deteriorate, so the number of n is preferably 30 or less. However, if n is 0, defects in the low-molecular charge transport material will appear strongly, so n must be 1 or more. Further preferred embodiments of the present invention include using a compound with a small n number together with a suitable binder, using a compound with a large n number together with a known low-molecular charge transport substance, and using a suitable binder and a known low-molecular charge transport substance. Examples include using a mixture of the transport substance and the compound according to the invention. By using the organic photoconductor of the present invention in the photosensitive layer, the amount of binder that cannot become a photosensitive component can be eliminated or greatly reduced, making it possible to achieve high sensitivity and also Because it has better stability than other low-molecular charge transport materials, it is characterized by less deterioration of potential characteristics due to repeated charging and exposure. The charge transport layer according to the present invention is a coating solution prepared by dissolving or dispersing the compound represented by the above general formulas and, if necessary, a known binder and, if necessary, a known low-molecular charge transport substance in a suitable solvent. It is preferable to form the film by coating the film directly or through another layer on the substrate and drying it. Examples of the binder used here include polyarylate resin, polysulfone resin, polyamide resin,
Acrylic resin, acrylonitrile resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, phenolic resin, epoxy resin, polyester resin,
Examples include alkyd resins, polycarbonates, polyurethanes, and copolymer resins containing two or more repeating units of these resins, such as styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, and the like. In addition, other low molecular charge transport substances include chloranyl, promoanil, toteracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7- Examples of electron-withdrawing substances include tetranitro-9-fluorenone, 2,4,7-trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone, and 2,4,8-trinitrothioxanthone. Examples of hole transporting substances include pyrene, N-methyl-N-phenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole, N , N-diphenylhydrazino-3-methylidene-10-ethylphenothiazine, N,N-
Diphenylhydrazino-3-methylidene-10-ethylphenoxazine, P-diethylaminobenzaldehyde-N,N-diphenylhydrazone, P
-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone, P-pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3-trimethylindolenine-ω
-aldehyde-N,N-diphenylhydrazone,
Hydrazones such as P-diethylbenzaldehyde-3-methylbenzthiazolino-2-hydrazone, 2,5-bis(P-diethylaminophenyl)-1,3,4-oxadiazole, 1-phenyl-3- (P-diethylaminostyryl)-5-
(P-diethylaminophenyl)pyrazoline, 1
-[quinolyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyryl)-5-( P-diethylaminophenyl)pyrazoline, 1-[6-methoxy-pyridyl(2)]-3-(P-diethylaminostyryl)-5
-(P-diethylaminophenyl)pyrazoline,
1-[Pyridyl(3)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[Lepidyl(2)]-3-(P-diethylaminostyryl)-5-( P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-
(P-diethylaminostyryl)-4-methyl-5
-(P-diethylaminophenyl)pyrazoline,
1-[pyridyl(2)]-3-(α-methyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(P
-diethylaminostyryl)-4-methyl-5-
(P-diethylaminophenyl)pyrazoline, 1
-Phenyl-3-(α-penzyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, spiropyrazoline and other pyrazolines, 2-(P-diethylaminostyryl)-
6-diethylaminobenzoxazole, 2-
Oxazole compounds such as (P-diethylaminophenyl)-4-(P-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole, 2
Thiazole compounds such as -(P-diethylaminostyryl)-6-diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N -diethylamino-2-methylphenyl)heptane, 1,
Polyarylalkanes such as 1,2,2-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane and the like can be used. When the compound of the general formula and according to the present invention is used as a charge transport material, the compounding ratio with the binder is 100 to 100 parts by weight of the compound per 100 parts by weight of the binder.
The amount is preferably 500 parts by weight. In addition, when the compound is used as a charge transport substance and also as a binder, the blending ratio with other low molecular charge transport substances is 0 to 300 parts by weight per 100 parts by weight of the compound. It is preferable to set it as part.
In this case, the necessary binder performance is imparted when the number n of the compound is 7 or more. When using a three-component system by adding a known binder, the proportion of the binder is preferably 40% or less of the solid content. The charge transport layer is electrically connected to the charge generation layer described below, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. are doing. At this time, this charge transport layer may be laminated on or under the charge generation layer. Since this charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. In general,
5 microns to 30 microns, with a preferred range of 8 microns to 20 microns. The organic solvent used to form such a charge transport layer varies depending on the type of binder used, and is preferably selected from those that do not dissolve the charge generation layer or the subbing layer described below. Specific organic solvents include acetone, methyl ethyl ketone,
Ketones such as cyclohexanone, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, ethylene glycol monomethyl ether, methyl acetate, ethyl acetate, etc. esters, aliphatic halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene, or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, and dichlorobenzene. Can be used. Coating can be performed using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. . For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at a temperature of 30℃ to 200℃ for 5 minutes to 2
It can be carried out stationary or under blown air for a period of time within a range of hours. The charge transport layer of the present invention can contain various additives. Such additives include diphenyl, diphenyl chloride, O-terphenyl,
P-terphenyl, dibutyl phthalate, dimethyl glycol phthalate, dioctyl phthalate, triphenyl phosphoric acid, methylnaphthalene, benzophenone, chlorinated paraffin, dilaurylthiopropionate, 3,5-dinitrosalicylic acid,
Examples include various fluorocarbons. The charge generating layer used in the present invention includes amorphous silicon, selenium-arsenic, selenium-tellurium, cadmium sulfide, pyrylium, thiopyrylium, azulenium dye, phthalocyanine pigment, anthorone pigment, dibenzpyrenequinone pigment, pyranthrone pigment, trisazo pigment. , disazo pigments, azo pigments, indigo pigments, quinacridone pigments, thiacyanine asymmetric quinocyanine, quinocyanine, or a separate vapor deposited layer or resin dispersion selected from charge generating substances such as amorphous silicon described in JP-A-54-143645. Layers can be used. The charge-generating layer can be formed by dispersing the above-mentioned charge-generating substance in a suitable binder and coating it on the substrate, or by forming a vapor-deposited film using a vacuum evaporator. Obtainable. Binders that can be used to form the charge generating layer by coating can be selected from a wide range of insulating resins, and organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. You can choose. Preferably, polyvinyl butyral, polyarylate (condensation polymer of bisphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane Examples include insulating resins such as resin, epoxy resin, casein, polyvinyl alcohol, and polyvinylpyrrolidone. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. Examples of organic solvents used during coating include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogens such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out in the same manner as for the charge transport layer. The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance and is preferably a thin film layer, for example less than 5 microns, in order to shorten the range of the generated charge carriers. teeth
A thin film layer having a thickness of 0.01 micron to 1 micron is preferable. This means that most of the incident light is absorbed by the charge generation layer and generates a large number of charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, and the charge transport layer This is due to the need to inject. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having the conductive layer, materials that are themselves conductive can be used, such as aluminum, aluminum alloy, copper, zinc, stainless steel, vanadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, Ataryl resin, polyethylene fluoride, etc.) or conductive particles (e.g. carbon black, silver particles, etc.) coated on plastic together with a suitable binder; substrates made of plastic or paper impregnated with conductive particles; For example, plastics containing polymers having a high molecular weight can be used. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, and then reach the surface and neutralize the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by developing the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or known methods, and are not limited to specific ones. On the other hand, when the charge transport material consists of a hole transport material, the surface of the charge transport layer must be negatively charged.
After charging, when exposed to light, holes generated in the charge generation layer in the exposed area are injected into the charge transport layer, and then reach the surface and neutralize the negative charge, causing surface level attenuation and creating static between the unexposed area and the exposed area. Electrocontrast occurs.
During development, it is necessary to use a positively charged toner, contrary to the case where an electron transport material is used. According to the present invention, it is possible to provide a highly sensitive electrophotographic photoreceptor, and it is possible to provide a highly sensitive electrophotographic photoreceptor, and it is also possible to provide an electrophotographic photoreceptor that can be repeatedly charged and exposed.
It has the advantage of providing a highly durable electrophotographic photoreceptor with small fluctuations in bright area potential and dark area potential when repeated over 100,000 times. Hereinafter, the present invention will be explained according to examples. Example 1 7 g of a pigment purified by sequentially refluxing β-type copper phthalocyanine (trade name: Lionol Blue NCB Toner) manufactured by Toyo Ink Manufacturing Co., Ltd. in water, ethanol and benzene, and filtering; : Polyester adhesive 49000 (solid content 20%)” 14
A coating solution was prepared by mixing 35 g of toluene and 35 g of dioxane and dispersing the mixture in a ball mill for 6 hours. This coating solution was applied onto an aluminum sheet using a Mayer bar to a dry film thickness of 0.5 microns to form a charge generation layer. Next, the above-mentioned exemplary compound (1) is used as a charge transport compound.
and 7 g of polycarbonate resin (trade name (Panlite K-1300) manufactured by Teijin Kasei Ltd.) were stirred and dissolved in a mixed solvent of 35 g of tetrahydrofuran and 35 g of chlorobenzene. An electrophotographic photoreceptor with a two-layer photosensitive layer was created by coating the top with a Meyer bar to a dry film thickness of 15 microns. Using an electrostatic copying paper tester Model-SP-428 manufactured by Denki Co., Ltd., the sample was statically charged with a corona at -5 kV, held in a dark place for 1 second, and then exposed to light at an illuminance of 5 lux to examine the charging characteristics. As for charging characteristics, we measured the surface potential (V 0 ) and the exposure amount (E 1/2 ) required to attenuate the potential (V 1 ) by 1/2 when dark decaying for 1 second. In order to measure the fluctuations in bright area potential and dark area potential during use, the photoreceptor prepared in this example was attached to the photosensitive drum cylinder of a PPC copier NP-105Z manufactured by Canon Inc.
100,000 copies were made, and the fluctuations in the light area potential (V L ) and the dark area potential (V D ) at the initial stage and after 100,000 copies were measured. Comparative sample 1 was prepared in the same manner as in Example 1 except that N,N-diphenylhydrazino-3-methylidene-9-ethylcarbazole was used in place of the exemplified compound (1). It was measured.
The results are shown below.

【表】 実施例 2〜12 アルミニウム板上にカゼインのアンモニア水溶
液(カゼイン11.2g/28%アンモニア水1gを水
222mlに溶解)をマイヤーバーで乾燥後の膜厚が
1.0ミクロンとなるように塗布し、乾燥した。 次に市販のジスアゾ顔料クロロジアンブルー5
gを積水化学工業(株)製のブチラール樹脂(商品名
エスレツクBM−2)3gをメチルエチルケトン
90mlに溶かした液に加え、アトライターで2時間
分散した。この分散液を先に形成したカゼイン層
の上に乾燥後の膜厚が0.3ミクロンとなるように
マイヤーバーで塗布し、50℃で10分乾燥して電荷
発生層を形成した。 次に、例示化合物(2)、(3)、(7)、(8)、(9)、(10)、
(11)、(17)、(18)、(20)及び(25)について、各7grを

ノクロルベンゼン45gに溶解し、実施例1と同様
なマイヤーバー塗布により、前記電荷発生層上に
膜厚15ミクロンの電荷輸送層を作成した。これら
感光体の電子写真特性を実施例1と同様に測定し
た。次にその結果を示す。
[Table] Examples 2 to 12 An ammonia aqueous solution of casein (11.2 g of casein/1 g of 28% ammonia water was placed on an aluminum plate)
The film thickness after drying (dissolved in 222ml) with a Mayer bar is
It was applied to a thickness of 1.0 micron and dried. Next, commercially available disazo pigment Chlorodian Blue 5
g, 3 g of butyral resin manufactured by Sekisui Chemical Co., Ltd. (trade name: ESLETSUKU BM-2), and 3 g of methyl ethyl ketone.
It was added to the solution dissolved in 90 ml and dispersed with an attritor for 2 hours. This dispersion was applied onto the previously formed casein layer using a Mayer bar so that the film thickness after drying would be 0.3 microns, and dried at 50° C. for 10 minutes to form a charge generation layer. Next, exemplified compounds (2), (3), (7), (8), (9), (10),
For (11), (17), (18), (20) and (25), 7gr each was dissolved in 45g of monochlorobenzene, and a film thickness was applied on the charge generation layer by Mayer bar coating in the same manner as in Example 1. A 15 micron charge transport layer was created. The electrophotographic properties of these photoreceptors were measured in the same manner as in Example 1. The results are shown below.

【表】【table】

【表】 実施例 13〜30 実施例2において、クロロジアンブルーの代り
に4−(4−ジメチルアミノフエニル)−2,6−
ジフエニルチアピリリウムパークロレートを用
い、他は全く実施例2同様にして0.3ミクロンの
膜厚の電荷発生層を作成した。 次に例示化合物(1)、(4)、(5)、(6)、(12)、(13)、(1
4)、
(15)、(16)、(19)、(21)、(22)、(23)及び(24)
の各
7gを表−3に示すような分量のP−ジエチルア
ミノベンズアルデヒド−N,N−ジフエニルヒド
ラゾン及びデユポン社製のポリエステル樹脂ポリ
エステルアドヒーシブ49000と共にトルエン:ジ
オキサン(40g:40g)混合溶剤に溶解し、実施
例1と同様な処方により前記電荷発生層上に16ミ
クロンの電荷輸送層を作成した。 これら感光体の電子写真特性を実施例1と同様
に測定した。その結果を表−4に示す。
[Table] Examples 13 to 30 In Example 2, 4-(4-dimethylaminophenyl)-2,6- was used instead of chlorodiane blue.
A charge generation layer having a thickness of 0.3 microns was prepared in the same manner as in Example 2 except that diphenylthiapyrylium perchlorate was used. Next, exemplified compounds (1), (4), (5), (6), (12), (13), (1
Four),
(15), (16), (19), (21), (22), (23) and (24)
7 g of each were dissolved in a toluene:dioxane (40 g:40 g) mixed solvent together with the amounts of P-diethylaminobenzaldehyde-N,N-diphenylhydrazone and Polyester Adhesive 49000 manufactured by DuPont as shown in Table 3. A charge transport layer of 16 microns was formed on the charge generation layer using the same recipe as in Example 1. The electrophotographic properties of these photoreceptors were measured in the same manner as in Example 1. The results are shown in Table 4.

【表】【table】

【表】 *2 全固形分に対する割合
[Table] *2 Percentage of total solid content

【表】【table】

【表】 実施例 32〜36 実施例2で用いたクロロジアンプル−の代りに
下記構造のジスアゾ顔料を用いて、0.3ミクロン
の電荷発生層を作成した。 その電荷発生層の上に、2,4,7−トリニト
ロ−9−フルオレノン5gとポリ−4,4′−ジオ
キシジフエニル−2,2′−プロパンカーボネート
(分子量300000)5g及び、例示化合物(26)、
(1)、(27)、(28)、(29)の各5gをそれぞれテト
ラヒドロフラン80mlに溶解して塗布液を作成し
た。 一方、比較試料として例示化合物(1)と同じ構造
でn数が0のものを予め合成しておき、上記と同
様にして塗布液を作成した。これら塗布液は乾燥
後の塗工量が10g/m2となる様に塗布し乾燥し
た。 こうして作成した電子写真感光体を実施例1と
同様の方法で帯電測定を行なつた。この時、帯電
極性はとなるように静電複写紙試験装置は設定
を変え、また、NP−150Zは改造を加えた。この
結果を第5表に示す。
[Table] Examples 32 to 36 A 0.3 micron charge generation layer was prepared by using a disazo pigment having the following structure in place of the chlorodiampule used in Example 2. On the charge generating layer, 5 g of 2,4,7-trinitro-9-fluorenone, 5 g of poly-4,4'-dioxydiphenyl-2,2'-propane carbonate (molecular weight 300,000) and the exemplified compound ( 26),
A coating solution was prepared by dissolving 5 g each of (1), (27), (28), and (29) in 80 ml of tetrahydrofuran. On the other hand, as a comparative sample, a compound having the same structure as Exemplified Compound (1) and n number of 0 was synthesized in advance, and a coating liquid was prepared in the same manner as above. These coating solutions were applied and dried so that the coating amount after drying was 10 g/m 2 . The electrostatic charge of the electrophotographic photoreceptor thus prepared was measured in the same manner as in Example 1. At this time, the settings of the electrostatic copying paper tester were changed so that the charging polarity was as follows, and the NP-150Z was modified. The results are shown in Table 5.

【表】 実施例 37 4−(4−ジメチルアミノフエニル)−2,6−
ジフエニルチアピリリウムパークロレート3gと
ポリ(4,4′−イソプロピリデンジフニレンカー
ボネート)3gをジクロルメタン200mlに十分に
溶解した後、トルエン100mlを加え、共晶錯体を
沈殿させた。この沈殿物を別した後、ジクロル
メタンを加えて再溶解し、次いでこの溶液にn−
ヘキサン100mlを加えて共晶錯体の沈殿物を得た。 上記共晶錯体5gと例示化合物(26)の5gを
ポリエステル(ポリエステルアドヒージブ
49000:デユポン社製)のテトラヒドロフラン液
150mlに加えて、十分に混合撹拌した。この液を
アルミニウムシート上にマイヤーバーにより乾燥
後の膜厚が15μとなる様に塗布した。 この感光体の電子写真特性を実施例1と同様の
方法で測定した。この結果を次に示す。 V0:−610ボルト V1:−595ボルト E1/2:3.9lux.sec 初 期 VD:−705ボルト VL:−70ボルト 100000枚耐久後 VD:−665ボルト VL:−110ボルト。
[Table] Example 37 4-(4-dimethylaminophenyl)-2,6-
After fully dissolving 3 g of diphenylthiapyrylium perchlorate and 3 g of poly(4,4'-isopropylidene diphnylene carbonate) in 200 ml of dichloromethane, 100 ml of toluene was added to precipitate a eutectic complex. After separating this precipitate, dichloromethane was added to redissolve it, and then this solution was added with n-
100 ml of hexane was added to obtain a precipitate of the eutectic complex. 5 g of the above eutectic complex and 5 g of exemplified compound (26) were added to polyester (polyester adhesive).
49000: Dupont) tetrahydrofuran solution
The mixture was added to 150 ml and thoroughly mixed and stirred. This liquid was applied onto an aluminum sheet using a Mayer bar so that the film thickness after drying was 15 μm. The electrophotographic properties of this photoreceptor were measured in the same manner as in Example 1. The results are shown below. V 0 : -610 volts V 1 : -595 volts E 1/2 : 3.9lux.sec Initial V D : -705 volts V L : -70 volts After 100,000 sheets endurance V D : -665 volts V L : -110 bolt.

Claims (1)

【特許請求の範囲】 1 下記の一般式又はで示される化合物を光
導電性物質として含有する感光層を有することを
特徴とする電子写真感光体: 〔式中R1は水素原子又は置換基を有してよいア
ルキル基、アリール基又はアラルキル基を示し、
R2は水素原子又はアルキル基を示し、X1及びX2
はそれぞれ水素原子又はアルキル基、アラルキル
基、アルコキシ基又はハロゲン原子を示し、Aは
Ar1−CH=CH−あるいはAr1−CH=CH−Ar2
−(ここでAr1及びAr2はそれぞれ置換基を有して
もよい芳香族環又は複素環を示す)を示し、nは
1以上の整数である〕。
[Scope of Claims] 1. An electrophotographic photoreceptor characterized by having a photosensitive layer containing a compound represented by the following general formula or as a photoconductive substance: [In the formula, R 1 represents a hydrogen atom or an alkyl group, an aryl group, or an aralkyl group that may have a substituent,
R 2 represents a hydrogen atom or an alkyl group, and X 1 and X 2
each represents a hydrogen atom, an alkyl group, an aralkyl group, an alkoxy group, or a halogen atom;
Ar 1 −CH=CH− or Ar 1 −CH=CH−Ar 2
- (where Ar 1 and Ar 2 each represent an aromatic ring or a heterocycle which may have a substituent), and n is an integer of 1 or more].
JP60013425A 1985-01-29 1985-01-29 Electrophotographic sensitive body Granted JPS61173255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013425A JPS61173255A (en) 1985-01-29 1985-01-29 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013425A JPS61173255A (en) 1985-01-29 1985-01-29 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS61173255A JPS61173255A (en) 1986-08-04
JPH0549106B2 true JPH0549106B2 (en) 1993-07-23

Family

ID=11832781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013425A Granted JPS61173255A (en) 1985-01-29 1985-01-29 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS61173255A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960398B2 (en) * 2003-01-16 2005-11-01 Dai Nippon Printing Co., Ltd Charge transporting material, organic electroluminescent element, and light emitting panel
JP4836719B2 (en) * 2006-09-07 2011-12-14 住友大阪セメント株式会社 Growth material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124647A (en) * 1974-01-21 1975-09-30
JPS5189425A (en) * 1974-12-20 1976-08-05
JPS61151545A (en) * 1984-12-26 1986-07-10 Canon Inc Electrophotographic sensitive body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124647A (en) * 1974-01-21 1975-09-30
JPS5189425A (en) * 1974-12-20 1976-08-05
JPS61151545A (en) * 1984-12-26 1986-07-10 Canon Inc Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS61173255A (en) 1986-08-04

Similar Documents

Publication Publication Date Title
JPH0812430B2 (en) Electrophotographic photoreceptor
JPH026048B2 (en)
JP2610503B2 (en) Electrophotographic photoreceptor
JPH0789225B2 (en) Electrophotographic photoreceptor
JPS6230254A (en) Electrophotographic sensitive body
JPH07120054B2 (en) Electrophotographic photoreceptor
JP2529099B2 (en) Electrophotographic photoreceptor
JP2692925B2 (en) Electrophotographic photoreceptor
JPH0478988B2 (en)
JPH0549226B2 (en)
JPH0673018B2 (en) Electrophotographic photoreceptor
JP2610501B2 (en) Electrophotographic photoreceptor
JPH0549106B2 (en)
JPH0650400B2 (en) Electrophotographic photoreceptor
JP2501212B2 (en) Electrophotographic photoreceptor
JPS61151545A (en) Electrophotographic sensitive body
JPH073587B2 (en) Electrophotographic photoreceptor
JP2545388B2 (en) Electrophotographic photoreceptor
JPS63292141A (en) Electrophotographic sensitive body
JPS63292137A (en) Electrophotographic sensitive body
JPS62200358A (en) Electrophotographic sensitive body
JPH0253067A (en) Electrophotographic sensitive body
JPH05216250A (en) Electrophotographic sensitive body and apparatus
JPH0797220B2 (en) Electrophotographic photoreceptor
JPH0473781B2 (en)