JPH0548695B2 - - Google Patents
Info
- Publication number
- JPH0548695B2 JPH0548695B2 JP62289033A JP28903387A JPH0548695B2 JP H0548695 B2 JPH0548695 B2 JP H0548695B2 JP 62289033 A JP62289033 A JP 62289033A JP 28903387 A JP28903387 A JP 28903387A JP H0548695 B2 JPH0548695 B2 JP H0548695B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure fluid
- artificial blood
- blood vessel
- fibers
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims description 48
- 239000012530 fluid Substances 0.000 claims description 35
- 210000004204 blood vessel Anatomy 0.000 claims description 23
- 239000002473 artificial blood Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229920001410 Microfiber Polymers 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 239000004744 fabric Substances 0.000 description 7
- -1 braids Substances 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009940 knitting Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 206010035039 Piloerection Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000005371 pilomotor reflex Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
Landscapes
- Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、繊維によつてチユーブ形成され、流
体処理により、均一な耐ほつれ性、吻合性に優れ
た人工血管の製造方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an artificial blood vessel formed into a tube of fibers and having uniform fraying resistance and excellent anastomotic properties through fluid treatment. .
[従来の技術]
従来、平面状の織編物に高圧流体処理をするこ
とは公知である。しかしチユーブ状の人工血管に
高圧流体処理することは、チユーブが一体化する
ため単純には難しい。これを回避するため、本発
明者らは、別途すでに特開昭61−92666号公報と
して、このチユーブの内部に遮閉物を入れて高圧
処理する方法を見い出だしている。[Prior Art] Conventionally, it is known to subject a planar woven or knitted fabric to high-pressure fluid treatment. However, it is difficult to simply apply high-pressure fluid treatment to a tube-shaped artificial blood vessel because the tube is integrated. In order to avoid this, the present inventors have already separately discovered a method in Japanese Patent Application Laid-Open No. 61-92666, in which a shield is placed inside the tube and high pressure treatment is performed.
しかし、この方法で一応の目的は達せられるも
のの、この方法においても高圧処理により遮閉物
とチユーブとがずれ、あるいはチユーブの直径方
向両サイドに、繊維交絡むらによる筋がつき易
く、径の変動が生じ、品質管理上からも大きな問
題となることが判つた。 However, although this method achieves its intended purpose, it also tends to cause the shield and tube to become misaligned due to high-pressure treatment, or streaks are likely to form on both sides of the tube in the diametrical direction due to uneven fiber entanglement, resulting in fluctuations in diameter. It was found that this caused a big problem from a quality control perspective.
[発明が解決しようとする問題点]
編織物から成る人工血管は、縫い針通過後や生
体血管との結合時に、ほつれば生じ吻合不全とな
り易い。そこで種々の改善がなされ、編組織の複
雑化や特殊な編機を必要とした。織物においても
立毛させてチユーブの中に遮閉物を入れた状態で
高圧流体処理を行ない、ほつれ防止の改善を行な
つたが、不均一な処理となつたり、寸法が変形し
たり、径方向の両サイド部分が筋となり目立つ
た。[Problems to be Solved by the Invention] Artificial blood vessels made of knitted fabrics tend to fray after passing through a sewing needle or when connected to living blood vessels, resulting in anastomotic failure. Therefore, various improvements have been made, which have made the knitting structure more complicated and required special knitting machines. For fabrics, high-pressure fluid treatment was performed with a shield placed inside the tube to improve the prevention of fraying, but the treatment resulted in uneven treatment, dimensional deformation, and radial The streaks on both sides were conspicuous.
本発明者らは、人工血管として致命的欠陥であ
る上記問題点について鋭意検討した結果、本発明
に到達した。 The present inventors have arrived at the present invention as a result of intensive study on the above-mentioned problem, which is a fatal defect in artificial blood vessels.
[問題点を解決するための手段] 本発明は、次の構成を有する。[Means for solving problems] The present invention has the following configuration.
(1) 筒状繊維シートに高圧流体処理を行なうに際
し、心棒にはめ込んだ筒状繊維シートと高圧流
体噴射部を相対的に回転させつつ、かつ、高圧
流体噴射部に対して筒状繊維シートを平行方向
または交差方向に相対的に前進させて高圧流体
処理を行なうことを特徴とする人工血管の製造
方法。(1) When performing high-pressure fluid treatment on a cylindrical fibrous sheet, the cylindrical fibrous sheet inserted into the mandrel and the high-pressure fluid injection section are rotated relative to each other, and the cylindrical fibrous sheet is rotated relative to the high-pressure fluid injection section. A method for manufacturing an artificial blood vessel, characterized by performing high-pressure fluid treatment by relatively advancing it in parallel or cross directions.
(2) 高圧流体処理が、心棒をはめ込んだ筒状繊維
シートおよび/または高圧流体噴射部を微少振
動させつつ行なわれる特許請求範囲第1項に記
載の人工血管の製造方法。(2) The method for manufacturing an artificial blood vessel according to claim 1, wherein the high-pressure fluid treatment is performed while slightly vibrating the cylindrical fiber sheet in which the mandrel is fitted and/or the high-pressure fluid jetting section.
本発明において、繊維によつてチユーブ形成さ
れたものとは、織物、編物、組紐、不織布などい
ずれであつても良く、組織の種類を問わず任意に
選択できる。また繊維も一種類の繊維でも良い
し、2種以上の繊維の混繊や引揃えでも良い。又
基本組織形成時の糸使いは1種でも良いが、2種
以上の糸使いをした方がより好ましい。不織布に
おいては一般的なカードM/Cや、フラツシユ紡
糸、メルトブロー法、エアー噴射法(OF)など
で行なうことが好ましい。 In the present invention, the tube formed from fibers may be any of woven fabrics, knitted fabrics, braids, nonwoven fabrics, etc., and can be arbitrarily selected regardless of the type of tissue. Further, the fibers may be one type of fiber, or two or more types of fibers may be mixed or aligned. Also, although it is acceptable to use one type of thread during the formation of the basic structure, it is more preferable to use two or more types of thread. For nonwoven fabrics, it is preferable to use general card M/C, flash spinning, melt blowing, air injection (OF), or the like.
また、繊維として用いるポリマーはポリエステ
ル、ポリアミド、ポリテトラフルオロエチレン、
ポリオレフインなど特にその種類を問わないが、
特にポリエステルが好ましい。多成分系繊維を用
いる場合は最終的に残るポリマーは上記ポリマー
であるが他の組み合せ成分としてはポリスチレ
ン、ポリエチレン、水溶性ポリアミド、アルカリ
水溶液可溶型ポリエステル、水溶性ポリビニルア
ルコール等を適宜組合せることが可能である。 Polymers used as fibers include polyester, polyamide, polytetrafluoroethylene,
Although it does not matter what kind it is, such as polyolefin,
Particularly preferred is polyester. When using multi-component fibers, the final polymer remaining is the above-mentioned polymer, but other combination components include polystyrene, polyethylene, water-soluble polyamide, alkaline aqueous solution-soluble polyester, water-soluble polyvinyl alcohol, etc., as appropriate. is possible.
本発明をより効果的にするためには、組織を構
成する繊維の少なくとも一部の繊維は単糸繊度が
1.0デニール以下の極細繊維を用いるのが良い。
極細繊維を用いることにより、後で述べる高圧流
による3次元交絡効果を高めると共に、非常に柔
軟な人工血管となる。 In order to make the present invention more effective, at least some of the fibers constituting the tissue have a single fiber fineness.
It is best to use ultrafine fibers of 1.0 denier or less.
By using ultrafine fibers, the three-dimensional confounding effect due to high-pressure flow, which will be described later, is enhanced, and the artificial blood vessel becomes extremely flexible.
上記の極細繊維に関して、血管形成にあたつ
て、すでにかかる極細繊維の形態となつている繊
維をそのまま用いても良いが、化学的もしくは物
理的手段により極細化可能な繊維を用いてチユー
ブを形成し、しかる後極細化することにより結果
的に極細繊維でチユーブが形成されるようにして
もよい。極細繊維を得る方法としては通常の紡糸
方法で十分の注意を払つて得ることができるが、
ポリエステルの場合のように未延伸糸を特定の条
件下で延伸し、極細繊維となすことも可能であ
る。 Regarding the ultrafine fibers mentioned above, when forming blood vessels, fibers that are already in the form of ultrafine fibers may be used as they are, but tubes can be formed using fibers that can be made ultrafine by chemical or physical means. However, the tube may be formed by ultrafine fibers by subsequently making the fibers ultrafine. Ultrafine fibers can be obtained by using ordinary spinning methods with due care.
As in the case of polyester, it is also possible to draw undrawn yarn under specific conditions to form ultrafine fibers.
一方、後手段により極細化可能な繊維としては
例えば特公昭48−22126号公報、特公昭53−22593
号公報等でみられるごとく多成分系繊維の一成分
を除去するか、もしくは剥離させるか等の手段に
よりフイブリル化もしくは極細化するタイプの繊
維を意味する。かかる繊維の場合、チユーブ加工
時は通常の繊維の太さであつても加工後極細化で
きるため加工上のトラブル、例えば製織や製編や
製紐時、製織や製編前の各種の糸加工手段を講じ
る場合の糸切れや毛羽発生等を最少限に抑えるこ
とができて好ましい。 On the other hand, examples of fibers that can be made ultrafine by post-processing include Japanese Patent Publication No. 48-22126 and Japanese Patent Publication No. 53-22593.
It refers to a type of fiber that is fibrillated or made ultra-fine by removing or exfoliating one component of a multicomponent fiber, as seen in the above publications. In the case of such fibers, during tube processing, even if the fiber is of normal thickness, it can be made extremely fine after processing, which may cause problems during processing, such as during weaving, knitting, stringing, and various thread processing before weaving or knitting. This is preferable because yarn breakage, fuzz generation, etc. can be minimized even when measures are taken.
次に、筒状繊維シートに高圧流体処理を行なう
ことになるが、高圧流体処理を行なう前の筒状繊
維シートのチユーブ表面は立毛を有しているのが
望ましい。 Next, the cylindrical fibrous sheet is subjected to high-pressure fluid treatment, and it is desirable that the tube surface of the cylindrical fibrous sheet have raised naps before being subjected to the high-pressure fluid treatment.
本発明に用いる筒状繊維シートとは、織物、編
物、布織布などに、例えば起毛機による方法やシ
ヤーリング機による方法、さらにはサンドペーパ
ーでこする方法、及びフアンシーヤーン使い等に
より表面に多くの毛羽を有する編地なども用いる
ことができる。これらの立毛を有した筒状繊維シ
ートに高圧流体処理を行なうことにより、耐ほつ
れ性、吻合性の優れた人工血管にすることができ
る。 The cylindrical fiber sheet used in the present invention is applied to the surface of woven fabrics, knitted fabrics, woven fabrics, etc. by, for example, a method using a raising machine, a method using a shearing machine, a method of rubbing with sandpaper, a method using fancy yarn, etc. A knitted fabric having a lot of fluff can also be used. By subjecting these raised cylindrical fiber sheets to high-pressure fluid treatment, an artificial blood vessel with excellent fraying resistance and anastomotic properties can be obtained.
本発明に係る人工血管の製造方法であるが、筒
状繊維シートにはめ込む心棒は、ステンレス製、
プラスチツク製、鉄製、ガラス製、ゴム製などの
棒又、管を用いるのが望ましい。さらに棒管が金
網状の筒であつてもなんらさしつかえない。径に
ついては人工血管の内径に合わせて適宜選択すれ
ばよい。 In the method for manufacturing an artificial blood vessel according to the present invention, the mandrel to be fitted into the cylindrical fiber sheet is made of stainless steel,
It is preferable to use rods or tubes made of plastic, iron, glass, rubber, etc. Furthermore, there is no problem even if the rod pipe is a wire-mesh-like tube. The diameter may be appropriately selected according to the inner diameter of the artificial blood vessel.
心棒にはめ込んだ筒状繊維シートと高圧流体噴
射部の回転速度は速すぎると交絡の点で劣り、遅
すぎると繊維の切断や損傷につながるため、回転
速度は0.1m/min〜10m/minの範囲が好まし
い。 If the rotational speed of the cylindrical fiber sheet fitted into the mandrel and the high-pressure fluid injection part is too fast, it will be inferior in terms of entanglement, and if it is too slow, it will lead to cutting or damage of the fibers, so the rotational speed should be between 0.1 m/min and 10 m/min. A range is preferred.
次に、高圧流体の処理圧力は安全性及び経済性
の点から5〜200Kg/cm2が好ましい。圧力が低す
ぎると充分な交絡効果が得られず、逆に圧力が高
すぎると繊維が切断して良くない支障が生じるの
で好ましくは、10〜100Kg/cm2である。 Next, the processing pressure of the high-pressure fluid is preferably 5 to 200 kg/cm 2 from the viewpoint of safety and economy. If the pressure is too low, a sufficient entangling effect will not be obtained, and if the pressure is too high, the fibers will break, causing undesirable problems, so the preferred range is 10 to 100 kg/cm 2 .
噴射流体としては、柱状流や噴霧流を用いるこ
とができる。本発明の目的を達成するには、細い
線状の柱状流が好ましい。噴霧流は交絡の点では
劣るが、交絡の基礎固めや表面仕上げとして用い
ることができることから、柱状流単独の処理でな
く適宜噴霧流も組合わせて用いることにより均一
な交絡で表面の仕上り状態がなめらかなものとな
る。 A columnar flow or a spray flow can be used as the jet fluid. A thin linear columnar flow is preferred to achieve the objectives of the present invention. Spray flow is inferior in terms of entanglement, but it can be used to solidify the foundation of entanglement and for surface finishing. Therefore, by using appropriate combinations of spray flow rather than columnar flow alone, it is possible to improve the surface finish with uniform entanglement. It becomes smooth.
流体を噴射するノズルの孔径は0.05〜1.0mm好
ましくは0.1〜0.5mmであり、孔のピツチは孔径に
より耐久性の面から0.5mm〜5mm間隔のピツチが
好ましい。 The hole diameter of the nozzle for injecting the fluid is 0.05 to 1.0 mm, preferably 0.1 to 0.5 mm, and the hole pitch is preferably 0.5 mm to 5 mm apart from the viewpoint of durability depending on the hole diameter.
噴射孔と筒状繊維シートの距離は10mm〜70mmが
適当であり、距離が離れると柱状流が噴霧流とな
り交絡性が劣り好ましくない。 The appropriate distance between the injection hole and the cylindrical fiber sheet is 10 mm to 70 mm; if the distance is too large, the columnar flow will turn into a spray flow, resulting in poor entangling properties, which is not preferable.
筒状繊維シートの処理方向は高圧流体噴射部に
対して垂直で平行方向に位置するか、垂直で交差
方向に位置することが均一交絡であり、また能率
的でもある。 The processing direction of the cylindrical fiber sheet is perpendicular to and parallel to the high-pressure fluid jetting section, or perpendicular to and crosswise to the high-pressure fluid jetting section for uniform entanglement and efficiency.
さらに、筒状繊維シートか流体噴射部を相対的
に移動させる。この相対的に移動する意味は、流
体噴射部位置を限定し、筒状繊維シート自体を回
転移動させるか、あるいはその逆で、筒状繊維シ
ートの外周軌道を流体噴射部が回転しながら移動
しても良いことである。移動することができなけ
れば一ケ所に集中して高圧流体をうけることにな
り、筒状繊維シートの破損となることから移動速
度は流体の圧力や、回転速度などによつて適宜決
められる。好ましくは10mm〜500mm/分である。 Further, the cylindrical fiber sheet and the fluid jetting section are moved relative to each other. This relative movement means either limiting the position of the fluid ejecting part and rotating the cylindrical fiber sheet itself, or vice versa, in which the fluid ejecting part rotates and moves along the outer circumference of the cylindrical fiber sheet. That's a good thing. If it cannot move, the high-pressure fluid will be concentrated in one place, resulting in damage to the cylindrical fiber sheet. Therefore, the moving speed is appropriately determined depending on the pressure of the fluid, the rotation speed, etc. Preferably it is 10 mm to 500 mm/min.
本発明をさらに有用なものにするため、心棒に
はめ込んだ筒状繊維シートおよび/または高圧流
体噴射部を相対的に微少振動させることである。
回転とこの振動とを組合わせることにより、パン
チ筋やモワレ現象をより軽減させることができ、
得られる人工血管の表面状態もなめらかなものと
なる。また高圧流体を筒状繊維シート全体に均一
に処理することが可能なものとなつた。 To make the invention even more useful, the cylindrical fiber sheet and/or the high-pressure fluid jet fitted into the mandrel are subjected to relative microvibrations.
By combining rotation and this vibration, punch streaks and moire phenomena can be further reduced.
The surface condition of the resulting artificial blood vessel is also smooth. Furthermore, it has become possible to uniformly treat the entire cylindrical fiber sheet with high-pressure fluid.
微少振動の振動数は特に限定するものではない
が0.1〜50Hzの範囲が好ましく、振動方向は前後、
左右どちらにも振動させることができる。またサ
イクリツクに振動させてもさしつかえない。振幅
はノズル孔のピツチ間隔や振動数により適宜選択
すればよいが0.5mm〜50mmの範囲が好ましい。ま
た振動に用いる波形は三角形、正弦波、台形波な
どが用いられる。 The frequency of the minute vibration is not particularly limited, but it is preferably in the range of 0.1 to 50Hz, and the vibration direction is back and forth,
It can be vibrated either left or right. It is also okay to vibrate cyclically. The amplitude may be appropriately selected depending on the pitch interval of the nozzle holes and the vibration frequency, but it is preferably in the range of 0.5 mm to 50 mm. Further, as the waveform used for vibration, a triangular wave, a sine wave, a trapezoidal wave, etc. are used.
これらの方法により加工したチユーブ状物をさ
らに裏返して、再度同一加工法で処理を行なえば
より耐ほつれ性を向上させることができるが、必
ずしも必要でないこともある。 It is possible to further improve the fraying resistance by turning the tube-shaped article processed by these methods and processing it again using the same processing method, but this is not always necessary.
以下実施例により本発明をより具体的に説明す
る。 EXAMPLES The present invention will be explained in more detail with reference to Examples below.
実施例 1
タテ糸及びヨコ糸(裏糸)にポリエチレンテレ
フタレートの50デニール24フイラメントの仮ヨリ
加工糸を用い、ヨコ表糸に高分子配列体複合繊維
で島成分ポリエチレンテレフタレート78部、海成
分ポリスチレン22部、島数36島の繊維245デニー
ル40フイラメントのものを用い、いわゆる経緯2
重織組織でチユーブ状に織り、内径19mmφ、長さ
100cmの筒状繊維シートを形成し、湯洗し、次い
で乾燥後パークロルエチレンでポリスチレンを除
去した。次いで、このチユーブに起毛処理剤を付
与した後、起毛機で起毛した。Example 1 The warp yarn and the weft yarn (back yarn) were made of polyethylene terephthalate 50 denier 24 filament temporarily twisted yarn, and the weft surface yarn was a polymer array composite fiber containing 78 parts of island component polyethylene terephthalate and sea component polystyrene 22. 245 denier 40 filament fiber with 36 islands is used, so-called history 2
Heavy woven structure, tube-shaped, inner diameter 19mmφ, length
A 100 cm cylindrical fiber sheet was formed, washed with hot water, and then dried, and the polystyrene was removed with perchlorethylene. Next, a napping treatment agent was applied to this tube, and then the tube was napped using a napping machine.
このチユーブにステンレス製の棒を挿入し定速
モータに接続し、0.25cm/minの速度で回転させ
た。流体吐出孔径0.25mmφ、吐出孔間隔2.5mm、
圧力80Kg/cm2、チユーブとの間隔40mm、ノズルヘ
ツドの振動数は3Hz、振動幅10mmでノノズルヘツ
ドと平行方向に筒状繊維シートをカツトした条件
でウオータジエツトパンチ処理を行なつた。得ら
れた人工血管は極細繊維が単糸繊維間や織り目間
また繊維束間に多数均一に交絡していることが観
察できた。また得られた人工血管の径のムラも見
られず、繊維交絡むらによる筋の発生もなかつ
た。 A stainless steel rod was inserted into this tube, connected to a constant speed motor, and rotated at a speed of 0.25 cm/min. Fluid discharge hole diameter 0.25mmφ, discharge hole interval 2.5mm,
Waterjet punching was carried out under the following conditions: a pressure of 80 kg/cm 2 , a distance from the tube of 40 mm, a nozzle head vibration frequency of 3 Hz, and a vibration width of 10 mm, and the cylindrical fiber sheet was cut in a direction parallel to the nozzle head. In the obtained artificial blood vessel, it was observed that a large number of ultrafine fibers were uniformly intertwined between single fibers, between weaves, and between fiber bundles. In addition, no unevenness in the diameter of the obtained artificial blood vessel was observed, and no streaks due to uneven fiber entanglement were observed.
該人工血管を軸に45°の角度でナイフでカツト
した後、先端から2mmの場所に縫合糸を通し断端
のほつれを調べたところウオータージエツト処理
をしないものに比べてはるかに良く、ほとんどほ
つれが生じなかつた。 After cutting the artificial blood vessel at a 45° angle with a knife, a suture was passed 2 mm from the tip and the fraying of the stump was examined. No fraying occurred.
比較例 1
実施例1と同様の糸使いで同じ方法により起毛
まで行なつた。著のチユーブに遮閉物として、ポ
リエステルフイルムの厚み0.12mmのものを挿入し
金網コンベアにのせて0.25cm/minの速度で搬送
した。流体吐出孔径0.25mmφ、吐出間隔2.5mm、
圧力80Kg/cm2、チユーブとの間隔40mm、ノズルヘ
ツドの振動数3Hz、振動幅10mmでノズルヘツドと
交差方向にセツトしてウオータージエツトパンチ
処理を行なつた。得られた人工血管は極細繊維が
単糸繊維間や織り目間また繊維束間に多数交絡し
ていることが観察できたが、直径方向両サイドに
繊維交絡むらによる筋が発生していた。Comparative Example 1 The same yarn was used as in Example 1, and the raising was carried out in the same manner. A polyester film with a thickness of 0.12 mm was inserted into the tube as a barrier and conveyed on a wire mesh conveyor at a speed of 0.25 cm/min. Fluid discharge hole diameter 0.25mmφ, discharge interval 2.5mm,
Waterjet punching was carried out at a pressure of 80 kg/cm 2 , a distance from the tube of 40 mm, a nozzle head vibration frequency of 3 Hz, and a vibration width of 10 mm, set in a direction transverse to the nozzle head. In the obtained artificial blood vessel, it was observed that a large number of ultrafine fibers were intertwined between single fibers, between weaves, and between fiber bundles, but streaks due to uneven fiber entanglement were observed on both sides in the diametrical direction.
該人工血管を軸に45°の角度でナイフでカツト
した後、先端から2mmの場所に縫合糸を通し断端
のほつれを調べた。また場所を筋の部分が先端に
なるようにカツトして、縫合糸を2mmの場所に通
しほつれを調べた。その結果、筋でない場合はほ
とんどほつれが生じなかつたが筋の部分は、可成
りほつれた。 After cutting the artificial blood vessel at an angle of 45° with a knife, a suture was passed 2 mm from the tip and the stump was examined for fraying. In addition, a cut was made so that the muscle part was at the tip, and a suture thread was passed through a 2 mm point to check for fraying. As a result, there was almost no fraying in the non-stripe portions, but there was considerable fraying in the sinew portions.
実施例 2
3.6デニール、51mmの島成分がポリエチレンテ
レフタレート、海成分がポリスチレンから成る高
分子配列体繊維(島成分の重量比50c%、島数18)
からなるヶ原綿をカードM/Cに通した。これ
に、ニードルパンチを行なつた。得られた不織布
の目付は10g/m2であつた。これをトリクレンに
漬け、マングルで絞りポリスチレン成分を除去し
た。この時の目付けは5g/m2であつた。しかる
後、この不織をステンレス製の棒に手巻した。巻
き回数は8回であつた。この棒を定速モータに接
続し、0.25m/minの速度で回転させた。液体吐
出孔径0.25mmφ、吐出孔間隔2.5mm、噴射孔と不
織布チユーブの間隔20mm、ノズルヘツドの振動数
3Hz、振動幅10mm、ノズルヘツドと平行方向にセ
ツトし噴射圧力は最初10Kg/cm2で加工処理した。
次に、20Kg/cm2、そして30Kg/cm2、50Kg/cm2と
徐々に圧力を高圧にして加工処理を行ない、最後
に70Kg/cm2で行なつた。得られた人工血管は極細
繊維同志が多数均一に交絡していることが観察で
きた。Example 2 3.6 denier, 51 mm polymer array fiber consisting of polyethylene terephthalate as the island component and polystyrene as the sea component (weight ratio of island component: 50c%, number of islands: 18)
A card M/C was passed through the Gahara cotton consisting of the following. This was followed by needle punching. The fabric weight of the obtained nonwoven fabric was 10 g/m 2 . This was soaked in trichlene and squeezed with a mangle to remove the polystyrene component. The basis weight at this time was 5 g/m 2 . Afterwards, this non-woven material was hand wrapped around a stainless steel rod. The number of turns was 8. This rod was connected to a constant speed motor and rotated at a speed of 0.25 m/min. The liquid discharge hole diameter was 0.25mmφ, the distance between the discharge holes was 2.5mm, the distance between the injection holes and the non-woven fabric tube was 20mm, the vibration frequency of the nozzle head was 3Hz, the vibration width was 10mm, it was set parallel to the nozzle head, and the injection pressure was initially 10Kg/ cm2 . .
Next, processing was carried out by increasing the pressure gradually to 20Kg/cm 2 , then 30Kg/cm 2 , 50Kg/cm 2 , and finally 70Kg/cm 2 . It was observed that in the obtained artificial blood vessel, a large number of ultrafine fibers were evenly intertwined.
該人工血管を軸に45°の角度でナイフにてカツ
トした後、先端から2mmの場所に縫合糸を通し、
断端のほつれを調べた。ウオータージエツト処理
をしないものは簡単にほつれたが、処理したもの
はほとんどほつれが生じなかつた。 After cutting the artificial blood vessel at an angle of 45° with a knife, a suture was passed 2 mm from the tip.
I inspected the residual limb for fraying. Those that were not treated with waterjet frayed easily, but those that were treated hardly frayed.
[発明の効果]
本発明はかかる構成をとることにより、以下の
ような極めて大きな効果をもたらす。[Effects of the Invention] By adopting such a configuration, the present invention brings about the following extremely large effects.
(1) 人工血管全面に均一な高圧流体処理ができる
ので、均一な耐ほつれ性、吻合性に優れたもの
ができる。(1) Uniform high-pressure fluid treatment can be applied to the entire surface of the artificial blood vessel, resulting in uniform fraying resistance and excellent anastomotic properties.
(2) 品質(径のむら、繊維交絡むらによる筋、表
面のなめらかさ)管理上の問題点が解消すると
ともに歩留りがよくなり作業能率もアツプす
る。(2) Problems in quality management (unevenness in diameter, streaks due to uneven fiber entanglement, smoothness of the surface) are resolved, yields are improved, and work efficiency is increased.
(3) 立毛処理によつて生じる抜け毛や浮き毛を洗
い流したり、また細交絡により実質的に無くす
ことができる。(3) Loss and floating hair caused by the piloerection process can be washed away or substantially eliminated by fine entanglement.
Claims (1)
し、心棒にはめ込んだ筒状繊維シートと高圧流体
噴射部を相対的に回転させつつ、かつ、高圧流体
噴射部に対して筒状繊維シートを平行方向または
交差方向に相対的に前進させて高圧流体処理を行
なうことを特徴とする人工血管の製造方法。 2 高圧流体処理が、心棒をはめ込んだ筒状繊維
シートおよび/または高圧流体噴射部を微少振動
させつつ行なわれる特許請求範囲第1項に記載の
人工血管の製造方法。[Claims] 1. When performing high-pressure fluid treatment on a cylindrical fibrous sheet, the cylindrical fibrous sheet fitted into the mandrel and the high-pressure fluid injection section are rotated relative to each other, and the cylindrical fiber sheet fitted into the mandrel is rotated relative to the high-pressure fluid injection section. 1. A method for producing an artificial blood vessel, which comprises performing high-pressure fluid treatment by relatively advancing a shaped fiber sheet in a parallel direction or a cross direction. 2. The method for manufacturing an artificial blood vessel according to claim 1, wherein the high-pressure fluid treatment is performed while slightly vibrating the cylindrical fiber sheet into which the mandrel is fitted and/or the high-pressure fluid jetting section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289033A JPH01129849A (en) | 1987-11-16 | 1987-11-16 | Preparation of artificial blood vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62289033A JPH01129849A (en) | 1987-11-16 | 1987-11-16 | Preparation of artificial blood vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01129849A JPH01129849A (en) | 1989-05-23 |
JPH0548695B2 true JPH0548695B2 (en) | 1993-07-22 |
Family
ID=17737958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62289033A Granted JPH01129849A (en) | 1987-11-16 | 1987-11-16 | Preparation of artificial blood vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01129849A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2000233281A1 (en) * | 2000-03-24 | 2001-10-03 | Yuichi Mori | Artificial hollow organ |
JP2009283663A (en) * | 2008-05-22 | 2009-12-03 | Powertech Technology Inc | Semiconductor package and lead frame |
-
1987
- 1987-11-16 JP JP62289033A patent/JPH01129849A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01129849A (en) | 1989-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4361609A (en) | Fiber structures of split multicomponent fibers and process therefor | |
EP0179600B1 (en) | Artificial blood vessel and method of manufacture | |
US4647490A (en) | Cotton patterned fabric | |
EP1688522B2 (en) | Method for producing spunlace non-woven cloth, method for producing spunlace non-woven cloth with X-Ray detectable element, spunlace non-woven cloth with X-Ray detectable element | |
JP3067897B2 (en) | Method for producing a cotton-based washable nonwoven fabric | |
JP4869784B2 (en) | Method for producing cellulosic nonwoven fabric | |
JPS6158573B2 (en) | ||
JPH0548695B2 (en) | ||
JPH08291451A (en) | Nonwoven fabric and its production | |
JPH0784696B2 (en) | Nonwoven manufacturing method | |
JPH02164357A (en) | Method and device for producing cylindrical fiber body | |
JPH0369543B2 (en) | ||
JPS6241316A (en) | Production of latently releasable fiber and extremely thin fiber sheet comprising same | |
JPS63145462A (en) | Silver surface like sheet like article and its production | |
JP3193938B2 (en) | Polyvinyl alcohol-based water-soluble long-fiber nonwoven fabric | |
JPS61258060A (en) | Fiber sheet like article and its production | |
JPH01126962A (en) | Preparation of medical prosthesis | |
JPH08325930A (en) | Nonwoven fabric and its production | |
JP2004211273A (en) | Processing method for forming japanese paper yarn into clothing | |
JPH08269853A (en) | Production of nonwoven fabric entangled with water jet | |
JPH0214458B2 (en) | ||
EP3885478A1 (en) | Knit fabric production method, fabric production method, and sewn product production method | |
JPH0478741B2 (en) | ||
JP3115997B2 (en) | Cellulose fiber processing method and cellulosic fiber processing apparatus | |
JPH0528143B2 (en) |