JPH0548594B2 - - Google Patents

Info

Publication number
JPH0548594B2
JPH0548594B2 JP60095762A JP9576285A JPH0548594B2 JP H0548594 B2 JPH0548594 B2 JP H0548594B2 JP 60095762 A JP60095762 A JP 60095762A JP 9576285 A JP9576285 A JP 9576285A JP H0548594 B2 JPH0548594 B2 JP H0548594B2
Authority
JP
Japan
Prior art keywords
glass
resistor
insulator
filler
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60095762A
Other languages
Japanese (ja)
Other versions
JPS61253786A (en
Inventor
Morihiro Atsumi
Yoshiki Morita
Hiroyuki Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60095762A priority Critical patent/JPS61253786A/en
Publication of JPS61253786A publication Critical patent/JPS61253786A/en
Publication of JPH0548594B2 publication Critical patent/JPH0548594B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は内燃機関の高電圧イグニツシヨン回路
からの無線周波放射による通信電波への障害が少
ない抵抗体を入れた点火プラグに関する。 (従来の技術) 一般に抵抗体入り点火プラグは、火花放電時に
発生する電波雑音の有効な抑制のために点火プラ
グの絶縁体内孔内に低抗体を設置している。この
種の抵抗体としては、導電材料−ガラス−フイラ
ロー系が多く用いられており、ここで導電材料と
しては、カーボンが用いられており、例えば3.5
〜6.5KΩの抵抗値を得ている。また、電波雑音
防止性能については、その効果を上げるため、フ
イラー材として、比較的粒径の大きい絶縁性セラ
ミツクフイラーを用いているものが特開昭50−
144830号公報に記載されている。 (発明が解決しようとする問題点) しかし、従来のものではいまだ満足のいく雑防
効果が得られておらず、現在電子機器を搭載した
車両が多く市場に供給されていることを考える
と、雑防効果の一層の向上が叫ばれることは当然
である。 そこで、本発明は雑防効果を一層向上して電子
機器類に対する安全性を確保しようとするもので
ある。具体的には雑音電解強度を3〜5dB向上さ
せることにより、より安全性が得られるようにし
たものである。 (問題点を解決するための手段) 本発明は、絶縁体と、絶縁体の内孔の上部に嵌
着されたステムと、絶縁体の内孔の下部に嵌着さ
れた中心電極と、絶縁体の内孔の中心部に配置さ
れた抵抗体−端子ナツト間および抵抗体−中心電
極間それぞれに配置された導電性シールガラス層
とを具備し、前記抵抗体が(a)0.3〜1.1重量%の導
電材料、(b)ホウ珪酸リチウムガラス、および(c)絶
縁フイラーを包含しており、ホウ珪酸リチウムガ
ラスは平均粒径の大きなもの(甲)とこの粒径の
大きなホウ珪酸リチウムガラス(甲)に比して粒
径の小さなホウ珪酸リチウムガラス(乙)から成
り、前者(甲)の比率が10〜73重量%であり、前
記導電材料と粒径の大きいガラス(甲)との合計
を全体から除いた残分が粒径の小さいガラス
(乙)と前記フイラーから成り、その比率ガラス
(乙)/ガラス(乙)+フイラーが0.6〜0.95であ
る抵抗体粉末を焼成固着してなるものである。 本発明において、導電材料の重量割合は抵抗体
粉末の全体において0.3〜1.1重量%である。0.3重
量%を下回ると抵抗値が大きくなつて5KΩ±30
%(3.5KΩ〜6.5KΩ)のJIS規格を外れ、雑防効
果よりむしろ導電経路が形成されず、また1.1重
量%を上回ると抵抗値が小さくなつて上記規格か
ら外れ、雑防効果が悪くなる。結局のところ0.3
〜1.1重量%に限定される。 また、本発明は、ホウ珪酸リチウムガラスは粒
径の大きなもの(甲)と小さなもの(乙)から成
り、粒径の大きなもの(甲)は10〜73重量%であ
る。しかも導電性材料とガラス(甲)と合計を全
体から除いた残分が上記のガラス(乙)とフイラ
ーとから成つており、その比率がガラス(乙)/
ガラス(乙)+フイラーが0.6〜0.95のなつてい
る。 上記のように粒径の大きいガラス(甲)が上記
の範囲を外れ、しかも上記ガラス(乙)/ガラス
(乙)+フイラーの比率が上記の範囲を外れると、
雑音電解強度が従来レベルより少なくとも3dB程
度低くならないし、また負荷寿命特性も悪化す
る。 本発明において、導電材料としては、導電経路
を形成すればよいので、カーボンブラツク、炭化
チタン、窒化チタン、炭化硅素等が適用される。
また電気絶縁フイラーは上記ガラス(甲)の粒子
間を充填し、かつ上記導電材料がガラス(甲・
乙)内に埋設しないようにするためのものであ
り、例えばジルコニア、窒化硅素、窒化ホウ素等
のガラスと反応しない電気絶縁材である。 (作用) 本発明はガラスによる誘電損失が高まり、雑音
電解強度が従来のレベルより少なくとも3dB低下
する。 (発明の効果) 従つて、本発明は雑防性能を従来に比べて向上
できる。 (実施例) 第1図は、抵抗体入り点火プラグを示すもので
あり、絶縁体1と、絶縁体内孔の上部に嵌着され
たステム2と、絶縁体内孔の下部に嵌着された中
心電極3と、絶縁体の内孔の中心部に配置された
抵抗体8と、抵抗体8とステム2間及び抵抗体8
と中心電極3間にそれぞれに配置された封着用の
導電性銅ガラス層7とを具備してなる。 抵抗体8はカーボン、ホウケイ酸リチウムガラ
ス、ジルコニアから構成される。以下具体的な組
成について示す。なお、5はねじ部を有するハウ
ジングである。カーボンブラツク(比表面積30
m2/g)、セラミツク粉末としてジルコニア(平
均粒径5μm)、表1に示した組成から成るホウ珪
酸リチウムガラス(乙:平均粒径30μm)を用意
し、それぞれの成分を適当量秤量採取した後、振
動ミルにより充分粉砕・混合した。
(Industrial Application Field) The present invention relates to a spark plug incorporating a resistor that causes less interference with communication radio waves due to radio frequency radiation from a high voltage ignition circuit of an internal combustion engine. (Prior Art) In general, a resistor-containing spark plug has a low antibody installed in the insulator hole of the spark plug in order to effectively suppress radio noise generated during spark discharge. As this type of resistor, a conductive material-glass-fillerlow system is often used, and carbon is used as the conductive material, for example, 3.5
A resistance value of ~6.5KΩ is obtained. In addition, in order to improve the radio noise prevention performance, insulating ceramic filler with a relatively large particle size is used as the filler material.
It is described in Publication No. 144830. (Problems to be solved by the invention) However, considering that the conventional methods have not yet achieved a satisfactory noise prevention effect, and that many vehicles equipped with electronic devices are currently being supplied to the market, It is natural that there is a call for further improvement in noise prevention effects. Therefore, the present invention aims to further improve the noise prevention effect and ensure safety for electronic equipment. Specifically, by increasing the noise field strength by 3 to 5 dB, greater safety can be achieved. (Means for Solving the Problems) The present invention comprises an insulator, a stem fitted into the upper part of the inner hole of the insulator, a center electrode fitted into the lower part of the inner hole of the insulator, and an insulator. a conductive sealing glass layer disposed between the resistor and the terminal nut disposed at the center of the inner hole of the body, and between the resistor and the center electrode, the resistor having a weight of (a) 0.3 to 1.1; % conductive material, (b) lithium borosilicate glass, and (c) insulating filler. It consists of lithium borosilicate glass (B) with a smaller particle size than A), the ratio of the former (A) is 10 to 73% by weight, and the total of the conductive material and glass with a large particle size (A). is obtained by firing and fixing resistor powder in which the remainder after removing from the whole consists of glass (B) with a small particle size and the filler, and the ratio of glass (B) / glass (B) + filler is 0.6 to 0.95. It is something. In the present invention, the weight proportion of the conductive material is 0.3 to 1.1% by weight in the entire resistor powder. When it is less than 0.3% by weight, the resistance increases to 5KΩ±30.
% (3.5KΩ to 6.5KΩ), and the conductive path is not formed rather than the noise prevention effect, and when it exceeds 1.1% by weight, the resistance value becomes small and falls outside the above standard, and the noise prevention effect worsens. . After all 0.3
Limited to ~1.1% by weight. Further, in the present invention, the lithium borosilicate glass consists of a large particle size (A) and a small particle size (B), and the large particle size (A) is 10 to 73% by weight. Moreover, after removing the conductive material and the glass (A) from the total, the remainder consists of the above-mentioned glass (B) and filler, and the ratio is glass (B)/
Glass (Otsu) + filler is 0.6 to 0.95. As mentioned above, if the glass with a large particle size (A) is out of the above range, and the ratio of the glass (B)/glass (B) + filler is out of the above range,
The noise field strength will not be lowered by at least 3 dB from the conventional level, and the load life characteristics will also deteriorate. In the present invention, carbon black, titanium carbide, titanium nitride, silicon carbide, etc. are used as the conductive material since it is sufficient to form a conductive path.
In addition, the electrically insulating filler fills between the particles of the glass (A), and the conductive material is the glass (A, A).
This is to prevent the glass from being buried in the glass, and is made of electrically insulating materials that do not react with glass, such as zirconia, silicon nitride, and boron nitride. (Function) According to the present invention, the dielectric loss due to glass is increased, and the noise electrolytic strength is lowered by at least 3 dB from the conventional level. (Effects of the Invention) Therefore, the present invention can improve noise prevention performance compared to the conventional one. (Example) Fig. 1 shows a resistor-containing spark plug, which includes an insulator 1, a stem 2 fitted into the upper part of the insulator hole, and a center fitted into the lower part of the insulator hole. The electrode 3, the resistor 8 disposed at the center of the inner hole of the insulator, and the space between the resistor 8 and the stem 2 and the resistor 8.
and a conductive copper glass layer 7 for sealing disposed between the center electrodes 3, respectively. The resistor 8 is made of carbon, lithium borosilicate glass, and zirconia. The specific composition will be shown below. Note that 5 is a housing having a threaded portion. Carbon black (specific surface area 30
m 2 /g), zirconia (average particle size 5 μm) as ceramic powder, and lithium borosilicate glass (B: average particle size 30 μm) having the composition shown in Table 1 were prepared, and appropriate amounts of each component were weighed and collected. Thereafter, the mixture was thoroughly ground and mixed using a vibrating mill.

【表】 次に、別に準備した表1と同一の組成からなる
ホウ珪酸リチウムガラス(平均粒径350μ)と上
記混合物とを適当量秤量採取した後混合機で混合
後、有機結合剤(デキストリン、セルロールエー
テル)を加えて造粒し、その後乾燥して抵抗体粉
末を得た。そして、第1のアルミナ製絶縁体1の
内孔の下端に中心電極3を挿入し、その上に銅粉
末とガラス粉末(50:50)の混合物を約0.2g、
上述の如く作製した抵抗体造粒物約0.6g、更に
銅粉末とガラス粉末(50:50)を約0.4g順次充
填し、次いでステム2を絶縁体内孔に挿入した。
次に、この組付品を850℃で25分間加熱し、ステ
ム2上端から圧力を加え内孔内部充填物の接着・
圧縮を行つた。この操作により、抵抗体粉末の両
側の銅粉末とガラス粉末との混合物は導電性ガラ
ス層7及び抵抗体5になる。この絶縁体1の外周
囲に接地電極4、ハウジング5を固着し、実験に
供した。
[Table] Next, an appropriate amount of lithium borosilicate glass (average particle size 350μ) having the same composition as in Table 1 prepared separately and the above mixture were weighed and mixed in a mixer, and an organic binder (dextrin, Cellulose ether) was added thereto and granulated, followed by drying to obtain a resistor powder. Then, insert the center electrode 3 into the lower end of the inner hole of the first alumina insulator 1, and add about 0.2 g of a mixture of copper powder and glass powder (50:50) on top of it.
About 0.6 g of the resistor granules produced as described above and about 0.4 g of copper powder and glass powder (50:50) were sequentially filled, and then the stem 2 was inserted into the hole in the insulator.
Next, this assembled product is heated at 850℃ for 25 minutes, and pressure is applied from the upper end of the stem 2 to bond and bond the inner hole filling.
I did some compression. By this operation, the mixture of copper powder and glass powder on both sides of the resistor powder becomes the conductive glass layer 7 and the resistor 5. A ground electrode 4 and a housing 5 were fixed to the outer periphery of this insulator 1 and used for experiments.

【表】 表2に各試料番号の抵抗値を記す。 次に、作製した表2の抵抗入り点火プラグの雑
音強度を測定した結果を第2図に示す。尚、雑音
強度の値はベンチ測定値であり、その測定法は、
点火プラグを4気圧下、1500rpmで放電させ、こ
れをカレントプローブにより電界強度を30、90、
180、300、500、1000MHzの周波数域で測定した
もので、その平均値で相対比較を行つた。測定方
法は、C.I.S.P.R.或いはSAE方式に基づいた周知
方法である。なお、C.I.S.P.R.SAE方式による実
車測定値と上記ベンチ測定値とは相関があり、精
度は±1dBであつた。 第2図においては、ガラス乙/ガラス乙+
ZrO2をパラメータとして示してある。なお、ガ
ラス乙/ガラス乙+ZrO2の比率と傾きとを表3
に示す。
[Table] Table 2 shows the resistance value of each sample number. Next, FIG. 2 shows the results of measuring the noise intensity of the resistor-containing spark plugs prepared in Table 2. Note that the noise intensity value is a bench measurement value, and the measurement method is as follows.
The spark plug is discharged at 1500 rpm under 4 atmospheres, and the electric field strength is adjusted to 30, 90, 90,
Measurements were made in the frequency ranges of 180, 300, 500, and 1000MHz, and relative comparisons were made using the average values. The measurement method is a well-known method based on the CISPR or SAE method. It should be noted that there was a correlation between the actual vehicle measurement values obtained using the CISPRSAE method and the above bench measurement values, and the accuracy was ±1 dB. In Figure 2, Glass Otsu / Glass Otsu +
ZrO 2 is shown as a parameter. In addition, the ratio and slope of Glass Otsu/Glass Otsu + ZrO 2 are shown in Table 3.
Shown below.

【表】 第3図にガラス乙/ガラス乙+ZrO2と傾きと
の関係を図示する。この図から得られる傾きをも
つて雑音電界強度とガラス甲との関係をガラス
乙/ガラス乙+ZrO2をパラメータとして整理す
ると第4図が得られる。 従来要求されている社会的レベル37、1dBを
基準としてその値よりも−1、−2、−3、−4、−
5dB、低い領域を求めると第5図のようになる。 この第5図から少なくとも現在の社会的な雑音
電界強度よりも3dB少なくするために、ガラス甲
が約73%より小さく、またガラス乙/ガラス乙+
ZrO2比が約0.6より大きい必要があると考えられ
るため、更に詳しい実験を行つた。組成、抵抗値
及び負荷寿命試験(JISD 5102に基づく)の結果
を表4に示す。
[Table] Figure 3 shows the relationship between Glass Otsu/Glass Otsu + ZrO 2 and the slope. If we organize the relationship between the noise electric field intensity and the glass shell using the slope obtained from this figure using Glass Otsu/Glass Otsu + ZrO 2 as parameters, we obtain Fig. 4. -1, -2, -3, -4, - compared to the conventionally required social level 37, 1dB.
Figure 5 shows the 5dB low area. From this Figure 5, in order to reduce the field strength by at least 3 dB from the current social noise electric field strength, the glass shell should be smaller than about 73%, and the glass
Since it is believed that the ZrO 2 ratio needs to be greater than about 0.6, more detailed experiments were conducted. Table 4 shows the composition, resistance value, and load life test results (based on JISD 5102).

【表】【table】

【表】 表4中の雑音電界強度を第4図中に示す。点火
プラグに於ける雑音の発生は、放電時の容量電流
成分によるが、本発明の如く、抵抗体の単位体積
当りのガラス成分を増大すると、ガラスによる誘
電損失が大きくなるため容量電流の一部が熱とな
り雑音電界強度が低下すると考えられる。また、
雑防効果が非常に大きいもので、負荷寿命が悪い
のは、カーボンによる導電路が著しく細いことに
よると考えられ、即ち直径2a、長さlのカーボ
ン棒を考えた時インダクタンスL=2l{(ln・2l/
0.7788a)−1+0.7788a/l}となることから、
導電路が細くなることはインダクタンスの増大を
意味し、これにより雑防効果が大きいと考えられ
る。しかしながら、導電路は著しく細いため、負
荷寿命が非常に小さいと思われる。 次に、ガラス(甲、乙)によつて雑音電界強度
がどのように変化するかを示す。 組成として、ガラス(甲)60wt%、ガラス
(乙)は32.8wt%、ZrO2は6.7wt%、カーボンは
0.5wt%である。雑音電界強度の測定要領は前述
したとおりである。第6図がその結果である。こ
の第6図から従来のレベル37.1dBより3dB低くす
るには、ガラス(甲)の粒径は175μ〜350μ、ガ
ラス(乙)の粒径は20μ以下が良いことがわか
る。
[Table] The noise electric field strength in Table 4 is shown in FIG. The generation of noise in spark plugs is due to the capacitive current component during discharge, but when the glass component per unit volume of the resistor is increased as in the present invention, the dielectric loss due to glass increases, so a portion of the capacitive current is It is thought that this causes heat and reduces the noise electric field strength. Also,
The reason why the noise prevention effect is very large and the load life is poor is thought to be because the conductive path made of carbon is extremely thin.That is, when considering a carbon rod with a diameter of 2a and a length of l, the inductance L = 2l {( ln・2l/
0.7788a)-1+0.7788a/l}, so
A narrower conductive path means an increase in inductance, which is thought to have a greater noise prevention effect. However, since the conductive path is extremely thin, the load life appears to be very short. Next, we will show how the noise electric field strength changes depending on the glass (A, B). As for the composition, glass (A) is 60wt%, glass (B) is 32.8wt%, ZrO 2 is 6.7wt%, and carbon is
It is 0.5wt%. The procedure for measuring the noise electric field strength is as described above. Figure 6 shows the results. From FIG. 6, it can be seen that in order to lower the level by 3 dB from the conventional level of 37.1 dB, the grain size of the glass (A) should be 175 μ to 350 μ, and the grain size of the glass (B) should be 20 μ or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半断面図、第
2図〜第6図は本発明の効果の説明に供する特性
図である。 1……絶縁体、2……ステム、3……中心電
極、7……導電性シールガラス、8……抵抗体。
FIG. 1 is a half-sectional view showing one embodiment of the present invention, and FIGS. 2 to 6 are characteristic diagrams for explaining the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Insulator, 2... Stem, 3... Center electrode, 7... Conductive seal glass, 8... Resistor.

Claims (1)

【特許請求の範囲】 1 絶縁体と、 絶縁体の内孔の上部に嵌着されたステムと、 絶縁体の内孔の下部に嵌着された中心電極と、 絶縁体の内孔の中心部に配置された抵抗体−端
子ナツト間および抵抗体−中心電極間それぞれに
配置された導電性シールガラス層とを具備し、 前記抵抗体が(a)0.3〜1.1重量%の導電材料、(b)
ホウ珪酸リチウムガラス、および(c)絶縁フイラー
を包含しており、ホウ珪酸リチウムガラスは平均
粒径の大きなもの(甲)とこの粒径の大きなホウ
珪酸リチウムガラス(甲)に比して平均粒径の小
さなホウ珪酸リチウムガラス(乙)から成り、前
者(甲)の比率が10〜73重量%であり、前記導電
材料と粒径の大きいガラス(甲)との合計を全体
から除いた残分が粒径の小さいガラス(乙)と前
記フイラーから成り、その比率ガラス(乙)/ガ
ラス(乙)+フイラーが0.6〜0.95である抵抗体粉
末を焼成固着してなることを特徴とする抵抗体入
り点火プラグ。
[Scope of Claims] 1. An insulator, a stem fitted into the upper part of the inner hole of the insulator, a center electrode fitted into the lower part of the inner hole of the insulator, and a center part of the inner hole of the insulator. a conductive sealing glass layer disposed between the resistor and the terminal nut and between the resistor and the center electrode, the resistor comprising (a) 0.3 to 1.1% by weight of a conductive material; (b) )
lithium borosilicate glass, and (c) an insulating filler. It consists of lithium borosilicate glass (B) with a small diameter, the ratio of the former (A) is 10 to 73% by weight, and the remainder after excluding the sum of the conductive material and the glass with a large particle size (A) from the whole. is composed of glass (B) with a small particle size and the filler, and the ratio of glass (B)/glass (B) + filler is 0.6 to 0.95. spark plug.
JP60095762A 1985-05-03 1985-05-03 Resistance-contained plug Granted JPS61253786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60095762A JPS61253786A (en) 1985-05-03 1985-05-03 Resistance-contained plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095762A JPS61253786A (en) 1985-05-03 1985-05-03 Resistance-contained plug

Publications (2)

Publication Number Publication Date
JPS61253786A JPS61253786A (en) 1986-11-11
JPH0548594B2 true JPH0548594B2 (en) 1993-07-21

Family

ID=14146497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095762A Granted JPS61253786A (en) 1985-05-03 1985-05-03 Resistance-contained plug

Country Status (1)

Country Link
JP (1) JPS61253786A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819586B2 (en) * 1997-04-23 2006-09-13 日本特殊陶業株式会社 Spark plug with resistor, resistor composition for spark plug, and method of manufacturing spark plug with resistor
JP5325302B2 (en) * 2009-09-11 2013-10-23 日本特殊陶業株式会社 Spark plug for internal combustion engine
DE102017217265A1 (en) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Spark plug resistance element with finer non-conductive particles
DE102017218032A1 (en) * 2017-10-10 2019-04-11 Robert Bosch Gmbh Spark plug resistor element with increased ZrSiO4 phase content

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105988A (en) * 1980-12-23 1982-07-01 Nippon Denso Co Resistance-filled ignition plug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105988A (en) * 1980-12-23 1982-07-01 Nippon Denso Co Resistance-filled ignition plug

Also Published As

Publication number Publication date
JPS61253786A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US4173731A (en) Resistor composition for spark plug having a resistor enclosed therein
US4261085A (en) Method of making an ignition plug insulator having an electrically conductive end
EP0303353B1 (en) Metallized glass seal resistor composition
US9160144B2 (en) Spark plug with internal resistor having Ti and Zr components
US4144474A (en) Low noise resistance containing spark plug
US3903453A (en) Spark plug incorporating a resistor for providing a low noise level
JPS59184478A (en) Electric connector
JPH0548594B2 (en)
US2459282A (en) Resistor and spabk plug embodying
US5008584A (en) Spark plug having a built-in resistor for suppressing noise signals
WO2014024345A1 (en) Spark plug
KR100289758B1 (en) Conductive Sealing Compound for Spark Plugs
JPS62132765A (en) Manufacture of high insulation high alumina base ceramic composition
CN102185256A (en) Ceramic insulator especially based on aluminum oxide and manufacture method thereof
EP0170975A1 (en) Spark plug
US2988662A (en) Spark plug with improved auxiliary spark gap
JPS61104580A (en) Ignition plug
US3349275A (en) Spark plug with a conductive glass seal electrode of glass, copper and zinc
JP2002536816A (en) Contact glass formulation used for spark plugs
US4224068A (en) Method of making distributor rotor electrode containing dielectric bodies for suppressing radio frequency interference
US3943396A (en) High luminous intensity arc electrode of lantanum chromite
US20020101325A1 (en) Voltage non-linear resistor, method for manufacturing the same, and varistor using the same
US4270266A (en) Method of making a dielectric containing material for RF suppression
RU2138090C1 (en) Compound for manufacturing spark-plug resistor
US4270114A (en) Energy transmission devices

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term