JPH0548413B2 - - Google Patents

Info

Publication number
JPH0548413B2
JPH0548413B2 JP59119413A JP11941384A JPH0548413B2 JP H0548413 B2 JPH0548413 B2 JP H0548413B2 JP 59119413 A JP59119413 A JP 59119413A JP 11941384 A JP11941384 A JP 11941384A JP H0548413 B2 JPH0548413 B2 JP H0548413B2
Authority
JP
Japan
Prior art keywords
unit
flow
flow cell
refractive index
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59119413A
Other languages
Japanese (ja)
Other versions
JPS60262041A (en
Inventor
Juji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59119413A priority Critical patent/JPS60262041A/en
Publication of JPS60262041A publication Critical patent/JPS60262041A/en
Publication of JPH0548413B2 publication Critical patent/JPH0548413B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells

Abstract

PURPOSE:To simply prepare a flow cell, by polishing the surface forming one wall surface of a flow cell in integral relation to one end surface of the distributed refractive index type lens inserted into one unit before connecting the same to the other unit. CONSTITUTION:A distributed refractive index type lens 19, of which the refractive index changes in the diameter direction and the end surface is flat, is inserted into the hole part 22a provided to the central part of a second unit 22 to be welded thereto and the flat surface part in the side of constituting one wall surface of a flow part is polished so as to eliminate an uneven part. Subsequently, a first unit 21 is connected to the second unit 22 so that the center of the groove part 21a of the second unit 22 is coincided with the optical center of the distributed refractive index type lens 19 integrated with the second unit 22. By this method, a compact flow cell facilitated in alignment can be simply prepared.

Description

【発明の詳細な説明】 本発明は検体検査時に血球細胞浮遊溶液をフロ
ーセル内において高速で流し、流れ方向と直角方
向から光を照射し、散乱光特性より血球細胞の種
類を識別検査更には分取する分野(フローサイト
メトリー)における検体測定用フローセルに関す
る。
Detailed Description of the Invention The present invention allows a blood cell suspension solution to flow at high speed in a flow cell during specimen testing, irradiates light from a direction perpendicular to the flow direction, and identifies and classifies blood cell types based on the scattered light characteristics. The present invention relates to flow cells for measuring specimens in the field of flow cytometry.

細胞を高速水流中に浮遊させて水滴を作り、そ
の水滴中に浮遊細胞を1箇づつ入れるようにして
水流を直角方向からレーザー光を照射して、前方
散乱光及び側方散乱光の光量を遂次測定し、細胞
の種類、大きさ、数等を検査し、更には水滴を荷
電させ、散乱光の出力情報に基づく電場を設けて
水滴中の細胞を分取させることが知られる。
Cells are suspended in a high-speed water stream to form water droplets, and the water stream is irradiated with laser light from a perpendicular direction, with each floating cell placed one at a time, to calculate the amount of forward scattered light and side scattered light. It is known that the cells in the water droplet can be separated by successive measurements to examine the type, size, number, etc. of the cells, and to charge the water droplet and provide an electric field based on the output information of the scattered light.

更には螢光物質を用いて螢光の散乱光特性によ
り特性の細胞につき同様の検査をすることが知ら
れる。
Furthermore, it is known that similar tests can be performed on specific cells using fluorescent substances and the scattered light characteristics of the fluorescent light.

すなわち第1図で測光用入射光線はレンズ1で
フローセル4内のCLなる細胞粒に集光照射され、
細胞粒での散乱光のうち入射側と正反対方向に散
乱される前方散乱光はレンズ2aにより検出器3
aに集光される。この前方散乱光は細胞の大きさ
の情報を与える。
In other words, in Fig. 1, the incident light beam for photometry is focused and irradiated onto the cell particles C L in the flow cell 4 by the lens 1.
Of the light scattered by the cell particles, the forward scattered light scattered in the opposite direction to the incident side is transmitted to the detector 3 by the lens 2a.
The light is focused on a. This forward scattered light provides information on the size of the cell.

ここで細胞サンプルは符号5の方向から細管に
供給されて符号6の方向からシースの液と共にフ
ローセル4内に入る。
Here, the cell sample is supplied to the thin tube from the direction 5 and enters the flow cell 4 along with the liquid in the sheath from the direction 6.

シース液は、血球細胞浮遊溶液を流体力学的に
集束させるのに用いられ、図中レンズ1,2aの
光軸と合致するセル中央部近傍に集束させる。
The sheath liquid is used to hydrodynamically focus the blood cell suspension solution, and focuses it near the center of the cell, which coincides with the optical axes of lenses 1 and 2a in the figure.

フローセル内を高速で流れる細胞は光照射され
た後、ドレイン7へ移される。そして前述した如
く適宜電場を設けて細胞の種類毎に分散する。
Cells flowing at high speed in the flow cell are irradiated with light and then transferred to the drain 7. Then, as described above, an appropriate electric field is provided to disperse each cell type.

さて斯かるフローセルに関し第1図の紙面に直
交する方向に側方散乱光受光系が設けられるが、
一般に散乱光量が少ない側方散乱光受光系におい
て集光能力を向上させることが望まれるが、側方
散乱光受光系のレンズは前方散乱光受光系におけ
ると同様、フローセルの外部にあつて、フロー部
とレンズの間隔が大きく集光能力に限界があり、
検出感度を上げるには照射光源の強度を強めるこ
とを余儀なくされていた。又、アライメントを困
難化し、更には装置のコンパクト化に不適であつ
た。以上の問題点を解決するフローセルとして第
2図に示されるものが提案される。すなわち、照
射光源13(例えばレーザー)からの光束はレン
ズ14でフローセル17内のフロー部18の中央
にある細胞粒CLに集光され、前方散乱光をレン
ズ15を介して検出器16に集束させて受光す
る。
Now, regarding such a flow cell, a side scattered light receiving system is provided in a direction perpendicular to the paper plane of FIG.
In general, it is desirable to improve the light gathering ability in a side scattered light receiving system, where the amount of scattered light is small, but the lens of the side scattered light receiving system is located outside the flow cell, just like in the forward scattered light receiving system, and the lens is located outside the flow cell. The distance between the lens and the lens is large, and there is a limit to the light gathering ability.
In order to increase detection sensitivity, it was necessary to increase the intensity of the irradiation light source. In addition, it makes alignment difficult and is not suitable for making the device more compact. A flow cell shown in FIG. 2 is proposed to solve the above problems. That is, the light beam from the irradiation light source 13 (for example, a laser) is focused by the lens 14 onto the cell particle C L at the center of the flow section 18 in the flow cell 17, and the forward scattered light is focused via the lens 15 onto the detector 16. to receive light.

一方、側方散乱光はフローセル17と一体化さ
れ、光軸と直角面内で径に応じて屈折率が変化
し、且つ端面が平面である分布屈折率型レンズ1
9(商品名セルフオツク)を介して検出器20に
集束させて受光する。ここではレンズ19の端面
がフロー部の一壁面を構成するようにする。なお
検出器20は分布屈折率型レンズ19のフローセ
ル17から遠い側の端面と接合されても良い。
On the other hand, the side scattered light is integrated with the flow cell 17, and the distributed index lens 1 has a refractive index that changes according to the diameter in a plane perpendicular to the optical axis, and whose end face is flat.
9 (trade name: Self-Oc), the light is focused on a detector 20 and received. Here, the end surface of the lens 19 constitutes one wall surface of the flow section. Note that the detector 20 may be joined to the end face of the distributed index lens 19 on the side far from the flow cell 17.

本発明は製造が簡易で精度の高い測定が行なえ
る検体測定用フローセルの提供を目的とする。
An object of the present invention is to provide a flow cell for measuring a sample that is easy to manufacture and can perform highly accurate measurements.

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

第3図においてフロー部となる溝部21aを有
するとともに少なくとも測定用入射系、前方散乱
光受光系を構成する部分が透明な第1のユニツト
21と、中央部に貫通した穴部22aを有する第
2のユニツト22を用意する。
In FIG. 3, there is a first unit 21 which has a groove 21a serving as a flow part and is transparent in at least the portions constituting the measurement incident system and the forward scattered light receiving system, and the second unit 21 which has a hole 22a penetrating through the center. A unit 22 is prepared.

第2のユニツト22の穴部22aには、径方向
に屈折率が変化し且つ端面が平面である分布屈折
率型レンズ19(商品名セルフオツク)を挿入
し、その後、第4図に示される如くフロー部の一
壁面を構成する側の平面部22aを凹凸部が無い
ように研摩する。
Into the hole 22a of the second unit 22, a distributed index lens 19 (trade name: SELFOC) whose refractive index changes in the radial direction and whose end face is flat is inserted, and then as shown in FIG. The flat part 22a on the side constituting one wall of the flow part is polished so that there are no uneven parts.

なお第2ユニツト22と分布屈折率型レンズ1
9の結合は局部的にガスバーナー等で溶融させ
る、いわゆる溶着することにより行なうことが望
ましい。
Note that the second unit 22 and the distributed index lens 1
It is desirable that the bonding 9 be carried out by locally melting with a gas burner or the like, so-called welding.

次に第1のユニツト21の溝部21aの中心
と、第2のユニツト22に一体化した分布屈折率
型レンズ19の光学中心を一致させるように第1
のユニツト21と第2のユニツト22を接合す
る。なおこの接合も溶着することにより行なうこ
とが望ましい。
Next, the center of the groove 21a of the first unit 21 is aligned with the optical center of the distributed index lens 19 integrated in the second unit 22.
The first unit 21 and the second unit 22 are joined. Note that this joining is also desirably performed by welding.

第5図、第6図は本発明の第2の実施例を示
す。該実施例においてはフローセルは第5図に示
される如く2つの側方散乱受光系が上下方向にフ
ロー部18に対し対向して設けられる。
5 and 6 show a second embodiment of the invention. In this embodiment, the flow cell is provided with two side scattering light receiving systems vertically facing the flow section 18, as shown in FIG.

該実施例では第1の実施例と異なり、同一形状
のユニツトを対にしてフローセルを構成する。
In this embodiment, unlike the first embodiment, units of the same shape are paired to form a flow cell.

すなわち第6図に示すように第1のユニツト2
3aの貫通穴部に前述の分布屈折率型レンズ19
aが挿入され、一体化後にフロー部の一壁面とな
る側の面を研摩する。
That is, as shown in FIG.
The above-mentioned distributed refractive index lens 19 is placed in the through hole portion of 3a.
A is inserted, and after integration, the surface that will become one wall of the flow section is polished.

同様に第2のユニツト23bと分布屈折率型レ
ンズ19bを一体化し、フロー部の一壁面となる
側の面を研摩する。
Similarly, the second unit 23b and the distributed index lens 19b are integrated, and the surface that becomes one wall of the flow section is polished.

そして測定用入射系、前方散乱光受光系が構成
される透明ガラス板24a,24bと共に所定サ
イズのフロー部18を形成するように溶着する。
Then, it is welded together with the transparent glass plates 24a and 24b forming the measurement incident system and the forward scattered light receiving system so as to form a flow section 18 of a predetermined size.

以上、本発明によれば、従来の問題点が解決さ
れるフローセルを簡便に製造できる。
As described above, according to the present invention, a flow cell that solves the conventional problems can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明に係わる検体検査の概
要図、第3図、第4図は本発明の第1の実施例の
図、第5図、第6図は本発明の第2の実施例の
図、 図中、4,17はフローセル、16は前方散乱
受光系の検出器、18はフロー部、19,19
a,19bは分布屈折率型レンズ、20は側方散
乱受光系の検出器、21は第1のユニツト、21
aはフロー部となる溝部、22は第2のユニツ
ト、23a,23bは各々第1、第2のユニツ
ト、24a,24bは透明ガラス板である。
FIGS. 1 and 2 are schematic diagrams of the sample test according to the present invention, FIGS. 3 and 4 are diagrams of the first embodiment of the present invention, and FIGS. 5 and 6 are diagrams of the second embodiment of the present invention. In the figure, 4 and 17 are flow cells, 16 is a forward scattering light receiving system detector, 18 is a flow section, and 19, 19
a, 19b are distributed index lenses, 20 is a side scattering light receiving system detector, 21 is a first unit, 21
22 is a second unit, 23a and 23b are first and second units, respectively, and 24a and 24b are transparent glass plates.

Claims (1)

【特許請求の範囲】 1 フローセルのフロー部となる溝部が形成され
た第1のユニツトと、 フロー部を通過する検体から発する光を受光す
るための分布屈折率型レンズが貫通した穴部に挿
入されて一体化され、フロー部の一壁面となる側
の面が凹凸がなくなるように研磨された第2の平
面ユニツトとを有し、 前記第1のユニツトの溝部の中心と、前記第2
の平面ユニツトに一体化された前記分布屈折率型
レンズの光学中心が一致するように、前記第1の
ユニツトと第2のユニツトとを接合することによ
つてフロー部が形成された構造を有する検体測定
用フローセル。
[Scope of Claims] 1. A first unit in which a groove serving as a flow portion of a flow cell is formed, and a distributed refractive index lens for receiving light emitted from a sample passing through the flow portion is inserted into a hole penetrated therethrough. a second planar unit which is integrated with the first unit and whose surface, which becomes one wall surface of the flow part, is polished so as to eliminate irregularities, and the center of the groove of the first unit and the second
has a structure in which a flow part is formed by joining the first unit and the second unit so that the optical centers of the distributed index lens integrated into the flat unit coincide with each other. Flow cell for sample measurement.
JP59119413A 1984-06-11 1984-06-11 Preparation of flow cell for measuring specimen Granted JPS60262041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119413A JPS60262041A (en) 1984-06-11 1984-06-11 Preparation of flow cell for measuring specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119413A JPS60262041A (en) 1984-06-11 1984-06-11 Preparation of flow cell for measuring specimen

Publications (2)

Publication Number Publication Date
JPS60262041A JPS60262041A (en) 1985-12-25
JPH0548413B2 true JPH0548413B2 (en) 1993-07-21

Family

ID=14760847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119413A Granted JPS60262041A (en) 1984-06-11 1984-06-11 Preparation of flow cell for measuring specimen

Country Status (1)

Country Link
JP (1) JPS60262041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148504A (en) * 2018-02-27 2019-09-05 シスメックス株式会社 Particle measuring apparatus and particle measuring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516535B2 (en) * 1995-09-14 2004-04-05 シスメックス株式会社 Particle analyzer
US5748298A (en) * 1995-09-14 1998-05-05 Toa Medical Electronics Co., Ltd. Light receiving optical system having a light selector integral with a lens and particle analyzer including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148504A (en) * 2018-02-27 2019-09-05 シスメックス株式会社 Particle measuring apparatus and particle measuring method
WO2019167499A1 (en) * 2018-02-27 2019-09-06 シスメックス株式会社 Particle measuring device and particle measuring method
CN111771117A (en) * 2018-02-27 2020-10-13 希森美康株式会社 Particle measuring device and particle measuring method
CN111771117B (en) * 2018-02-27 2023-08-18 希森美康株式会社 Particle measurement device and particle measurement method

Also Published As

Publication number Publication date
JPS60262041A (en) 1985-12-25

Similar Documents

Publication Publication Date Title
JP3891925B2 (en) Device for obtaining information on biological particles
US4818103A (en) Flow cytometry
JPS60238762A (en) Fluid blood corpuscle inspection device
US4673288A (en) Flow cytometry
US3705771A (en) Photoanalysis apparatus
EP2180306B1 (en) Focussing arrangement for a capillary cell
US4934811A (en) Apparatus and method for detection of fluorescence or light scatter
US3785735A (en) Photoanalysis method
US4225229A (en) Apparatus for measuring cytological properties
EP2972209B1 (en) Compound optical flow cells and method of manufacture and use
US4896961A (en) Particle analyzing apparatus
JPH0544622B2 (en)
JPH11513486A (en) Silicon microchannel optical flow cytometer
JP2000512747A (en) Optical detector used for chemical analysis of small volume samples
JP3186375B2 (en) Capillary detector cell and method for optimizing its performance
US5013150A (en) Method for detection of fluorescence or light scatter
GB2125181A (en) Flow cells for particle study
JP3176770B2 (en) Fluid inspection device
WO1991003725A1 (en) Combined optical train for laser spectroscopy
JPH0548413B2 (en)
CA2500583A1 (en) Microchemical system
CN206178259U (en) Class gauss flat top beam laser system
JPS6244650A (en) Particle analyzing device
JPH03154850A (en) Specimen inspecting device
JPH0220053B2 (en)