JPH0548162B2 - - Google Patents

Info

Publication number
JPH0548162B2
JPH0548162B2 JP59041631A JP4163184A JPH0548162B2 JP H0548162 B2 JPH0548162 B2 JP H0548162B2 JP 59041631 A JP59041631 A JP 59041631A JP 4163184 A JP4163184 A JP 4163184A JP H0548162 B2 JPH0548162 B2 JP H0548162B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
water
weight
hopper
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59041631A
Other languages
Japanese (ja)
Other versions
JPS60184814A (en
Inventor
Susumu Tanyama
Shigeo Kondo
Akyoshi Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59041631A priority Critical patent/JPS60184814A/en
Publication of JPS60184814A publication Critical patent/JPS60184814A/en
Publication of JPH0548162B2 publication Critical patent/JPH0548162B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は透明性などの光学特性の優れたポリカ
ーボネート樹脂成形材料の製法並びにそれを用い
た透明な光学用ポリカーボネート樹脂成形品の製
法に関する。 光記録デイスク、ビデオデイスク、コンパクト
デイスク等の光学用の用途においては、透明性、
成形性(転写性を含む)、低複屈折、離型性、耐
湿性(特に吸湿による反り)、異物混入等の面で
従来の成形材料とは格段の高性能化が要求され
る。 ポリカーボネート樹脂は透明で、寸法安定性に
優れ、吸湿による反りも少ないため、コンパクト
デイスク等の材料としては最も適合した材料であ
るが、ポリカーボネート樹脂は溶融粘度が高いた
め、通常の成形条件では、薄い円板状の成形品が
得られなかつたり、得られても成形品の複屈折が
大きくなるなどの欠点が生じる。 樹脂の溶融粘度を低下させるため、通常のポリ
カーボネート樹脂の成形温度である270〜300℃の
温度を超えて、例えば330〜380℃での成形が考え
られるが、このような高温ではポリカーボネート
樹脂の熱分解等による黄色乃至黄褐色の成形品着
色、及び成形品中に褐色乃至黒褐色の塩化メチレ
ン(ポリカーボネート樹脂の良溶媒)に不溶解性
のゴミ状物質が点在するという現象が見られる。 光学部品などの材料において、異物の混入はそ
の性能上極めて重大な問題である。外部からの異
物の混入は製造、保存その他の環境を無塵化する
ことによつて容易に解決出来るものであるが、成
形時などに於ける材料の劣化に基づく異物の生成
の解消除去は、材料そのものの劣化の防止以外に
方法はないものであり、致命的な問題であつた。 本発明者らは、上記の欠点の発生原因について
380℃、窒素気流下の試験管による溶融試験によ
る再現を試みた。その結果、ガラス製の試験管で
は樹脂の黄色乃至黄褐色の着色現象は見られるも
のの、樹脂中に褐色乃至黒褐色の塩化メチレン
(ポリカーボネート樹脂の良溶媒)に不溶解性の
ゴミ状物質の生成は見られないものであり、押出
機等に多く用いられているSUS316製の200メツ
シユ金網の小片を試験管に入れた場合に認められ
た。さらに、金網の小片を試験管に入れた場合、
試験に用いる樹脂の色相にかかわらず生成するゴ
ミ状物質の大きさ及び量ともに略同程度であつ
た。又、前記のガラス製の試験管試験において、
窒素中に少量(約1%程度)の酸素を混入する
と、着色現象の著しい促進が見られた。 以上の試験結果から、本発明者らは、ポリカー
ボネート樹脂の高温劣化には、高温による着色
現象として無酸素状態下で現れる劣化、前記着
色現象の酸素による大幅な促進、及び高温下で
金属すなわち成形機内部の金属面とのなんらかの
作用による褐色乃至黒褐色の塩化メチレンに不溶
解性のゴミ状物質の生成する劣化との三種のもの
があるものと推定した。 本発明者らは、以上の欠点、特に塩化メチレン
不溶性のゴミ状物質の生成の解消について種々の
側面から鋭意検討した結果、窒素気流中での溶融
処理において、金網の小片の存在下においても樹
脂の着色はあるものの塩化メチレン不溶のゴミ状
物質は殆ど生成しないペレツトの製法を見いだ
し、本発明に到達した。 すなわち、本発明は、ポリカーボネート樹脂粉
体をベント付きスクリユー押出機により押出して
ペレツトを製造する方法において、該ポリカーボ
ネート樹脂粉体として予め0.1〜5重量%の水を
含ませたものを用いるか、または該押出機のホツ
パー内に、押出し樹脂重量の0.1〜5重量%とな
るような量の水を供給しつつ溶融押出することを
特徴とするポリカーボネート樹脂成形材料の製法
であり、好ましい実施態様においては該水とし
て、導電率が10μS/cm以下、特に好ましくは
1μS/cm以下の純水を用いるものである。又、前
記の方法で得たペレツトを乾燥した後、乾燥した
該ペレツトを、ホツパーに乾燥窒素を供給してい
る成形機のホツパーに投入し成形することを特徴
とする透明な光学用ポリカーボネート樹脂品の製
法である。 以下、本発明について説明する。 本発明のポリカーボネート樹脂粉体としては、
通常のものでもよいが、光学材料とする場合に
は、ポリカーボネート樹脂の合成原料〜製造・保
存等の環境を無塵化して得たものを用いるのが良
い。 本発明の水としては、導電率が10μS/cm以下、
特に好ましくは1μS/cm以下の純水を用いる。導
電率の高い水は多くの場合、無機の塩類を含むも
のであり、このような無機塩類が成形材料中に混
入した場合には、光の乱反射による成形品の光線
透過率の低下を起こし、透明性が損なわれる。 又、水は、押出し樹脂粉体中に予め0.1〜5重
量%の水を含ませるか若しくは押出し樹脂重量の
0.1〜5重量%となるような量の水を押出機のホ
ツパー内、好ましくはスクリユーに出来るだけ近
い部分に供給する方法による。押出時のホツパー
内に供給された水がスクリユー部にスムーズに供
給されない場合にはバラツキを生じ定常的な押出
が困難となるなどの不都合を生じ易い。使用量が
0.1重量%未満では、本発明の安定化の効果が薄
く、又、5重量%を超えると樹脂粉体のスクリユ
ーへの食い込みが悪くなり押出樹脂量が減少する
ので好ましくない。 本発明の押出方法は、以上の水を使用すること
に特徴を有するものであり、その他は従来法と同
様で良いものである。又、水の使用によつてポリ
カーボネート樹脂成形材料の安定性が大幅に向上
すること、さらに本発明の方法によつて得られた
ポリカーボネート樹脂ペレツトの粘度平均分子量
と押出機ホツパーに供給されるポリカーボネート
樹脂粉体の粘度平均分子量とが殆ど同一であるこ
とは、通常、ポリカーボネート樹脂がエステルで
あり、例えば、射出成形に於いて乾燥不十分のペ
レツトを使用した場合に大幅な物性及び分子量の
劣化を生じること等の当業者の常識から考え予想
外のことである。 本発明の好ましい成形方法においては、成形時
にホツパーに挿入する乾燥窒素としては純度99.9
%以上、好ましくは99.99%以上であり、好まし
くはスクリユーに出来るだけ近い部分に挿入する
方法による。 以上の如くである本発明の方法によるポリカー
ボネート樹脂成形材料は、熱安定性に優れたもの
であり、成形時にゴミ状物質を実質的に生成しな
いものであるので、光学材料に適するものである
ことは無論のこと、一般の成形材料においても、
ゴミ状物質等による欠陥が大幅に減少したものと
なるため、より安定した物性の成形品を得ること
が可能である。又、本発明の成形方法によれば、
高温着色も大幅に減少するので光記録デイスク、
ビデオデイスク、コンパクトデイスク等の光学用
の用途用の成形に好適である。 以下、実施例により本発明を説明する。 実施例 1 ペレツトの塩化メチレン不溶性物質の生成比較 2,2−ビス(4−ヒドロキシフエニル)プロ
パン(以下、ビスフエノールAという)とホスゲ
ンとを界面重縮合反応させることによつて得た二
種類の粘度平均分子量約1.8×104及び2.3×104
ポリカーボネート樹脂粉体(以下、A,Bとい
う)を40mmφスクリユー押出機を用いて溶融押出
し、約2mm角の立方体ペレツトとした。 この押出の際、導電率が10μS/cmより小さい
純水を樹脂量に対して2重量%となるように混入
したもの(以下、A1,B1という)、および水
を使用しないもの(以下、A2,B2という)の
計4種類のペレツトとした。 上記の4種類のペレツト各4gを、ガラス製試
験管とガラス製試験管にSUS316製200メツシユ
金網をいれたものとに入れ、120℃で6時間熱風
循環乾燥機で乾燥し、さらに120℃で乾燥窒素を
1時間吹き込み試験管内部を窒素置換し、直ちに
乾燥窒素を吹き込んでいる380℃に保つた電気炉
に入れ、1時間保つたのち、室温まで冷却した。
試験管を破壊し、内部の樹脂を取り出し、25mlの
塩化メチレンに撹拌などの操作をせず溶解して樹
脂液とした。 樹脂液を底の平坦なシヤーレに全量移し、目視
によつて、それぞれの試料の塩化メチレン不溶性
ゴミ状物質の大きさと数とを測定した。 又、樹脂液をガラスフイルターで濾過しながら
10mmφの比色管に入れ、同じ液高の白金コバルト
色度標準液の色と目視比較して樹脂液の色
(APHA)を測定した。その後で樹脂液を塩化メ
チレンで5倍に希釈し、5ミクロンのメンブラン
フイルターで濾過し、顕微鏡により微少なゴミ状
物質の大きさと数とを測定した。 結果を第1表に示した。 実施例 2 実施例1において、水を予め樹脂粉体に混入せ
ず、スクリユー押出機のホツパー口で出来るだけ
スクリユーに近い部分に導管を差込み、プランジ
ヤータイプの化学定量ポンプで、導電率10μS/
cmより小さい純水を樹脂押出量に対して2重量%
となるように注入してペレツトを得る他は同様と
した。ガラス製試験管にSUS316製200メツシユ
金網をいれたものの塩化メチレン不溶性ゴミ状物
質は実施例1と同様殆ど認められなかつた。 実施例 3 実施例1において、2重量%の水を用いて得た
ペレツトを、成形機のホツパー内の出来るだけス
クリユーに近い部分に1/分で乾燥窒素を供給
しているホツパーに投入し、樹脂温度360℃で射
出成形し、厚み3mmで直径10cmの円板状成形品を
得た。 この成形品より4gの小片を切取り、実施例1
と同様にAPHAを測定したところ60であつた。
尚、乾燥窒素を供給せずに成形したものの
APHAは80であつた。 又、いずれの場合にも、目式観察に依つては塩
化メチレン不溶性物質は認められなかつた。
The present invention relates to a method for producing a polycarbonate resin molding material having excellent optical properties such as transparency, and a method for producing a transparent optical polycarbonate resin molded article using the same. In optical applications such as optical recording discs, video discs, and compact discs, transparency,
It is required to have much higher performance than conventional molding materials in terms of moldability (including transferability), low birefringence, mold releasability, moisture resistance (especially warping due to moisture absorption), and prevention of foreign matter contamination. Polycarbonate resin is transparent, has excellent dimensional stability, and is less likely to warp due to moisture absorption, so it is the most suitable material for compact discs, etc. However, due to the high melt viscosity of polycarbonate resin, under normal molding conditions, it is difficult to make thin Disc-shaped molded products may not be obtained, or even if they are obtained, the molded product has disadvantages such as increased birefringence. In order to reduce the melt viscosity of the resin, it is possible to mold the resin at a temperature higher than the usual molding temperature of 270 to 300 degrees Celsius, for example 330 to 380 degrees Celsius, but at such high temperatures the heat of the polycarbonate resin There are phenomena in which the molded product is colored yellow to yellowish brown due to decomposition, and the molded product is dotted with brown to blackish brown dust-like substances that are insoluble in methylene chloride (a good solvent for polycarbonate resin). Contamination of foreign substances in materials such as optical parts is an extremely serious problem in terms of performance. Contamination of foreign matter from the outside can be easily resolved by making the manufacturing, storage, and other environments dust-free, but eliminating and removing foreign matter caused by material deterioration during molding, etc. This was a fatal problem, as there was no other way than to prevent deterioration of the material itself. The inventors have investigated the causes of the above drawbacks.
We attempted to reproduce this by conducting a melting test in a test tube at 380℃ under a nitrogen stream. As a result, although yellow to yellowish brown coloring of the resin was observed in glass test tubes, the formation of brown to blackish brown dust-like substances in the resin that was insoluble in methylene chloride (a good solvent for polycarbonate resin) was not observed. However, it was observed when a small piece of 200-mesh wire mesh made of SUS316, which is often used in extruders, was placed in a test tube. Furthermore, if a small piece of wire mesh is placed in a test tube,
Regardless of the hue of the resin used in the test, the size and amount of the generated dust-like substances were approximately the same. In addition, in the glass test tube test mentioned above,
When a small amount (approximately 1%) of oxygen was mixed into nitrogen, the coloring phenomenon was significantly accelerated. From the above test results, the present inventors have concluded that the high-temperature deterioration of polycarbonate resin includes: degradation that appears under anoxic conditions as a coloring phenomenon due to high temperatures, significant acceleration of the coloring phenomenon by oxygen, and metal or molding under high temperatures. It is assumed that there are three types of deterioration: one is the formation of dust-like substances that are insoluble in methylene chloride, which is brown to blackish brown due to some kind of interaction with the metal surfaces inside the machine. The inventors of the present invention have conducted intensive studies from various aspects to resolve the above-mentioned drawbacks, particularly the generation of dust-like substances insoluble in methylene chloride. As a result, the inventors have found that, in melting treatment in a nitrogen stream, even in the presence of small pieces of wire mesh, the resin The present invention was achieved by discovering a method for producing pellets that produces almost no trash-like substances insoluble in methylene chloride, although the pellets are colored. That is, the present invention provides a method for producing pellets by extruding polycarbonate resin powder using a vented screw extruder, in which the polycarbonate resin powder is pre-impregnated with 0.1 to 5% by weight of water, or A method for producing a polycarbonate resin molding material, which is characterized by melt extrusion while supplying water in an amount of 0.1 to 5% by weight of the extruded resin into the hopper of the extruder, and in a preferred embodiment, The water has an electrical conductivity of 10 μS/cm or less, particularly preferably
It uses pure water of 1μS/cm or less. Also, a transparent optical polycarbonate resin product characterized in that after drying the pellets obtained by the above method, the dried pellets are charged into a hopper of a molding machine whose hopper is supplied with dry nitrogen and molded. This is the manufacturing method. The present invention will be explained below. The polycarbonate resin powder of the present invention includes:
Ordinary materials may be used, but when used as an optical material, it is preferable to use materials obtained by making the environment from the synthetic raw material for polycarbonate resin to manufacturing and storage dust-free. The water of the present invention has an electrical conductivity of 10 μS/cm or less,
Particularly preferably, pure water of 1 μS/cm or less is used. Water with high conductivity often contains inorganic salts, and if such inorganic salts are mixed into the molding material, the light transmittance of the molded product will decrease due to diffuse reflection of light. Transparency is compromised. In addition, water can be prepared by pre-containing 0.1 to 5% of water in the extruded resin powder or by adding 0.1 to 5% by weight of water to the extruded resin powder
A method is used in which water is supplied in an amount of 0.1 to 5% by weight into the hopper of the extruder, preferably as close as possible to the screw. If the water supplied into the hopper during extrusion is not smoothly supplied to the screw part, it tends to cause inconveniences such as fluctuations and steady extrusion becoming difficult. usage amount
If it is less than 0.1% by weight, the stabilizing effect of the present invention will be weak, and if it exceeds 5% by weight, the resin powder will not penetrate into the screws and the amount of extruded resin will decrease, which is not preferable. The extrusion method of the present invention is characterized by the use of water as described above, and other aspects may be the same as conventional methods. Furthermore, the stability of the polycarbonate resin molding material is greatly improved by the use of water, and the viscosity average molecular weight of the polycarbonate resin pellets obtained by the method of the present invention and the polycarbonate resin fed to the extruder hopper are further improved. The fact that the viscosity average molecular weight of the powder is almost the same means that the polycarbonate resin is usually an ester, and for example, if insufficiently dried pellets are used in injection molding, the physical properties and molecular weight will significantly deteriorate. This is unexpected considering the common sense of those skilled in the art. In the preferred molding method of the present invention, the dry nitrogen inserted into the hopper during molding has a purity of 99.9
% or more, preferably 99.99% or more, preferably by a method of inserting it as close to the screw as possible. The polycarbonate resin molding material produced by the method of the present invention as described above has excellent thermal stability and does not substantially generate dust during molding, so it is suitable for optical materials. Of course, in general molding materials,
Since defects caused by dust-like substances and the like are significantly reduced, it is possible to obtain a molded product with more stable physical properties. Moreover, according to the molding method of the present invention,
High-temperature coloring is also greatly reduced, so optical recording disks,
Suitable for molding for optical applications such as video discs and compact discs. The present invention will be explained below with reference to Examples. Example 1 Comparison of production of methylene chloride-insoluble substances in pellets Two types obtained by interfacial polycondensation reaction of 2,2-bis(4-hydroxyphenyl)propane (hereinafter referred to as bisphenol A) and phosgene Polycarbonate resin powders (hereinafter referred to as A and B) having viscosity average molecular weights of approximately 1.8×10 4 and 2.3×10 4 were melt-extruded using a 40 mmφ screw extruder to form cubic pellets of approximately 2 mm square. During this extrusion, there are two types in which pure water with a conductivity of less than 10 μS/cm is mixed in at a rate of 2% by weight based on the amount of resin (hereinafter referred to as A1 and B1), and one in which water is not used (hereinafter referred to as A2). , B2). 4g of each of the above four types of pellets were put into a glass test tube and a glass test tube with a 200 mesh wire mesh made of SUS316, dried in a hot air circulation dryer at 120℃ for 6 hours, and then further heated at 120℃. The inside of the test tube was replaced with nitrogen by blowing dry nitrogen for 1 hour, and immediately placed in an electric furnace maintained at 380°C into which dry nitrogen was blown, and after being kept for 1 hour, it was cooled to room temperature.
The test tube was destroyed, the resin inside was taken out, and dissolved in 25 ml of methylene chloride without stirring or other operations to obtain a resin liquid. The entire amount of the resin liquid was transferred to a flat-bottomed shear dish, and the size and number of methylene chloride-insoluble dust-like substances in each sample were visually measured. Also, while filtering the resin liquid with a glass filter,
The color (APHA) of the resin liquid was measured by placing it in a 10 mmφ colorimetric tube and visually comparing the color with a platinum cobalt chromaticity standard solution of the same liquid height. Thereafter, the resin liquid was diluted five times with methylene chloride, filtered through a 5 micron membrane filter, and the size and number of minute dust-like substances were measured using a microscope. The results are shown in Table 1. Example 2 In Example 1, without mixing water into the resin powder in advance, a conduit was inserted into the hopper opening of the screw extruder as close to the screw as possible, and a plunger-type chemical metering pump was used to increase the conductivity to 10 μS/
2% by weight of pure water smaller than cm based on resin extrusion amount
The procedure was the same except that pellets were obtained by injecting the pellets so that Although a 200-mesh wire mesh made of SUS316 was placed in a glass test tube, almost no methylene chloride-insoluble dust-like substances were observed as in Example 1. Example 3 In Example 1, the pellets obtained using 2% by weight of water were put into a hopper of a molding machine in which dry nitrogen was being supplied at a rate of 1/min to a part of the hopper as close to the screw as possible, Injection molding was performed at a resin temperature of 360°C to obtain a disc-shaped molded product with a thickness of 3 mm and a diameter of 10 cm. Example 1 A small piece of 4 g was cut out from this molded product.
When I measured APHA in the same way as above, it was 60.
In addition, although the molding was performed without supplying dry nitrogen,
APHA was 80. In any case, no methylene chloride-insoluble substances were observed by visual observation.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリカーボネート樹脂粉体をベント付きスク
リユー押出機により溶融押出してペレツトを製造
する方法において、該ポリカーボネート樹脂粉体
として予め0.1〜5重量%の水を含ませたものを
用いるか、または該押出機のホツパー内に、押出
し樹脂重量の0.1〜5重量%となるような量の水
を供給しつつ溶融押出することを特徴とするポリ
カーボネート樹脂成形材料の製法。 2 該水として、導電率が10μS/cm以下の純水
を用いる特許請求の範囲第1項記載のポリカーボ
ネート樹脂成形材料の製法。 3 ポリカーボネート樹脂粉体をベント付きスク
リユー押出機により溶融押出してペレツトを製造
する方法において、該ポリカーボネート樹脂粉体
として予め0.1〜5重量%の水を含ませたものを
用いるか、または該押出機のホツパー内に、押出
し樹脂重量の0.1〜5重量%となるような量の水
を供給しつつ溶融押出して得たペレツトを乾燥し
た後、乾燥した該ペレツトをホツパーに乾燥窒素
を供給している成形機のホツパーに投入し成形す
ることを特徴とする透明な光学用ポリカーボネー
ト樹脂成形品の製法。 4 該水として、導電率が10μS/cm以下の純水
を用いる特許請求の範囲第3項記載のポリカーボ
ネート樹脂成形品の製法。
[Claims] 1. In a method for producing pellets by melt-extruding polycarbonate resin powder using a vented screw extruder, the polycarbonate resin powder may be pre-impregnated with 0.1 to 5% by weight of water. , or a method for producing a polycarbonate resin molding material, characterized in that melt extrusion is carried out while supplying water in an amount of 0.1 to 5% by weight of the extruded resin into the hopper of the extruder. 2. The method for producing a polycarbonate resin molding material according to claim 1, in which pure water having an electrical conductivity of 10 μS/cm or less is used as the water. 3. In the method of producing pellets by melt-extruding polycarbonate resin powder using a vented screw extruder, the polycarbonate resin powder is pre-impregnated with 0.1 to 5% by weight of water, or the extruder is After drying the pellets obtained by melt extrusion while supplying water in an amount of 0.1 to 5% by weight of the extruded resin weight into the hopper, the dried pellets are molded by supplying dry nitrogen to the hopper. A method for manufacturing transparent optical polycarbonate resin molded products, which is characterized by casting them into the hopper of a machine and molding them. 4. The method for producing a polycarbonate resin molded article according to claim 3, wherein the water is pure water having an electrical conductivity of 10 μS/cm or less.
JP59041631A 1984-03-05 1984-03-05 Manufacture of polycarbonate resin molding material Granted JPS60184814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041631A JPS60184814A (en) 1984-03-05 1984-03-05 Manufacture of polycarbonate resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041631A JPS60184814A (en) 1984-03-05 1984-03-05 Manufacture of polycarbonate resin molding material

Publications (2)

Publication Number Publication Date
JPS60184814A JPS60184814A (en) 1985-09-20
JPH0548162B2 true JPH0548162B2 (en) 1993-07-20

Family

ID=12613674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041631A Granted JPS60184814A (en) 1984-03-05 1984-03-05 Manufacture of polycarbonate resin molding material

Country Status (1)

Country Link
JP (1) JPS60184814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060967A1 (en) 2007-11-06 2009-05-14 Teijin Chemicals Ltd. Process for producing polycarbonate resin pellet and molded article
WO2017086209A1 (en) * 2015-11-20 2017-05-26 出光興産株式会社 Method of manufacturing polycarbonate resin pellets

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221225A (en) * 1985-03-28 1986-10-01 Idemitsu Petrochem Co Ltd Production of molding polycarbonate resin
JPH02135222A (en) * 1988-11-17 1990-05-24 Teijin Chem Ltd Polycarbonate formed product
DE19537114C2 (en) * 1995-10-05 1998-11-12 Bayer Ag Process for drying polymer powders and agglomerates
ES2230579T3 (en) * 1997-07-15 2005-05-01 Asahi Kasei Chemicals Corporation METHOD TO PRODUCE A POLYCARBONATE GRANLE.
DE19952852A1 (en) 1999-11-03 2001-05-10 Bayer Ag High-purity polymer granules and process for their production
US6833427B2 (en) 2001-05-18 2004-12-21 Teijin Chemicals, Ltd. Polycarbonate resin molding material for optical use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060967A1 (en) 2007-11-06 2009-05-14 Teijin Chemicals Ltd. Process for producing polycarbonate resin pellet and molded article
WO2017086209A1 (en) * 2015-11-20 2017-05-26 出光興産株式会社 Method of manufacturing polycarbonate resin pellets
JPWO2017086209A1 (en) * 2015-11-20 2018-09-06 出光興産株式会社 Method for producing polycarbonate resin pellets
US11208552B2 (en) 2015-11-20 2021-12-28 Idemitsu Kosan Co., Ltd. Method of manufacturing polycarbonate resin pellets

Also Published As

Publication number Publication date
JPS60184814A (en) 1985-09-20

Similar Documents

Publication Publication Date Title
CA1056985A (en) Polyesters for extrusion applications
KR100209864B1 (en) Carbodiimide-modified polyester fiber and preparation thereof
US5292587A (en) Material for extrusion molding and process for preparation of molding product
JPS60240731A (en) Novel resin material, its production and use
JPH0548162B2 (en)
JP3403867B2 (en) Infrared transmitting resin composition, infrared transmitting filter formed from this resin composition
US4273899A (en) Fire-retardant thermoplastic polyester composition
US4464487A (en) Process for preparing additive concentrates for carbonate polymers
US4129536A (en) Vinyl chloride based injection molding composition
JPS60184813A (en) Manufacture of polycarbonate resin molding material for disc body
TW402614B (en) Polycarbonate pellet and method for producing the same
US3367958A (en) Stabilized polycarbonates
JPWO2019189328A1 (en) Resin composition and filament-shaped molded article made of the same
US4014849A (en) Self-extinguishing reinforced polycarbonate molding compositions
JPH09279045A (en) Thermoplastic resin molding containing silicone oil and excellent in surface appearance
JP3442556B2 (en) Aromatic polycarbonate resin and method for producing the same
EP1651702B1 (en) Polyformals and copolyformals with reduced water absorption, production and use thereof
JPS6220533A (en) Production of polycarbonate molded product filled with carbon black
US3431230A (en) Antiplasticized polysulfone ethers
JPH0341802B2 (en)
ES2230579T3 (en) METHOD TO PRODUCE A POLYCARBONATE GRANLE.
CN112852128A (en) Composition for 3D printing, 3D printed product and preparation method thereof
US5928586A (en) Melt extrusion processing method of thermoplastic resin
JP3885834B2 (en) Production method of transparent polycarbonate resin molding material
US4012358A (en) Pigmenting fiber grade polyester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees