JPH0547923B2 - - Google Patents

Info

Publication number
JPH0547923B2
JPH0547923B2 JP11823984A JP11823984A JPH0547923B2 JP H0547923 B2 JPH0547923 B2 JP H0547923B2 JP 11823984 A JP11823984 A JP 11823984A JP 11823984 A JP11823984 A JP 11823984A JP H0547923 B2 JPH0547923 B2 JP H0547923B2
Authority
JP
Japan
Prior art keywords
steel wire
cable
optical cable
submarine
lateral pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11823984A
Other languages
Japanese (ja)
Other versions
JPS60262307A (en
Inventor
Hiroshi Ishihara
Nobuyuki Yoshizawa
Osamu Kawada
Yasushi Funaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
OCC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Corp, Nippon Telegraph and Telephone Corp filed Critical OCC Corp
Priority to JP11823984A priority Critical patent/JPS60262307A/en
Publication of JPS60262307A publication Critical patent/JPS60262307A/en
Publication of JPH0547923B2 publication Critical patent/JPH0547923B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は長期信頼性に優れ経済的な海底光ケー
ブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an economical submarine optical cable with excellent long-term reliability.

(従来の技術) 第1図〜第6図に従来の海底光ケーブル構造を
示す。第1図は特願昭56−75604号、第2図は特
願昭53−36580号、第3図は特願昭56−146102号、
第4図はBSTJ、Vol.62,No.3,(1983)、第5図
は特願昭58−22990号、第6図は米国特許第
4239336号にそれぞれ記載の海底光ケーブルであ
る。図中、1は光フアイバユニツト、2は内部管
状導体、3は鋼線、4は外部管状導体、5は絶縁
層、6は外装鉄線、7は外被である。海底光ケー
ブルでは海水圧及び布設、引揚げ時にケーブルに
作用する側圧から光フアイバを保護し、また、引
揚げ時に作用する張力によるケーブル伸びによつ
て光フアイバに生ずる伸び歪を光フアイバ許容伸
び歪である1%以下に抑制し、かつ光中継器を駆
動する為の電力を供給する必要がある。
(Prior Art) A conventional submarine optical cable structure is shown in FIGS. 1 to 6. Figure 1 is Japanese Patent Application No. 56-75604, Figure 2 is Japanese Patent Application No. 53-36580, Figure 3 is Japanese Patent Application No. 56-146102,
Figure 4 is BSTJ, Vol. 62, No. 3, (1983), Figure 5 is Japanese Patent Application No. 58-22990, and Figure 6 is US Patent Application No. 58-22990.
These are submarine optical cables described in No. 4239336. In the figure, 1 is an optical fiber unit, 2 is an inner tubular conductor, 3 is a steel wire, 4 is an outer tubular conductor, 5 is an insulating layer, 6 is an exterior iron wire, and 7 is an outer jacket. In submarine optical cables, optical fibers are protected from seawater pressure and lateral pressure that acts on the cable during installation and salvage, and the elongation strain that occurs in the optical fiber due to cable elongation due to tension that is applied during salvage is controlled by the optical fiber's allowable elongation strain. It is necessary to suppress it to a certain 1% or less and to supply power to drive the optical repeater.

このため、第1図のケーブル構造では、光フア
イバユニツト1を内部管状導体2中に入れて側圧
や水圧から保護し、また鋼線3を内部管状導体2
と外部管状導体4の間にはさみ込むことによつ
て、鋼線3の撚り戻しによるケーブル伸びを抑制
している。また、管状導体2,4を用いることに
よつて電力を対地帰還によつて供給し、海水との
絶縁は絶縁層5によつている。第1図のケーブル
では内部管状導体2を突き合せ管としているのに
対し、第2図では3つ割り構造としている点が異
なる。また、第3図のケーブルでは鋼線3を2層
同方向に撚つている。第4図のケーブルでは外部
管状導体4によつて光フアイバを側圧や水圧から
保護し、鋼線3の撚り戻しを防ぐとともに、給電
を行つている。第5図のケーブルでは鋼線3を2
層設け、これらの撚り方向を逆にしてケーブルに
加わる捩り力を平衡することによつて鋼線3の撚
り戻しによるケーブル伸びを抑制している。第1
図〜第4図のケーブル構造では、給電電圧の海水
との絶縁はケーブル最外層に設けられた絶縁層5
によつて行なわれている点が共通している。給電
は対地帰還となつているため、これらのケーブル
構造では絶縁層5が損傷すると内部管状導体2も
しくは外部管状導体4と海水との間の絶縁不良を
生じて、中継器駆動用電力の供給が困難となる欠
点がある。絶縁層5の損傷を防ぐため、水深1000
m以浅程度の浅海域においては鉄線等によつてケ
ーブルの外周に外装鉄線6が施されるが、高価な
ため経済性に劣りまた、ケーブルの水中重量が増
加するためにケーブル伸び歪が増大して深海域へ
の適用は困難という欠点がある。
For this reason, in the cable structure shown in FIG.
By sandwiching it between the outer tubular conductor 4 and the outer tubular conductor 4, cable elongation due to untwisting of the steel wire 3 is suppressed. Further, by using the tubular conductors 2 and 4, power is supplied by return to the ground, and insulation from seawater is provided by the insulating layer 5. The difference is that in the cable shown in FIG. 1, the internal tubular conductor 2 is a butted tube, whereas in FIG. 2, it has a three-part structure. Further, in the cable shown in FIG. 3, two layers of steel wires 3 are twisted in the same direction. In the cable shown in FIG. 4, the external tubular conductor 4 protects the optical fiber from lateral pressure and water pressure, prevents the steel wire 3 from untwisting, and supplies power. In the cable shown in Figure 5, the steel wire 3 is
The cable elongation due to untwisting of the steel wire 3 is suppressed by providing layers and reversing the twisting direction to balance the twisting force applied to the cable. 1st
In the cable structures shown in Figures 4 to 4, insulation of the power supply voltage from seawater is provided by the insulation layer 5 provided on the outermost layer of the cable.
What they have in common is that they are carried out by. Since the power supply is ground return, in these cable structures, if the insulation layer 5 is damaged, there will be insulation failure between the inner tubular conductor 2 or the outer tubular conductor 4 and the seawater, and the supply of power for driving the repeater will be interrupted. There are drawbacks that make it difficult. To prevent damage to the insulating layer 5, the water depth is 1000 mm.
In shallow waters of less than 1.5 m, armored iron wire 6 is applied to the outer circumference of the cable using iron wire, etc., but it is expensive and less economical, and the cable elongation strain increases due to the increased underwater weight of the cable. The disadvantage is that it is difficult to apply to deep sea areas.

一方、第6図に示したケーブル構造では、第1
図から第5図のケーブル構造と違つて内部管状導
体2の周囲に絶縁層5を施し、その周囲に鋼線3
を施してあるためケーブル表面に外力が作用した
場合の絶縁層5の損傷を鋼線3によつて防ぐこと
ができる。しかし、この構造では、鋼線3が1層
施してあるのみであり、深海域からの引揚げにお
いては大きな張力が作用するため、鋼線3に撚り
戻しが生ずる。このため、ケーブルの伸び歪を光
フアイバの許容伸び歪である1%以下に抑制する
のは困難である。従つて、深海域へは適用できな
いという欠点を有する。
On the other hand, in the cable structure shown in Figure 6, the first
Unlike the cable structure shown in Figs.
Because of this, the steel wire 3 can prevent damage to the insulating layer 5 when an external force is applied to the cable surface. However, in this structure, only one layer of steel wires 3 is provided, and a large tension is applied during retrieval from deep sea, so that the steel wires 3 are untwisted. Therefore, it is difficult to suppress the elongation strain of the cable to 1% or less, which is the permissible elongation strain of the optical fiber. Therefore, it has the disadvantage that it cannot be applied to deep sea areas.

(発明の目的) 本発明は、これらの欠点を除去するために、1
層の補強部材によつて側圧、ケーブル張力に耐え
うるように構成して経済性、作業性を改善した海
底光ケーブルを提供するものである。
(Objective of the Invention) In order to eliminate these drawbacks, the present invention has the following objectives:
The object of the present invention is to provide a submarine optical cable that is constructed to withstand lateral pressure and cable tension by layer reinforcing members, and has improved economic efficiency and workability.

(発明の構成及び作用) 以下図面により本発明を詳細に説明する。(Structure and operation of the invention) The present invention will be explained in detail below with reference to the drawings.

第7図、第8図、第9図に本発明の実施例を示
す。1は光フアイバユニツト、3は鋼線、4は外
部管状導体、5は絶縁層、7は外被、3′は補助
鋼線を示す。これらのケーブルは中継伝送用海底
光ケーブルの断面を示すもので、光フアイバユニ
ツト1は少なくとも1心以上の心線を1本の鋼線
の周囲に集合し、UVウレタン、エポキシ樹脂等
の弾性体で充実形としたものである。ケーブルの
張力を分担する鋼線3は第7図〜第9図の実施例
に示されているように外側の層内で光フアイバユ
ニツ1の外径部のまわりを連続的に覆う複数の鋼
線3からなる。特にその鋼線3はユニツト1と直
接に接触する3〜6本の鋼線3の内側の層からな
る。また、鋼線3を複数心集合するとその集合体
の外側には空隙が生じるために、この部分に鋼線
3より細い鋼線3′をうめることによつて、ほぼ
均等な円形に保つとともにケーブルの抗張力特性
を向上させる。なお、鋼線3′の外径d2が鋼線3
の外径をdとすると、次式で与えられる。
Embodiments of the present invention are shown in FIGS. 7, 8, and 9. 1 is an optical fiber unit, 3 is a steel wire, 4 is an external tubular conductor, 5 is an insulating layer, 7 is a jacket, and 3' is an auxiliary steel wire. These cables show cross-sections of submarine optical cables for relay transmission.The optical fiber unit 1 has at least one core wire gathered around a single steel wire, and is made of an elastic material such as UV urethane or epoxy resin. This is a complete version. The steel wire 3 that shares the tension of the cable is a plurality of steel wires that are continuously wrapped around the outer diameter of the optical fiber unit 1 in the outer layer, as shown in the embodiment of FIGS. 7 to 9. Consists of 3. In particular, the steel wire 3 consists of an inner layer of 3 to 6 steel wires 3 in direct contact with the unit 1. In addition, when a plurality of steel wires 3 are assembled, a void is created on the outside of the assembly, so by filling this part with a steel wire 3' that is thinner than the steel wire 3, it is possible to maintain an almost uniform circular shape and to make the cable Improves the tensile properties of. Note that the outer diameter d 2 of the steel wire 3' is
When the outer diameter of is d, it is given by the following equation.

d2=(1+cosecπ/n−cotπ/n)2×d/ 2×(2+cosecπ/n−cotπ/n) さて、鋼線3の本数の決定理由はあとで述べる
こととして、ケーブル構造全般について先ず説明
する。ケーブルの複合内部導体では非多孔性の
Cuからなる外部管状導体4が撚られた鋼線3,
3′の外側に直接形成される。この外部管状導体
4は中間の中継器に電力を供給する有効な直流導
電路を形成するとともに、防湿層としても機能す
る。さらにこの外部管状導体4はそれによつて取
り巻かれた鋼線3,3′を確実に固定する働きを
するので操作中に撚られた鋼線3,3′が解きほ
ぐれるのも防ぐことができる。
d 2 = (1 + cosecπ/n-cotπ/n) 2 × d/ 2 × (2 + cosecπ/n-cotπ/n) Now, the reason for deciding the number of steel wires 3 will be explained later, but first we will explain the overall cable structure. do. The composite inner conductor of the cable is non-porous.
A steel wire 3 twisted with an outer tubular conductor 4 made of Cu,
Formed directly on the outside of 3'. This external tubular conductor 4 forms an effective DC conduction path for powering intermediate repeaters and also functions as a moisture barrier. Furthermore, this outer tubular conductor 4 serves to securely fix the steel wires 3, 3' surrounded by it, so that unraveling of the twisted steel wires 3, 3' during operation can also be prevented.

さて、本発明を特徴づける鋼線3の本数の決定
法についで述べる。ここではケーブル構造と製造
の難易から決めることとする。第10図は撚り線
の一般的集合体で、d1は光フアイバユニツト1の
外径、dは鋼線3の外径、d3は鋼線3相互の接触
点距離を示す。これらの関係はNを鋼線3の本数
とすると、次式となる。
Now, a method for determining the number of steel wires 3, which characterizes the present invention, will be described. Here, we will decide based on the cable structure and manufacturing difficulty. FIG. 10 shows a general assembly of stranded wires, where d 1 is the outer diameter of the optical fiber unit 1, d is the outer diameter of the steel wire 3, and d 3 is the distance between the points of contact between the steel wires 3. These relationships are as follows, where N is the number of steel wires 3.

d=d1/(cosecπ/n−1) d3=d・cos(180/N) ここで、接触点距離d3が鋼線3の径dと近い場
合には、層状に形成した鋼線3は光フアイバユニ
ツト1側に落込むおそれがある。そこで、d3/d
の比、dに対する集合鋼線3の数Nの関係を第1
1図に示した。ここでd1=2.3mmφである。本図
より、鋼線3の外径はN=3にすると約15mmとな
り、集合外径は32mmにもなるが、d3/dは0.5で
あり側圧特性には優れていることがわかる。一
方、N=6にするとd=2.3mm(但しユニツト外
径d1=2.3mmと仮定)であり、d3/d=0.865とな
ることから、鋼線3を長尺に収容することができ
製造性に優れているが、側圧特性では、N=3に
くらべて劣るといえる。そこで、Nの決定には、
製造性と機械的特性を満足する必要がある。な
お、鋼線3′は外部管状導体4を均等な円形に保
つためと、抗張力を向上させるために設けるもの
である。このように構成してあることから、外部
管状導体4をしめ込んだ場合、各鋼線3に均等な
外力が伝達され、鋼線3,3′及び外部管状導体
4からなる高強度な複合導体を得ることができ
る。ここで、得に注意すべき点は、鋼線3′は
3′相互で接触することはない点である。次に具
体例を示す。
d = d 1 / (cosecπ/n-1) d 3 = d・cos (180/N) Here, if the contact point distance d 3 is close to the diameter d of the steel wire 3, the steel wire formed in layers 3 may fall into the optical fiber unit 1 side. Therefore, d 3 /d
The relationship between the number N of steel wire bundles 3 and the ratio d is expressed as the first
It is shown in Figure 1. Here, d 1 =2.3 mmφ. From this figure, it can be seen that the outer diameter of the steel wire 3 is approximately 15 mm when N=3, and the collective outer diameter is 32 mm, but d 3 /d is 0.5 and the lateral pressure characteristics are excellent. On the other hand, when N=6, d=2.3 mm (assuming the unit outer diameter d 1 =2.3 mm), and d 3 /d=0.865, so the steel wire 3 can be accommodated in a long length. Although it has excellent manufacturability, it can be said that it is inferior to N=3 in terms of lateral pressure characteristics. Therefore, to determine N,
It is necessary to satisfy manufacturability and mechanical properties. The steel wire 3' is provided to maintain the outer tubular conductor 4 in a uniform circular shape and to improve tensile strength. Because of this structure, when the external tubular conductor 4 is inserted, an equal external force is transmitted to each steel wire 3, and a high-strength composite conductor consisting of the steel wires 3, 3' and the external tubular conductor 4 is formed. can be obtained. Here, it is particularly important to note that the steel wires 3' do not come into contact with each other. A specific example is shown next.

光フアイバユニツト径を2.3mmとし、2.3mm外径
の鋼線3を6本、鋼線3′の外径d2=0.814mmの外
径を有する鋼線3′を6心交互に配置されるよう
に集合し、6.9mmφの外径に仕上げ、その上に0.7
mmの鋼テープを形成し気密に溶接した。さらにポ
リエチレン外被7を設けて15mm外径のケーブルを
作製した。このケーブルの側圧特性は、1ton/cm
の荷重に対しても光損失が増加する等の問題のな
いことを確認した。
The diameter of the optical fiber unit is 2.3 mm, and six steel wires 3 with an outer diameter of 2.3 mm and six steel wires 3' with an outer diameter of d 2 =0.814 mm are arranged alternately. Gather it like this, finish it with an outer diameter of 6.9mmφ, and add 0.7
mm steel tape was formed and hermetically welded. Furthermore, a polyethylene jacket 7 was provided to produce a cable with an outer diameter of 15 mm. The lateral pressure characteristic of this cable is 1ton/cm
It was confirmed that there were no problems such as an increase in optical loss even under a load of .

(発明の効果) 以上説明したように、本発明は鋼線3の1層構
造からなり、かつ側圧特性も考慮して設計したケ
ーブル構造としていることから、経済的で、接続
性の作業性にすぐれる等の利点がある。
(Effects of the Invention) As explained above, the present invention has a cable structure consisting of a single layer structure of steel wire 3 and designed with lateral pressure characteristics in mind, so it is economical and improves the workability of connection. It has the following advantages:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第6図は従来の海底光ケーブルの横
断面図、第7図から第9図は本発明の実施例を示
す横断面図、第10図、第11図は本発明の海底
光ケーブルの機能を説明するための特性図及び一
部横断面略図である。 1……光フアイバユニツト、2……内部管状導
体、3……鋼線、4……外部管状導体、5……絶
縁層、6……外装鉄線、7……外被、3′……補
助鋼線。
Figures 1 to 6 are cross-sectional views of conventional submarine optical cables, Figures 7 to 9 are cross-sectional views of embodiments of the present invention, and Figures 10 and 11 are cross-sectional views of conventional submarine optical cables. They are a characteristic diagram and a partial cross-sectional schematic diagram for explaining functions. DESCRIPTION OF SYMBOLS 1... Optical fiber unit, 2... Inner tubular conductor, 3... Steel wire, 4... Outer tubular conductor, 5... Insulating layer, 6... Exterior iron wire, 7... Outer cover, 3'... Auxiliary steel wire.

Claims (1)

【特許請求の範囲】 1 側圧に耐えるとともにケーブルの張力補強機
能を併用する1層からなる鋼線部材で囲まれた内
部に弾性体に埋め込まれた少なくとも1本の光フ
アイバを含むケーブル心を備えた海底通信用の光
ケーブルにおいて、前記鋼線部材が、側圧と張力
補強用の一層の鋼線集合部材とその外側に生じた
空隙をうめる補助鋼線部材とよりなり、かつ非多
孔質防湿導電性の外部管状体内に完全に収納され
ていることを特徴とする海底光ケーブル。 2 前記導電性管が銅により形成されたことを特
徴とする特許請求の範囲第1項記載の海底光ケー
ブル。 3 前記外部管状体内の間隙に走水防止用樹脂が
かん欠的に充実されていることを特徴とする特許
請求の範囲第1項記載の海底光ケーブル。
[Claims] 1. A cable core including at least one optical fiber embedded in an elastic body surrounded by a single-layer steel wire member that can withstand lateral pressure and also has a cable tension reinforcing function. In the optical cable for submarine communication, the steel wire member is composed of a single-layer steel wire assembly member for lateral pressure and tension reinforcement, and an auxiliary steel wire member to fill the voids formed outside the steel wire assembly member, and is non-porous, moisture-proof and conductive. A submarine optical cable characterized in that it is completely contained within an external tubular body of. 2. The submarine optical cable according to claim 1, wherein the conductive tube is made of copper. 3. The submarine optical cable according to claim 1, wherein the gaps in the external tubular body are filled with a resin for preventing water running intermittently.
JP11823984A 1984-06-11 1984-06-11 Submarine optical cable Granted JPS60262307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11823984A JPS60262307A (en) 1984-06-11 1984-06-11 Submarine optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11823984A JPS60262307A (en) 1984-06-11 1984-06-11 Submarine optical cable

Publications (2)

Publication Number Publication Date
JPS60262307A JPS60262307A (en) 1985-12-25
JPH0547923B2 true JPH0547923B2 (en) 1993-07-20

Family

ID=14731677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11823984A Granted JPS60262307A (en) 1984-06-11 1984-06-11 Submarine optical cable

Country Status (1)

Country Link
JP (1) JPS60262307A (en)

Also Published As

Publication number Publication date
JPS60262307A (en) 1985-12-25

Similar Documents

Publication Publication Date Title
US4422718A (en) Submarine optical fiber cable
US5122622A (en) Electrical cable having a bearing part and two concentrically arranged conductors
US4606604A (en) Optical fiber submarine cable and method of making
US5125062A (en) Undersea telecommunications cable having optical fibers
US4497537A (en) Electric and/or optical cable
CA1220960A (en) Two-pole powered ruggedized optical fiber cable and method and apparatus for forming the same
JPH04229907A (en) Submarine cable for electric communi- cation having optical fibers
US3843829A (en) Center strength member cable
JPH0223845B2 (en)
JPS6354161B2 (en)
EP0193779B1 (en) Optical-fibres telecommunications submarine cable
JPS61209409A (en) Optical fiber communication submarine cable
US6567591B2 (en) Submarine cable and method for the manufacture thereof
US4836641A (en) Submarine optical fiber line with interconnected different cable types
US6058603A (en) Method for terminating non-metallic transmission cables
GB2036361A (en) Reinforced Optical Fiber Conductor and Optical Fiber Cable Incorporating such Conductors
US4644097A (en) Armored submarine power cable
EP0088519A1 (en) Optical fibre cables
KR20240002942A (en) Rigid submarine power cable joint
JPH0547923B2 (en)
US4936648A (en) Towing composite coaxial optical cable
CN210052552U (en) Dynamic optical fiber composite submarine cable for tidal current energy power generation
CN215118367U (en) Zero-buoyancy floating cable of longitudinal watertight underwater robot
CN217444126U (en) 4-core double-steel-wire armored normal-temperature load-bearing detection cable
CN219591152U (en) Low-resistivity high-strength voltage power cable

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term