JPH0547890B2 - - Google Patents

Info

Publication number
JPH0547890B2
JPH0547890B2 JP58233033A JP23303383A JPH0547890B2 JP H0547890 B2 JPH0547890 B2 JP H0547890B2 JP 58233033 A JP58233033 A JP 58233033A JP 23303383 A JP23303383 A JP 23303383A JP H0547890 B2 JPH0547890 B2 JP H0547890B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
ferromagnetic metal
film layer
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58233033A
Other languages
Japanese (ja)
Other versions
JPS60125928A (en
Inventor
Kaji Maezawa
Nobuo Nakamura
Yoshiaki Kai
Susumu Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23303383A priority Critical patent/JPS60125928A/en
Publication of JPS60125928A publication Critical patent/JPS60125928A/en
Publication of JPH0547890B2 publication Critical patent/JPH0547890B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は磁気テープ、磁気デイスク等の磁気記
録媒体で、特に高記録密度にすぐれた強磁性金属
薄膜型の磁気記録媒体に関するものである。 従来例の構成とその問題点 近年、磁気記録媒体は、磁気記録密度の向上に
見られるようにその技術的発展はめざましいもの
がある。従来の磁気記録媒体の例としてオーデイ
オ、ビデオ用テープとしてr−Fe2O3粉末、CrO2
粉末、純鉄粉末等を樹脂等のバインダーとともに
高分子フイルム上に塗着せしめたいわゆる塗布型
の磁気記録媒体がある。しかし、従来の塗布型の
磁気記録媒体より保磁力、記録密度、電磁変換性
を改良するために真空蒸着、メツキ、イオンプレ
ーテイング、スパツタリングなどの方法で、Fe、
Ni、Co、Cr等の磁性体金属を単独、もしくは合
金で高分子フイルム基板上に蒸着する金属薄膜型
の磁気記録媒体の検討がなされている。また強磁
性金属薄膜型の磁気記録媒体として斜方入射蒸着
法を用いたマイクロカセツト用テープが既に実用
化されている。 強磁性金属薄膜型の磁気記録媒体における大き
な問題点として、例えばビデオ用のテープとして
使用する場合、デツキでの繰返し走行時に出力の
変化がなく、目づまりしないもので、かつあらゆ
る環境下で使用可能能なものでなければならな
い。さらに、前記ビデオ用のテープは、真空蒸着
法等に見られるように表面性は従来塗布型のテー
プと比較して非常にすぐれれ、数百Å以下の性を
維持することも可能でノイズの少ないカラー出力
の高い、高画質が得られる。しかし、表面性を良
くすると画質は改善されるが、記録再生時にヘツ
ドとテープ間の摩擦係数は上昇し、走行性が不安
定になり、繰返し走行時には走行不能となるとい
つた走行耐久性に欠点を有していた。また、強磁
性金属薄膜型の磁気記録媒体における表面層は金
属で覆われているため塗布型の磁気記録媒体と比
較して、保存特性に乏しい欠点を有している。 発明の目的 本発明者らは、以上のような欠点に鑑み、種々
深索を行い、走行耐久性のすぐれた、保存特性の
良い、磁気記録媒体を提供するものである。 発明の構成 本発明は強磁性金属薄膜層とフツ素化合物との
少なくとも間に水酸化物を有し、フツ素化合物と
水酸化物をOH/F比で0.2ないし5.0の範囲で担
持した磁気記録媒体であり、走行耐久性が優れる
と共に、あらゆる環境下での保存特性が向上され
るものである。 実施例の説明 以下本発明の実施例について、図面を参照しな
がら説明する。 図は、本発明の実施例における磁気記録媒体の
基本構成を示す断面図である。図において、1は
高分子フイルム、2は高分子フイルム1上に形成
された強磁性金属薄膜層であり、さらに強磁性金
属薄膜層2上にはフツ素化合物からなる上面層3
が形成されている。ここで図示はしないが、強磁
性金属薄膜層2とフツ素化合物との少なくとも間
に水酸化物を有している。 ここで高分子フイルム1としては、ポリエチレ
ンテレフタレート、ポリアミド、ポリイミド、ポ
リ塩化ビニル、ポリエチレンナフタレート、ポリ
カーボネート、セルローズトリアセテート等から
適宜選択される。強磁性金属薄膜層2は、Co、
Fe、Ni、Cr、或いはこれらをベースにした各種
の合金、例えば、Co−Ni、Co−Fe、Co−Cr、
Co−Cu、Co−Pt、Co−Cd、Co−Sn、Co−Ni
−Cr、およびこれらの金属酸化物を示し、磁化
方法により面内磁化膜、垂直磁化膜等が可能で強
磁性金属薄膜層の形成方法は、蒸着、イオンプレ
ーテイング、スパツタリングまたは気相成長法等
から適宜選択される。また本発明に用いられるフ
ツ素化合物3はフツ素系有機化合物及び、フツ素
系無機化合物に大別される。ここで、フツ素系有
機化合物としては、フツ素系界面活性剤であるパ
ーフルオルアルキル基に−COOH、−COOMe
(Me:金属)、−COONH4、−SO3H、−SO3Me
(Me:金属)、−SO3NH4などの活性基を有するも
の、フツ素系プラスチツクである。テトラフルオ
ロエチレン樹脂、テフロン、ヘキサフルオロプロ
ペン、ペルフルオロ−α−オレフイン類、フツ化
ビニル、フツ化ビニリデンなど、またフツ素化エ
ラストマー、共重合体等のポリフルオロ化合物か
ら適宜選択される。またハイドロカーボン化合物
の部分フルオロ化合物についても可能である。 また本発明に用いられるフツ素系無機化合物と
しては、Li、Na、K、Rb、Cs、Be、Mg、Ca、
Sr、Ba、B、Al、Ga、In、Tl、C、Si、N、
P、O、S、Cl、Br、I、とフツ素の2種以上
からなる化合物から適宜選択される。 フツ素化合物の形成方法は、従来から知られて
いる湿式法、あるいは、蒸着法、スパツタリング
法、イオンプレーテイング法、気相成長法、プラ
ズマ重合法等による乾式法のいずれでも良い。 本発明は強磁性金属薄膜層とフツ素化合物から
なる上面層との少なくとも間に水酸化物を有する
ものであるが、水酸化物を強磁性金属薄膜層とフ
ツ素化合物からなる上面層との間に介在させる方
法は強磁性金属薄膜層を形成後に強磁性金属薄膜
層内に水酸化物を化学または物理吸着するか、フ
ツ素化合物中に溶媒として水酸化物を用いるか、
あるいは乾式法によるフツ素化合物被覆時に水酸
化物雰囲気中で強磁性金属薄膜層表面にフツ素化
合物を被覆する方法がある。この場合、強磁性金
属薄膜層表面のフツ素化合物と水酸化物の比率と
しては、OH/F0.2〜5の範囲が適当で磁気記録
媒体のOH量を定量化するために光電子分析装置
(以下、ESCAと称す)を用いて、FとOHのスペ
クトルを定量化し、スペクトルの感度補正を考慮
し、OH/Fの比率から最適なOH量を見積つた。 以上のように構成された磁気記録媒体は、強磁
性金属薄膜層とフツ素化合物から成る上面層との
少なくとも間に水酸化物を介在させることで強磁
性金属薄膜層とフツ素化合物との附着強度および
分散度を向上させたもので、デツキによる繰返し
走行耐久性にすぐれ、かつ保存特性である耐蝕
性、耐候性にすぐれたものである。 以下に本発明のさらに具体的な実施例を説明す
る。 実施例 1 ポリエチレンテレフタレートフイルムに斜方蒸
着法により酸素ガス雰囲気中でCo80−Ni20%の
合金を電子ビーム溶解し、厚さ1500Åの強磁性金
属薄膜層を形成した。蒸着時の蒸気流の入射角は
40゜Rから90゜R成分で平均蒸着速度1000Å/secで
行つた。この場合真空装置の排気には油拡散ポン
プを使用し、真空度10-4〜10-5torr下でCO−Ni
合金の蒸着を行つた。形成された強磁性金属薄膜
層上にパーフルオロアルキル基の炭素数9のパー
フルオロアルキルカルボン酸を0.1wt%エタノー
ル液とし、リバースロール法によつて塗布液の濃
度が10mg/m2となるよう塗布した。この場合
ESCAによるOH/F値は1.2である。 実施例 2 実施例1の真空排気系にクライオポンプを使用
し、酸素ガス−水蒸気雰囲気中(含水率10vol%)
で同様に真空蒸着を行い、実施例1同様にパーフ
ルオロアルキル基に−COOCoの活性基を有する
ものを同量塗布した。 この場合ESCAによるOH/F値は2.0である。 実施例 3 実施例1と同様に真空蒸着した強磁性金属薄膜
層上に同じ真空装置内で、フツ素プラスチツクで
あるテトラフルオロエチレン樹脂を100Åの厚み
になるよう乾式法による有機蒸着で水蒸気雰囲気
中でコーテイングした。 この場合ESCAによるOH/F値は0.8である。 実施例 4 実施例1の真空雰囲気中に酸素−水蒸気(5vol
%)混合ガスを導入し、ポリエチレンテレフタレ
ートフイルム上に厚さ1300Åの強磁性金属薄膜層
を形成した。その強磁性金属薄膜層上にハイドロ
カーボン化合物の部分フルオロ化合物をイソプロ
ピルアルコールで0.3wt%溶液とし、塗布液濃度
が30mg/m2となるように塗布した。この場合
ESCAによるOH/F値は0.5である。 実施例 5 実施例2で得られた強磁性金属薄膜層上にスパ
ツタリング法を用いてフツ素系無機化合物である
フツ化ボロンを厚さが50Åになるようコーテイン
グした。 この場合ESCAによるOH/F値は3.0である。 実施例 6 実施例1と同様の方法でパーフルオロアルキル
カーボン酸をエタノール溶媒で溶かし、ESCAに
よるOH/F値が0.2になるよう高濃度で塗布す
る。 実施例 7 実施例1と同様の方法でパーフルオロアルキル
カルボン酸をエタノール溶媒で溶かし、ESCAに
よるOH/F値基板が5になるよう低濃度で塗布
する。 以上の実施例で得られた磁気記録媒体を8mm幅
のテープに裁断し、そのテープについて、環境保
存特性についての評価を行つた。 評価法は市販のVHSデツキ(例えば松下電器
製マツクロード88:NV−8800型)と同等の走行
系を有する8mm幅用のデツキ試験機用として試作
し、テープ長50mにつき、繰り返し走行における
走行耐久性、および50℃−90%環境保存前后の特
性を調べた。 また、強磁性金属薄膜層上の水酸化物を定量化
するためにESCAを用いて、Co金属と水酸化物
のスペクトルを定量化し、スペクトルの感度補正
を考慮し、OH/Fの比率から水酸化物量を見積
つた。 走行耐久性としてテープを試作デツキに
100pass走行させ、走行前后の比100pass/初期の
摩擦係数値、100pass後の出力変動および目づま
り状態を観察した。 環境保存特性は、50℃−90%雰囲気中に1ケ月
放置、保存前後の磁気特性の変化、ESCAによる
OH基の増加および試作デツキを用いた繰り返し
走行による出力変化で評価した。試験前后で変化
量の少ないものは丸印で、少し変化が見られるが
実用上さしつかえないものは三角印、変化量が大
きく、実用上使用不可なものは×印の評価を行つ
た。 本発明の実施例の評価結果をまとめると第一表
のように高分子フイルム上に強磁性金属薄膜層を
形成し、該表面にフツ素化合物からなる上面層を
形成し、フツ素と水酸化物の比率を最適化するこ
とで、テープの走行耐久性は改善し、かつ各種環
境下での保存特性は大幅に改善される。本発明で
水酸化化合物の最適量はOH/F比
INDUSTRIAL APPLICATION FIELD The present invention relates to magnetic recording media such as magnetic tapes and magnetic disks, and particularly to ferromagnetic metal thin film type magnetic recording media with excellent high recording density. Conventional Structure and Problems There has been remarkable technological development in magnetic recording media in recent years, as seen in the improvement in magnetic recording density. Examples of conventional magnetic recording media include r-Fe 2 O 3 powder and CrO 2 for audio and video tapes.
There is a so-called coating type magnetic recording medium in which powder, pure iron powder, etc. is coated on a polymer film together with a binder such as a resin. However, in order to improve coercive force, recording density, and electromagnetic conversion properties compared to conventional coating-type magnetic recording media, methods such as vacuum evaporation, plating, ion plating, and sputtering have been used to improve Fe,
Metal thin film type magnetic recording media in which magnetic metals such as Ni, Co, and Cr are deposited singly or as an alloy on a polymer film substrate have been studied. Further, as a ferromagnetic metal thin film type magnetic recording medium, a microcassette tape using an oblique incidence deposition method has already been put into practical use. A major problem with ferromagnetic metal thin film magnetic recording media is that when used as a video tape, for example, there is no change in output when repeatedly running on a deck, there is no clogging, and it can be used in any environment. must be capable. Furthermore, the video tape has extremely superior surface properties compared to conventional coating-type tapes, as seen in vacuum evaporation methods, and can maintain surface properties of several hundred Å or less, reducing noise. High image quality with less color output can be obtained. However, although improving the surface quality improves the image quality, the coefficient of friction between the head and the tape increases during recording and playback, making the running performance unstable and causing the tape to become unable to run during repeated runs, resulting in poor running durability. It had Furthermore, since the surface layer of a ferromagnetic metal thin film type magnetic recording medium is covered with metal, it has a drawback of poor storage characteristics compared to a coated type magnetic recording medium. Purpose of the Invention In view of the above-mentioned drawbacks, the inventors of the present invention have conducted various investigations to provide a magnetic recording medium that has excellent running durability and good storage characteristics. Structure of the Invention The present invention provides a magnetic recording medium having a hydroxide between at least a ferromagnetic metal thin film layer and a fluorine compound, and carrying the fluorine compound and the hydroxide at an OH/F ratio in the range of 0.2 to 5.0. It is a medium with excellent running durability and improved storage characteristics under all environments. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figure is a sectional view showing the basic configuration of a magnetic recording medium in an embodiment of the present invention. In the figure, 1 is a polymer film, 2 is a ferromagnetic metal thin film layer formed on the polymer film 1, and further on the ferromagnetic metal thin film layer 2 is an upper surface layer 3 made of a fluorine compound.
is formed. Although not shown here, hydroxide is present at least between the ferromagnetic metal thin film layer 2 and the fluorine compound. Here, the polymer film 1 is appropriately selected from polyethylene terephthalate, polyamide, polyimide, polyvinyl chloride, polyethylene naphthalate, polycarbonate, cellulose triacetate, and the like. The ferromagnetic metal thin film layer 2 is made of Co,
Fe, Ni, Cr, or various alloys based on these, such as Co-Ni, Co-Fe, Co-Cr,
Co−Cu, Co−Pt, Co−Cd, Co−Sn, Co−Ni
- Cr and these metal oxides, and can be made into in-plane magnetization films, perpendicular magnetization films, etc. depending on the magnetization method.The formation method of the ferromagnetic metal thin film layer is vapor deposition, ion plating, sputtering, vapor phase growth, etc. Appropriately selected from. Further, the fluorine compounds 3 used in the present invention are roughly classified into fluorine-based organic compounds and fluorine-based inorganic compounds. Here, as the fluorine-based organic compound, -COOH, -COOMe is added to the perfluoroalkyl group of the fluorine-based surfactant.
(Me: metal), −COONH 4 , −SO 3 H, −SO 3 Me
(Me: metal), those with active groups such as -SO 3 NH 4 , and fluorine-based plastics. It is appropriately selected from polyfluoro compounds such as tetrafluoroethylene resin, Teflon, hexafluoropropene, perfluoro-α-olefins, vinyl fluoride, vinylidene fluoride, and fluorinated elastomers and copolymers. It is also possible to use partially fluoro compounds of hydrocarbon compounds. In addition, the fluorine-based inorganic compounds used in the present invention include Li, Na, K, Rb, Cs, Be, Mg, Ca,
Sr, Ba, B, Al, Ga, In, Tl, C, Si, N,
It is appropriately selected from compounds consisting of two or more of P, O, S, Cl, Br, I, and fluorine. The method for forming the fluorine compound may be a conventionally known wet method or a dry method such as a vapor deposition method, a sputtering method, an ion plating method, a vapor phase growth method, or a plasma polymerization method. The present invention has a hydroxide at least between a ferromagnetic metal thin film layer and a top layer made of a fluorine compound. The intervening method is to chemically or physically adsorb hydroxide into the ferromagnetic metal thin film layer after forming the ferromagnetic metal thin film layer, or to use hydroxide as a solvent in the fluorine compound.
Alternatively, there is a method in which the surface of the ferromagnetic metal thin film layer is coated with the fluorine compound in a hydroxide atmosphere during coating with the fluorine compound by a dry method. In this case, the appropriate ratio of fluorine compound to hydroxide on the surface of the ferromagnetic metal thin film layer is in the range of OH/F0.2 to 5, and a photoelectron analyzer is used to quantify the OH amount of the magnetic recording medium. The F and OH spectra were quantified using ESCA (hereinafter referred to as ESCA), and the optimal amount of OH was estimated from the OH/F ratio, taking into account the sensitivity correction of the spectrum. The magnetic recording medium constructed as described above has a structure in which the ferromagnetic metal thin film layer and the fluorine compound adhere to each other by interposing hydroxide at least between the ferromagnetic metal thin film layer and the upper surface layer made of the fluorine compound. It has improved strength and dispersion, has excellent durability against repeated running on a deck, and has excellent storage properties such as corrosion resistance and weather resistance. More specific examples of the present invention will be described below. Example 1 A ferromagnetic metal thin film layer with a thickness of 1500 Å was formed on a polyethylene terephthalate film by electron beam melting a Co80-Ni20% alloy in an oxygen gas atmosphere by oblique evaporation. The angle of incidence of the vapor flow during deposition is
The deposition was carried out at an average deposition rate of 1000 Å/sec with 40°R to 90°R components. In this case, an oil diffusion pump is used to exhaust the vacuum equipment, and CO−Ni is heated under a vacuum degree of 10 -4 to 10 -5 torr.
The alloy was deposited. On the formed ferromagnetic metal thin film layer, a 0.1 wt% ethanol solution of perfluoroalkylcarboxylic acid having 9 carbon atoms in a perfluoroalkyl group was applied, and the concentration of the coating solution was adjusted to 10 mg/m 2 by a reverse roll method. Coated. in this case
The OH/F value by ESCA is 1.2. Example 2 A cryopump was used in the vacuum evacuation system of Example 1, and the vacuum pump was used in an oxygen gas-steam atmosphere (water content 10 vol%).
Vacuum deposition was performed in the same manner as in Example 1, and the same amount of a material having a perfluoroalkyl group and an active group of -COOCo was applied. In this case, the OH/F value by ESCA is 2.0. Example 3 On a ferromagnetic metal thin film layer vacuum-deposited in the same manner as in Example 1, in the same vacuum apparatus, tetrafluoroethylene resin, which is a fluorine plastic, was organically deposited to a thickness of 100 Å using a dry method in a water vapor atmosphere. Coated with. In this case, the OH/F value by ESCA is 0.8. Example 4 Oxygen-water vapor (5 vol) was added to the vacuum atmosphere of Example 1.
%) mixed gas was introduced to form a ferromagnetic metal thin film layer with a thickness of 1300 Å on the polyethylene terephthalate film. A 0.3 wt % solution of a partially fluorinated hydrocarbon compound in isopropyl alcohol was applied onto the ferromagnetic metal thin film layer at a coating solution concentration of 30 mg/m 2 . in this case
The OH/F value by ESCA is 0.5. Example 5 The ferromagnetic metal thin film layer obtained in Example 2 was coated with boron fluoride, which is a fluorine-based inorganic compound, to a thickness of 50 Å using a sputtering method. In this case, the OH/F value by ESCA is 3.0. Example 6 In the same manner as in Example 1, perfluoroalkyl carbon acid is dissolved in ethanol solvent and applied at a high concentration so that the OH/F value by ESCA is 0.2. Example 7 In the same manner as in Example 1, perfluoroalkylcarboxylic acid is dissolved in ethanol solvent and applied at a low concentration so that the OH/F value of the substrate by ESCA is 5. The magnetic recording medium obtained in the above example was cut into tapes with a width of 8 mm, and the tapes were evaluated for environmental preservation characteristics. The evaluation method was to create a prototype for an 8 mm width deck testing machine that has a running system equivalent to that of a commercially available VHS deck (for example, Matsushita Electric's Matsuku Road 88: NV-8800 model), and test the running durability of repeated runs for a tape length of 50 m. The characteristics were investigated before and after storage at 50°C and 90% environment. In addition, in order to quantify the hydroxide on the ferromagnetic metal thin film layer, we used ESCA to quantify the spectra of Co metal and hydroxide. The amount of oxide was estimated. Tape used as prototype deck for running durability
It was run for 100 passes, and the ratio before and after running 100 passes/initial friction coefficient value, the output fluctuation after 100 passes, and the clogging state were observed. Environmental storage characteristics are determined by leaving it in a 90% atmosphere at 50℃ for one month, changing magnetic properties before and after storage, and ESCA.
Evaluation was made based on the increase in OH groups and the change in output due to repeated running using a prototype deck. Those with a small amount of change before and after the test were marked with a circle, those with a slight change that could be seen as practically unacceptable were marked with a triangle, and those with a large amount of change that were practically unusable were marked with an x. To summarize the evaluation results of the examples of the present invention, as shown in Table 1, a ferromagnetic metal thin film layer is formed on a polymer film, and an upper surface layer consisting of a fluorine compound is formed on the surface, and fluorine and hydroxide are formed. By optimizing the ratio of materials, the running durability of the tape is improved and the storage characteristics under various environments are significantly improved. In the present invention, the optimum amount of hydroxide compound is the OH/F ratio

【表】 本発明で水酸化物の最適量はOH/F比0.2〜
5.0の範囲で、OH/F比が0.2以下では耐久走行
性に乏しくかつ、保存特性に効果が表わさず、ま
た5.0以上では逆に、水酸化物が目づまりおよび
走行性に悪影響をおよぼす。好ましくは0.3〜3.0
の範囲で水酸化物の適量範囲があるのはおそら
く、水酸化物と磁性金属とフツ素系化合物との反
応性に関係し、水酸化物がフツ素系化合物と磁性
金属との附着強度、およびフツ素化合物の分散度
に関与するためと考えられる。 なお、本実施例では数種類の試料について、具
体的に効果を示したが、本発明を構成する前述の
他の材料の組合せにおいても同様の効果を有する
ことを確認した。 さらに、前記実施例では磁気記録媒体として磁
気テープを例にして説明したが、本発明の要旨を
逸脱しない範囲で磁気デイスク、磁気シート等の
形態をとるここともできるものである。 発明の効果 以上のように本発明は、高分子フイルム上に形
成された強磁性金属薄膜層と、その強磁性金属薄
膜層上に形成されたフツ素化合物からなる上面層
とを備え、強磁性金属薄膜層とフツ素化合物との
少なくとも間に水酸化物を有し、水酸化物量を最
適化することで走行耐久性能を改善し、かつ環境
保存特性の改善をはかることが出来、その実用的
効果は大きい。
[Table] In the present invention, the optimum amount of hydroxide is OH/F ratio 0.2~
In the range of 5.0, if the OH/F ratio is less than 0.2, the running durability will be poor and the storage properties will not be affected, and if it is more than 5.0, the hydroxide will cause clogging and adversely affect the running properties. Preferably 0.3-3.0
The reason why there is an appropriate amount of hydroxide within this range is probably related to the reactivity of the hydroxide, magnetic metal, and fluorine-based compound, and the hydroxide has a strong adhesion strength between the fluorine-based compound and the magnetic metal. This is thought to be because it is involved in the degree of dispersion of the fluorine compound. In this example, the effects were specifically shown for several types of samples, but it was confirmed that the combinations of the other materials mentioned above constituting the present invention also had similar effects. Further, in the above embodiments, a magnetic tape was used as an example of the magnetic recording medium, but it is also possible to take the form of a magnetic disk, a magnetic sheet, etc. without departing from the gist of the present invention. Effects of the Invention As described above, the present invention includes a ferromagnetic metal thin film layer formed on a polymer film, and an upper surface layer made of a fluorine compound formed on the ferromagnetic metal thin film layer. Hydroxide is present at least between the metal thin film layer and the fluorine compound, and by optimizing the amount of hydroxide, it is possible to improve running durability and environmental preservation characteristics, making it practical. The effect is great.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例における磁気記録媒体を示
す断面図である。 1……高分子フイルム、2……強磁性金属薄膜
層、3……上面層。
The figure is a sectional view showing a magnetic recording medium in an example of the present invention. 1...Polymer film, 2...Ferromagnetic metal thin film layer, 3...Top layer.

Claims (1)

【特許請求の範囲】[Claims] 1 高分子フイルム上に形成された強磁性金属薄
膜層と、その強磁性金属薄膜層上に形成されたフ
ツ素化合物からなる上面層とを備え、前記強磁性
金属薄膜層と前記フツ素化合物との少なくとも間
に水酸化物を有し、前記フツ素化合物と前記水酸
化物をOH/F比で0.2ないし5.0の範囲で担持す
ることを特徴とする磁気記録媒体。
1 A ferromagnetic metal thin film layer formed on a polymer film, and an upper surface layer made of a fluorine compound formed on the ferromagnetic metal thin film layer, wherein the ferromagnetic metal thin film layer and the fluorine compound 1. A magnetic recording medium characterized in that the fluorine compound and the hydroxide are supported at an OH/F ratio in the range of 0.2 to 5.0.
JP23303383A 1983-12-09 1983-12-09 Magnetic recording medium Granted JPS60125928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23303383A JPS60125928A (en) 1983-12-09 1983-12-09 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23303383A JPS60125928A (en) 1983-12-09 1983-12-09 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60125928A JPS60125928A (en) 1985-07-05
JPH0547890B2 true JPH0547890B2 (en) 1993-07-20

Family

ID=16948751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23303383A Granted JPS60125928A (en) 1983-12-09 1983-12-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60125928A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568722A (en) * 1979-06-29 1981-01-29 Hitachi Ltd Transporting vehicle
JPS5687229A (en) * 1979-12-14 1981-07-15 Hitachi Maxell Ltd Magnetic recording medium
JPS57198541A (en) * 1981-05-29 1982-12-06 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568722A (en) * 1979-06-29 1981-01-29 Hitachi Ltd Transporting vehicle
JPS5687229A (en) * 1979-12-14 1981-07-15 Hitachi Maxell Ltd Magnetic recording medium
JPS57198541A (en) * 1981-05-29 1982-12-06 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS60125928A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
US4582746A (en) Magnetic recording medium
JPH0253849B2 (en)
JPH0546014B2 (en)
JPH0547890B2 (en)
JPH0566648B2 (en)
JP2959110B2 (en) Manufacturing method of magnetic tape
JPH0715751B2 (en) Method of manufacturing magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPS6145412A (en) Production of magnetic recording medium
KR960000822B1 (en) A magnetic recording medium
JPS62271220A (en) Production of magnetic recording medium
JPS59229737A (en) Metallic thin film type magnetic recording medium and its manufacture
JPH01112528A (en) Magnetic recording medium
JPH053653B2 (en)
JPH053051B2 (en)
JPH1173643A (en) Production of magnetic recording medium
JPS62103849A (en) Production of magnetic recording medium
JPS6295733A (en) Magnetic recording medium
JPS59188826A (en) Magnetic recording medium
JPH0312817A (en) Magnetic recording medium
JPS61220118A (en) Magnetic recording medium
JPH06267060A (en) Magnetic recording medium
JPS60205820A (en) Magnetic recording medium and its production
JPH0475576B2 (en)
JPH044648B2 (en)