JPH0547823B2 - - Google Patents

Info

Publication number
JPH0547823B2
JPH0547823B2 JP61304939A JP30493986A JPH0547823B2 JP H0547823 B2 JPH0547823 B2 JP H0547823B2 JP 61304939 A JP61304939 A JP 61304939A JP 30493986 A JP30493986 A JP 30493986A JP H0547823 B2 JPH0547823 B2 JP H0547823B2
Authority
JP
Japan
Prior art keywords
photoreceptor
compound
layer
pigments
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61304939A
Other languages
Japanese (ja)
Other versions
JPS63155047A (en
Inventor
Kyoshi Tamaki
Koichi Kudo
Yoshihiko Eto
Yoshiaki Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP30493986A priority Critical patent/JPS63155047A/en
Publication of JPS63155047A publication Critical patent/JPS63155047A/en
Publication of JPH0547823B2 publication Critical patent/JPH0547823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/051Organic non-macromolecular compounds
    • G03G5/0517Organic non-macromolecular compounds comprising one or more cyclic groups consisting of carbon-atoms only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0609Acyclic or carbocyclic compounds containing oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0618Acyclic or carbocyclic compounds containing oxygen and nitrogen

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真感光体に関し、特に有機光導
電性電子写真感光体の改良に関する。 〔従来の技術〕 カールソン方法の電子写真複写機においては、
感光体表面に帯電させた後、露光によつて静電潜
像を形成し、その静電潜像をトナーによつて現像
し、次いでその可視像を紙等に転写、定着させ
る。 一方、感光体には付着トナーの除去や除電、表
面の清浄化が施され、長期に亘つて反復使用され
る。 従つて、電子写真感光体としては、帯電特性お
よび感度が良好で更に暗減衰が小さい等の電子写
真特性は勿論、加えて繰返し使用での耐刷性、耐
摩耗性、耐湿性等の物理的性質や、コロナ放電時
に発生するオゾン、露光時の紫外線等への耐性
(耐環境性)においても良好であることが要求さ
れる。 従来、電子写真感光体としては、セレン、酸化
亜鉛、硫化カドミウム等の無機光導電性物質を主
成分とする感光体層を有する無機感光体が広く用
いられている。 一方、種々の有機光導電性物質を電子写真感光
体の感光体層の材料として利用することが近年活
発に研究、開発されている。 例えば特公昭50−10496号には、ポリ−N−ビ
ニルカルバゾールと2,4,7−トリニトロ−9
−フルオレノンを含有した感光体層を有する有機
感光体について記載されている。しかしこの感光
体は、感度及び耐久性において必ずしも満足でき
るものではない。このような欠点を改善するため
に、感光体層において、電荷発生機能と電荷輸送
機能とを異なる物質に個別に分担させることによ
り、感度が高くて耐久性の大きい有機感光体を開
発する試みがなされている。このようないわば機
能分離型の電子写真感光体においては、各機能を
発揮する物質を広い範囲のものから選択すること
ができるので、任意の特性を有する電子写真感光
体を比較的容易に作製することが可能である。 こうした機能分離型の電子写真感光体に有効な
電荷発生物質として、従来数多くの物質が提案さ
れている。無機物質を用いる例としては、例えば
特公昭43−16198号に記載されているように、無
定形セレンがある。これは有機電荷輸送物質と組
合される。 また、有機染料や有機顔料を電荷発生物質とし
て用いた電子写真感光体も多数提案されており、
例えば、ビスアゾ化合物を含有する感光体層を有
するものは、特開昭47−37543号、同55−22834
号、同54−79632号、同56−116040号等により既
に知られている。 ところで、有機光導電性物質を用いる公知の感
光体は通常、負帯電用として使用されている。こ
の理由は、負帯電使用の場合には、電荷のうちホ
ールの移動度が大きいことから、光感度等の面で
有利なためである。 しかしながら、このような負帯電使用の場合の
問題は、帯電器による負帯電時に雰囲気中にオゾ
ンが発生し易くなり、環境条件を悪くしてしま
う。また、負帯電用感光体の現像には正極性のト
ナーが必要となるが、正極性のトナーは強磁性体
電荷粒子に対する摩擦帯電系列からみて製造が困
難であることである。 そこで、有機光導電性物質を用いる感光体を正
帯電で使用する、例えば、電荷発生層上に電荷輸
送層を積層し、電荷輸送層を電子輸送能の大きい
物質で形成する正帯電感光体等が提案されてい
る。しかしながら電荷輸送層に例えばトリニトロ
フルオレノン等を含有せしめると、該物質が発癌
性である等の問題を提起することがある。他方、
ホール輸送能の大きい電荷輸送層上に電荷発生層
を積層した正帯電感光体が考えられるが、この機
構では表面側に存在させる電荷発生層を非常に薄
くする必要があり、耐刷性等が悪くなり、実用的
な層構成ではない。 また、正帯電感光体として、米国特許3615414
号には、チアピリリウム塩(電荷発生物質)をポ
リカーボネート(バインダ樹脂)と錯体を形成す
るように含有させたものが示されている。しかし
この感光体では、メモリ現象が大きく、ゴースト
も発生し易いという欠点がある。また米国特許
3357989号には、フタロシアニンを含有せしめた
感光体が示されているが、フタロシアニンは結晶
型によつて特性が変化する上、結晶型を厳密に制
御する必要があり、更に短波長感度が不足しかつ
メモリ現象も大きく、可視光波長域の光源を用い
る複写機には不適当である。 このように正帯電感光体を得るための試みが
種々行なわれているが、いずれも感光度、メモリ
現象又は労働衛生等、また紫外線耐性、耐オゾン
酸化性等の耐用性の点で改善すべき多くの問題点
がある。 そこで機能上から光照射時ホール及び電子を発
生する電荷発生物質を含有する電荷発生層を上層
(表面層)とし、ホール輸送機能を有する電荷輸
送物質を含む電荷輸送層を下層とする積層構成の
感光体を正、負両帯電感光体の基本形とし、足ら
ざるを補完することが考えられる。 なおかかる感光体においては、構造中に例えば
電子吸引性基を有する電荷発生物質を用いるよう
にすれば、感光体表面の正電荷を打消すための電
子の移動が早くなり、高感度特性が得られること
が考えられる。 しかしながら、前記正帯電感光体は電荷発生物
質を含む層が表面層として形成されるため、光照
射、特に紫外線等の短波光照射、コロナ放電、湿
度、オゾン酸化、機械的摩擦等外部作用に脆弱な
電荷発生物質が直接に曝されることとなり、感光
体の保存中及び像形成の過程で電子写真性能が劣
化し、画質が低下するようになる。 従来の電荷輸送層を表面層とする負帯電感光体
においては、前記各種の外部作用の影響は極めて
少なく、むしろ前記電荷輸送層が下層の電荷発生
層を保護する作用を有している。 そこで、例えば絶縁性かつ透明な樹脂から成る
薄い保護層を設け、前記電荷発生物質を含む層を
外部作用から保護することが考えられるが、光照
射時発生する電荷が該保護層でブロツキングされ
て光照射効果が失なわれてくるし、また表面層と
なる保護層が厚い場合には感度低下を招き、剰え
紫外線遮断効果も少ないので、外部作用からの遮
蔽、特に紫外線からの保護を単なる保護層だけに
委ねることはできない。 〔発明の目的〕 本発明の目的は、正、負帯電に適用することが
でき、良好な感度を有し、耐環境性に優れ、特に
紫外線耐性、耐酸化性がよく、耐用物性のよい有
機光導電性電子写真感光体の提供にある。 〔発明の構成及び作用効果〕 前記本発明の目的は、導電性支持体上に電荷発
生物質(CGMと標記)を含んでなる層及び電荷
輸送物質(CTMと標記)を含んでなる層を少く
とも有する電子写真感光体に於て、下記一般式で
表わされる化合物を含有することを特徴とする電
子写真感光体によつて達成される。 一般式 式中、Rは水素またはハロゲン原子を表し、
R1はアミノ、アルキル、アリールアミノ、アル
コキシ、フエニルオキシ、ニトロの各基またはハ
ロゲン原子を表し、アルキル基は置換基を有して
もよい。R2はアミノ、アルキル、アリールアミ
ノ、アルコキシ及びフエニルオキシの各基を表
す。 本発明に係る導電性支持体上に設ける感光体層
は、CTM及びCGMを混和した単層構成でもよい
し、CTMを含む層を下層としCGMを含む層を上
層とする複層構成でもよいし或はその逆構成でも
よい。また必要に応じて保護層(OCLと標記)
を設けてもよい。 本発明に係る化合物は前記の少くとも一層に添
加されるが感光体層表層に添加されることが好ま
しい。尚表層に最も濃密に、内部にゆくに従つて
逓減させる形態であつてもよい。 以下に本発明を詳しく説明する。 カールソンプロセスに基く電子写真プロセスに
は、一般に像露光、消去露光、転写前露光、クリ
ーニング露光等に紫外線を発生する光源が用いら
れており、該光源からの光に含まれ、可視光に比
べ大きなエネルギを有する紫外線の繰返し照射
は、感光体に用いられている有機化合物分子を解
裂させるに充分である。即ち感光体をなすCGM,
CTM或はバインダ等はラジカル解離を起し本来
の分子構造を失つて劣化し、従つて感光体の劣化
を招来し、具体的には感度低下、残電位上昇等を
惹起し、かぶりの発生、画質の低下に陥る。 感光体の紫外線或は紫外線及びオゾンによつて
誘発、派生する複合劣化は反復して付加される各
種露光処理、コロナ放電によつて生ずるが、露光
によつて発生する一重項酸素によつても強められ
ると考えられる。また、感光体の層構成、CGM
やCTMの種類等によつても紫外線等による複合
劣化を受ける程度は変化するが、CTMの方が劣
化を受け易く、特に有機光導電性物質を使用する
場合、その影響は極めて大きい。 本発明者らは、感光体の複合劣化(特に電位低
下)の改良に関し鋭意検討の結果、感光体層中に
前記一般式で示される特定のキノン類化合物が複
合劣化を著しく防止するだけでなく、その他の電
子写真特性や物理的性質の向上にも寄与すること
を見い出した。 前記の本発明に係る化合物即ち一般に紫外線吸
収剤と目される化合物の有機物質に対する安定化
機構としては、紫外線(UVと標記することがあ
る)の保有する分解エネルギガUV吸収剤内で振
動のエネルギに変貌することによると思われる。
この振動のエネルギは該UV吸収剤から熱エネル
ギとして放出されるが、熱エネルギでは既に有機
物質を劣化させるには不充分であつて、感光体は
紫外線の繰返し照射による害から保護されるもの
と思われる。 以下に本発明の化合物の代表的具体例を示す
が、これによつて本発明に用いられる化合物がこ
れらに限定されるものではない。
[Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor, and particularly to improvements in organic photoconductive electrophotographic photoreceptors. [Prior Art] In an electrophotographic copying machine using the Carlson method,
After the surface of the photoreceptor is charged, an electrostatic latent image is formed by exposure, the electrostatic latent image is developed with toner, and the visible image is then transferred and fixed onto paper or the like. On the other hand, the photoreceptor is subjected to removal of adhering toner, neutralization of static electricity, and surface cleaning, and is used repeatedly over a long period of time. Therefore, as an electrophotographic photoreceptor, it not only has electrophotographic properties such as good charging characteristics and sensitivity, and low dark decay, but also physical properties such as printing durability, abrasion resistance, and moisture resistance after repeated use. It is also required to have good properties and resistance to ozone generated during corona discharge, ultraviolet rays during exposure, etc. (environmental resistance). Conventionally, inorganic photoreceptors having a photoreceptor layer containing an inorganic photoconductive substance such as selenium, zinc oxide, or cadmium sulfide as a main component have been widely used as electrophotographic photoreceptors. On the other hand, the use of various organic photoconductive substances as materials for photoreceptor layers of electrophotographic photoreceptors has been actively researched and developed in recent years. For example, in Japanese Patent Publication No. 50-10496, poly-N-vinylcarbazole and 2,4,7-trinitro-9
- An organic photoreceptor having a photoreceptor layer containing fluorenone is described. However, this photoreceptor is not necessarily satisfactory in sensitivity and durability. In order to improve these drawbacks, attempts have been made to develop organic photoreceptors with high sensitivity and durability by assigning charge generation and charge transport functions to different materials in the photoreceptor layer. being done. In such so-called function-separated type electrophotographic photoreceptors, substances that exhibit each function can be selected from a wide range of materials, so it is relatively easy to produce electrophotographic photoreceptors with arbitrary characteristics. Is possible. Many substances have been proposed as charge-generating substances that are effective for such functionally separated electrophotographic photoreceptors. An example of using an inorganic substance is amorphous selenium, as described in Japanese Patent Publication No. 43-16198. This is combined with an organic charge transport material. In addition, many electrophotographic photoreceptors using organic dyes or organic pigments as charge-generating substances have been proposed.
For example, those having a photoreceptor layer containing a bisazo compound are disclosed in JP-A-47-37543 and JP-A-55-22834.
No. 54-79632, No. 56-116040, etc. By the way, known photoreceptors using organic photoconductive substances are generally used for negative charging. The reason for this is that when negative charging is used, the mobility of holes among the charges is large, which is advantageous in terms of photosensitivity and the like. However, a problem with such negative charging is that ozone is likely to be generated in the atmosphere during negative charging by the charger, which worsens the environmental conditions. Furthermore, a positive polarity toner is required for development of a negatively charged photoreceptor, but it is difficult to manufacture a positive polarity toner in view of the triboelectrification series with respect to ferromagnetic charged particles. Therefore, positively charged photoreceptors using organic photoconductive substances are used, for example, positively charged photoreceptors in which a charge transport layer is laminated on a charge generation layer and the charge transport layer is formed of a material with a high electron transport ability. is proposed. However, if the charge transport layer contains, for example, trinitrofluorenone, problems may arise, such as that the substance is carcinogenic. On the other hand,
A positively charged photoreceptor in which a charge generation layer is laminated on a charge transport layer with a high hole transport ability is considered, but with this mechanism, the charge generation layer on the surface side needs to be extremely thin, and printing durability etc. This is not a practical layer structure. In addition, as a positively charged photoreceptor, U.S. Patent No. 3615414
No. 1 shows a product containing thiapyrylium salt (charge generating substance) so as to form a complex with polycarbonate (binder resin). However, this photoreceptor has disadvantages in that the memory phenomenon is large and ghosts are likely to occur. Also US patent
No. 3357989 discloses a photoreceptor containing phthalocyanine, but the characteristics of phthalocyanine change depending on the crystal type, the crystal type must be strictly controlled, and short wavelength sensitivity is insufficient. In addition, the memory phenomenon is large, making it unsuitable for copying machines that use light sources in the visible wavelength range. Various attempts have been made to obtain positively charged photoreceptors, but all require improvements in terms of photosensitivity, memory phenomenon, occupational hygiene, etc., and durability such as ultraviolet resistance and ozone oxidation resistance. There are many problems. Therefore, from a functional standpoint, a laminated structure in which the upper layer (surface layer) is a charge generation layer containing a charge generation substance that generates holes and electrons when irradiated with light, and the lower layer is a charge transport layer containing a charge transport substance having a hole transport function. It is conceivable to make the photoreceptor a basic type of photoreceptor with both positive and negative charges, and to supplement what is lacking. In addition, in such a photoreceptor, if a charge generating substance having, for example, an electron-withdrawing group is used in the structure, the movement of electrons to cancel the positive charge on the surface of the photoreceptor becomes faster, and high sensitivity characteristics can be obtained. It is conceivable that However, since the positively charged photoreceptor is formed with a layer containing a charge generating substance as a surface layer, it is vulnerable to external effects such as light irradiation, especially short wave light irradiation such as ultraviolet light, corona discharge, humidity, ozone oxidation, and mechanical friction. As a result, the electrophotographic performance deteriorates during the storage of the photoreceptor and during the image formation process, resulting in a decrease in image quality. In a negatively charged photoreceptor having a conventional charge transport layer as a surface layer, the effects of the various external effects described above are extremely small, and rather the charge transport layer has the effect of protecting the underlying charge generation layer. Therefore, it is conceivable to provide a thin protective layer made of an insulating and transparent resin to protect the layer containing the charge-generating substance from external effects, but the charge generated during light irradiation may be blocked by the protective layer. The light irradiation effect will be lost, and if the protective layer that serves as the surface layer is thick, it will cause a decrease in sensitivity and will have little UV blocking effect. You can't just leave it to others. [Objective of the Invention] The object of the present invention is to provide an organic material that can be applied to positive and negative charging, has good sensitivity, has excellent environmental resistance, and has particularly good UV resistance, oxidation resistance, and durable physical properties. The present invention provides a photoconductive electrophotographic photoreceptor. [Structure and Effects of the Invention] The object of the present invention is to reduce the number of layers containing a charge-generating substance (marked as CGM) and a layer containing a charge-transporting substance (marked as CTM) on a conductive support. This is achieved by an electrophotographic photoreceptor characterized by containing a compound represented by the following general formula. general formula In the formula, R represents hydrogen or a halogen atom,
R 1 represents an amino, alkyl, arylamino, alkoxy, phenyloxy, nitro group or a halogen atom, and the alkyl group may have a substituent. R 2 represents each group of amino, alkyl, arylamino, alkoxy and phenyloxy. The photoreceptor layer provided on the conductive support according to the present invention may have a single layer structure in which CTM and CGM are mixed together, or may have a multilayer structure in which a layer containing CTM is a lower layer and a layer containing CGM is an upper layer. Alternatively, the configuration may be reversed. Also, if necessary, a protective layer (marked as OCL)
may be provided. The compound according to the present invention is added to at least one of the above layers, but is preferably added to the surface layer of the photoreceptor layer. In addition, it may be most concentrated on the surface layer and gradually decrease toward the inside. The present invention will be explained in detail below. In the electrophotographic process based on the Carlson process, a light source that generates ultraviolet rays is generally used for image exposure, erasing exposure, pre-transfer exposure, cleaning exposure, etc. Repeated irradiation with energetic ultraviolet light is sufficient to cleave the organic compound molecules used in the photoreceptor. In other words, the CGM that forms the photoreceptor,
CTM or a binder causes radical dissociation, loses its original molecular structure, and deteriorates, leading to deterioration of the photoreceptor. Specifically, it causes a decrease in sensitivity, an increase in residual potential, etc., and the occurrence of fogging. Image quality deteriorates. The combined deterioration induced and derived from ultraviolet rays or ultraviolet rays and ozone on the photoreceptor is caused by various exposure treatments and corona discharge that are repeatedly applied, but it can also be caused by singlet oxygen generated by exposure. It is thought that it can be strengthened. In addition, the layer structure of the photoreceptor, CGM
Although the degree of composite deterioration caused by ultraviolet rays and the like varies depending on the type of photoconductive material and the type of CTM, CTM is more susceptible to deterioration, and the effect is particularly large when an organic photoconductive substance is used. As a result of intensive studies on improving the composite deterioration (particularly potential drop) of the photoreceptor, the present inventors found that a specific quinone compound represented by the above general formula in the photoreceptor layer not only significantly prevents the composite deterioration. It has been found that this also contributes to improvements in other electrophotographic properties and physical properties. The stabilization mechanism of the compound according to the present invention, that is, a compound generally regarded as an ultraviolet absorber, against organic substances is that the decomposition energy possessed by ultraviolet rays (sometimes referred to as UV) is absorbed by the vibrational energy within the UV absorber. This is thought to be due to the transformation.
The energy of this vibration is released as thermal energy from the UV absorber, but the thermal energy is already insufficient to degrade the organic material, and the photoreceptor is protected from harm caused by repeated UV irradiation. Seem. Typical specific examples of the compounds of the present invention are shown below, but the compounds used in the present invention are not limited thereto.

【表】 本発明において用いられる前記一般式で示され
る化合物(以下、本発明の化合物と称する)の添
加量は、感光体の層構成、CTMの種類などによ
つて一定ではないが、CTMに対して、0.1〜100
重量%、好ましくは1〜50重量%、特に好ましく
は5〜25重量%の範囲で用いられる。 次に本発明の感光体の構成を図面によつて説明
する。 本発明の感光体は例えば第1図に示すように支
持体1(導電性支持体またはシート上に導電層を
設けたもの)上にCGM5と必要に応じてバイン
ダ樹脂を含有する電荷発生層(以下、CGLと標
記する)2を下層とし、CTM6と必要に応じて
バインダ樹脂を含有する電荷輸送層(以下、
CTLと標記する)3を上層とする積層構成の感
光体層4を設けたもの、第2図に示すように支持
体1上にCTL3を下層とし、CGL2を上層とす
る積層構成の感光体層4を設けたもの、および第
3図に示すように支持体1上にCGM,CTMおよ
び必要に応じてバインダ樹脂を含有する単層構成
の感光体層4を設けたもの等が挙げられる。 また、第2図と同様の層構成で上層のCGLに
CGMとCTMの両方が含有されてもよく、該層に
上に保護層(OCL)を設けてもよく、支持体と
感光体層の間に中間層を設けてもよい。第4図に
その1例を示してある。すなわち、支持体1上に
中間層7を設け、その上にCTM6aバインダ樹
脂を含有するCTL3およびCGM5,CTM6b
およびバインダ樹脂を含有するCGL2を積層し
た感光体層4を有し、更にバインダを主成分とす
るOCL8を設けた感光体である。 本発明の化合物は、感光体を構成するCGL,
CTL、単層構成感光体層またはOCLのいずれに
含有されてもよく、複数層に含有されてもよい。
本発明の効果がより顕著に発揮されるのは、
CGLを上層としCTLを下層とする積層構成の感
光体においてである。 次に本発明に適するCGMとしては、可視光を
吸収してフリー電荷を発生するものであれば、無
機顔料及び有機顔料の何れをも用いることができ
る。無定形セレン、三方晶系セレン、セレン−砒
素合金、セレン−テルル合金、硫化カドミウム、
セレン化カドミウム、硫セレン化カドミウム、硫
化水銀、酸化鉛、硫化鉛等の無機顔料の外、次の
代表例で示されるような有機顔料が用いられる。 (1) モノアゾ顔料、ポリアゾ顔料、金属錯塩アゾ
顔料、ピラゾロンアゾ顔料、スチルベンアゾ及
びチアゾールアゾ顔料等のアゾ系顔料 (2) ペリレン酸無水物及びペリレン酸イミド等の
ペリレン系顔料 (3) アントラキノン誘導体、アントアントロン誘
導体、ジベンズピレンキノン誘導体、ピラント
ロン誘導体、ビオラントロン誘導体及びイソビ
オラントロン誘導体等のアントラキノン系又は
多環キノン系顔料 (4) インジゴ誘導体及びチオインジゴ誘導体等の
インジゴイド系顔料 (5) 金属フタロシアニン及び無金属フタロシアニ
ン等のフタロシアニン系顔料 (6) ジフエニルメタン系顔料、トリフエニルメタ
ン顔料、キサンテン顔料及びアクリジン顔料等
のカルボニウム系顔料 (7) アジン顔料、オキサジン顔料及びチアジン顔
料等のキノンイミン系顔料 (8) シアニン顔料及びアゾメチン顔料等のメチン
系顔料 (9) キノリン系顔料 (10) ニトロ系顔料 (11) ニトロソ系顔料 (12) ベンゾキノン及びナフトキノン系顔料 (13) ナフタルイミド系顔料 (14) ビスベンズイミダゾール誘導体等のペリノン
系顔料 前記本発明に用いられるアゾ系顔料としては、
例えば次の例示構造化合物群〔〕〜〔〕で示
されるものがあり、該例示構造化合物群の中の
個々の好ましい具体的化合物の数例を併せ掲げ
る。 その好ましい具体的化合物の全容については特
願昭61−195881号が参照される。
[Table] The amount of the compound represented by the above general formula used in the present invention (hereinafter referred to as the compound of the present invention) varies depending on the layer structure of the photoreceptor, the type of CTM, etc. 0.1 to 100
It is used in a range of % by weight, preferably 1 to 50% by weight, particularly preferably 5 to 25% by weight. Next, the structure of the photoreceptor of the present invention will be explained with reference to the drawings. The photoreceptor of the present invention is, for example, as shown in FIG. 1, on a support 1 (a conductive support or a sheet with a conductive layer provided thereon) and a charge generation layer (containing CGM 5 and optionally a binder resin). Hereinafter referred to as CGL) 2 is the lower layer, and CTM 6 and a charge transport layer (hereinafter referred to as CGL) containing a binder resin as required.
A photoreceptor layer 4 having a laminated structure with CTL 3 as the upper layer and CTL 3 as the upper layer, as shown in FIG. 4, and as shown in FIG. 3, a photoreceptor layer 4 of a single layer structure containing CGM, CTM and, if necessary, a binder resin is provided on the support 1. In addition, the upper layer CGL has the same layer configuration as shown in Figure 2.
Both CGM and CTM may be included, a protective layer (OCL) may be provided on top of the layer, and an intermediate layer may be provided between the support and the photoreceptor layer. An example is shown in FIG. That is, the intermediate layer 7 is provided on the support 1, and CTL3, CGM5, and CTM6b containing the CTM6a binder resin are provided on the intermediate layer 7.
This photoreceptor has a photoreceptor layer 4 in which CGL 2 and CGL 2 containing a binder resin are laminated, and is further provided with an OCL 8 whose main component is a binder. The compound of the present invention comprises CGL, which constitutes a photoreceptor,
It may be contained in any of the CTL, single-layer structure photoreceptor layer, or OCL, or may be contained in multiple layers.
The effects of the present invention are more clearly exhibited when
This is a photoreceptor with a laminated structure in which CGL is an upper layer and CTL is a lower layer. Next, as the CGM suitable for the present invention, both inorganic pigments and organic pigments can be used as long as they absorb visible light and generate free charges. Amorphous selenium, trigonal selenium, selenium-arsenic alloy, selenium-tellurium alloy, cadmium sulfide,
In addition to inorganic pigments such as cadmium selenide, cadmium selenide sulfide, mercury sulfide, lead oxide, and lead sulfide, organic pigments such as those shown in the following representative examples are used. (1) Azo pigments such as monoazo pigments, polyazo pigments, metal complex azo pigments, pyrazolone azo pigments, stilbene azo and thiazole azo pigments (2) Perylene pigments such as perylenic anhydride and perylenic acid imide (3) Anthraquinone derivatives , anthraquinone or polycyclic quinone pigments such as anthrone derivatives, dibenzpyrenequinone derivatives, pyranthrone derivatives, violanthrone derivatives and isoviolanthrone derivatives (4) Indigoid pigments such as indigo derivatives and thioindigo derivatives (5) Metal phthalocyanines and phthalocyanine pigments such as metal-free phthalocyanine (6) Carbonium pigments such as diphenylmethane pigments, triphenylmethane pigments, xanthene pigments and acridine pigments (7) Quinoneimine pigments such as azine pigments, oxazine pigments and thiazine pigments (8) Methine pigments such as cyanine pigments and azomethine pigments (9) Quinoline pigments (10) Nitro pigments (11) Nitroso pigments (12) Benzoquinone and naphthoquinone pigments (13) Naphthalimide pigments (14) Bisbenzimidazole derivatives Perinone pigments such as Azo pigments used in the present invention include:
For example, there are compounds shown in the following exemplified structural compound groups [] to [], and several examples of individual preferable specific compounds in the exemplified structural compound groups are also listed. For a complete list of preferred specific compounds, see Japanese Patent Application No. 195881/1983.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 また、以下の多環キノン顔料から成る例示構造
化合物群〔〕〜〔〕はCGMとして最も好ま
しく使用できる。
[Table] Furthermore, the following exemplary structural compound groups [] to [] consisting of polycyclic quinone pigments can be most preferably used as CGM.

【表】【table】

【表】【table】

【表】【table】

【表】 次に本発明で使用可能なCTMとしては、特に
制限はないが、例えばオキサゾール誘導体、オキ
サジアゾール誘導体、チアゾール誘導体、チアジ
アゾール誘導体、トリアゾール誘導体、イミダゾ
ール誘導体、イミダゾロル誘導体、イミダゾリジ
ン誘導体、ビスイミダゾリジン誘導体、スチリル
化合物、ヒドラゾン化合物、ピラゾリン誘導体、
オキサゾロン誘導体、ベンゾチアゾール誘導体、
ベンズイミダゾール誘導体、キナゾリン誘導体、
ベンゾフラン誘導体、アクリジン誘導体、フエナ
ジン誘導体、アミノスチルベン誘導体、ポリ−N
−ビニルカルバゾール、ポリ−1−ビニルピレ
ン、ポリ−9−ビニルアントラセン等であつても
よい。 しかしながら光照射時発生するホールの支持体
側への輸送能力が優れている外、前記CGMとの
組合せに好適なものが好ましく用いられ、かかる
CTMとしては、例えば下記例示構造化合物群
〔〕又は〔〕で示されるスチル化合物が使用
される。該例示構造化合物群中の個々の具体的化
合物の数例を併せ掲げるが、その全貌については
特願昭61−195881号が参照される。
[Table] Next, CTMs that can be used in the present invention are not particularly limited, but include, for example, oxazole derivatives, oxadiazole derivatives, thiazole derivatives, thiadiazole derivatives, triazole derivatives, imidazole derivatives, imidazolol derivatives, imidazolidine derivatives, imidazolidine derivatives, styryl compounds, hydrazone compounds, pyrazoline derivatives,
Oxazolone derivatives, benzothiazole derivatives,
benzimidazole derivatives, quinazoline derivatives,
Benzofuran derivatives, acridine derivatives, phenazine derivatives, aminostilbene derivatives, poly-N
-vinylcarbazole, poly-1-vinylpyrene, poly-9-vinylanthracene, etc. However, in addition to having an excellent ability to transport holes generated during light irradiation to the support side, those suitable for combination with the above-mentioned CGM are preferably used.
As the CTM, for example, a still compound represented by the following exemplified structural compound group [] or [] is used. Several examples of individual specific compounds in the group of exemplified structural compounds are listed below, and for the complete details, reference is made to Japanese Patent Application No. 195881/1981.

【表】【table】

【表】【table】

【表】 また、CTMとして下記例示構造化合物群〔
〕〜〔〕で示されるヒドラゾン化合物も使
用可能である。尚個々の具体的化合物の全容につ
いては特願昭61−195881号が参照される。
[Table] In addition, the following exemplified structural compound group as CTM [
] to [ ] can also be used. For the complete details of each specific compound, reference is made to Japanese Patent Application No. 195881/1983.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 また、CTMとして下記例示構造化合物群〔
〕で示されるアミノ誘導体も使用可能である。
尚詳しくは特願昭61−195881号が参照される。
[Table] In addition, the following exemplified structural compound group as CTM [
] Amino derivatives represented by the following can also be used.
For details, please refer to Japanese Patent Application No. 195881/1983.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、これ
により本発明の実施の態様が限定されるものでは
ない。 実施例 1 アルミニウム箔をラミネートしたポリエステル
フイルム、及びアルミニウムドラムより成る導電
性支持体上に、塩化ビニル−酢酸ビニル−無水マ
レイン酸共重合体(エスレツクMF−10、積水化
学工業社製)よりなる厚さ0.1μmの中間層を形成
した。 次いでCTM(−75)/ポリカーボネート樹脂
(パンライトL−1250、帝人化成社製)=75/100
(重量比)を15.5重量%含有する1,2−ジクロ
ルエタン溶液を前記中間層上にデイツプ塗布、乾
燥して15μm厚のCTLを得た。 次いで、CGMとして昇華した4,10−ジブロ
モアンスアンスロン(−3)/パンライトL−
1250=50/100(重量比)をボールミルで24時間粉
砕し、9重量%になるよう1,2−ジクロルエタ
ンを加えて更にボールミルで24時間分散した液に
CTM(−75)をパンライトL−1250に対して75
重量%および本発明の化合物(1)をCTMに対して
10重量%加えた。この分散液にモノクロロベンゼ
ンを加えてモノクロロベンゼン/1,2−ジクロ
ルエタン=3/7(体積比)になるよう調整した
ものをCTL上にスプレー塗布方法により厚さ
5μmのCGLを形成し、積層構成の感光体層を有
する本発明の感光体1を得た。 比較例 (1)′ 実施例1における化合物(1)に代えて、2,5−
ジクロロ−p−ベンゾキノン(化合物(A))を添加
した以外は、実施例1と同様にして比較用の感光
体(1)′を得た。 比較例 (1)″ 実施例1における化合物(1)に代えて、2,6−
ジクロロ−p−ベンゾキノン(化合物(B))を添加
した以外は、実施例1と同様にして比較用の感光
体(1)″を得た。 比較例 (1) CGL中の化合物1を除いた以外は実施例1と
同様にして比較用の感光体(1)を得た。 実施例 2 実施例1における化合物(1)に代えて、化合物(2)
を添加した以外は実施例1と同様にして感光体2
を得た。 実施例 3 実施例1のCGLから化合物(1)を除いた感光体
(比較例1の感光体に同じ)上に、熱硬化性アク
リル−メラミン−エポキシ(1:1:1)樹脂
1.55重量部および本発明の化合物(1)0.155重量部
をモノマクロロベンゼン/1,1,2−トリクロ
ロエタン(1/1体積比)混合溶媒100重量部中
に溶解して得られた塗布液をスプレー塗布、乾燥
して1μm厚のOCLを形成し、本発明の感光体3
を得た。 実施例 4 実施例1のCGLから化合物(1)を除いた感光体
上に、シリコンハードコート用プライマPH91
(東芝シリコン社製)を0.1μm厚にスプレー塗布
し、更にその上にシリコンハードコートトスガー
ド510(東芝シリコン社製)および化合物(1)を樹脂
100重量部に対して10重量部となるよう添加した
溶液をスプレー塗布、乾燥して1μmOCLを形成
し、本発明の感光体4を得た。 実施例 5 アルミニウム箔をラミネートしたポリエステル
フイルム、及びアルミニウムドラムより成る導電
性支持体上に実施例1と全く同様の中間層を形成
した。 次いでCTL用塗布液としてブチラール樹脂
(エスレツクBX−1、積水化学社製)8重量%、
CTM(−75)6重量%となるようメチルエチル
ケトンに溶解して得られる溶液を前記中間層上に
塗布、乾燥して10μm厚のCTLを形成した。 次いでCGM(−7)0.2gをペイントコンデ
シヨナ(Paint Conditioner,Red Devil社製)
で30分粉砕し、これにポリカーボネート樹脂(パ
ンライトL−1250、前出)を1,2−ジクロロエ
タン/1,1,2−トリクロロエタン混合溶媒に
0.5重量%となるよう溶解させた溶液を8.3g加え
て3分間分散した後、これにポリカーボネート樹
脂、CTM(−75)および化合物1を、それぞれ
3.3重量%、2.6重量%および0.26重量%となるよ
う1,2−ジクロロエタン/1,1,2−トリク
ロロエタン混合溶媒に溶解して得られる溶液19.1
gを加えて更に30分間分散した。かくして得られ
た分散液を前記CTL上にスプレー塗布し、かつ
乾燥して5μm厚のOGLを形成し、積層構成の感
光体層を有する本発明の態様の感光体5を得た。 比較例 (2′) 実施例5における化合物(1)に代えて、2,5−
ジクロロ−p−ベンゾキノン(化合物(A))を添加
した以外は、実施例5と同様にして比較用の感光
体(2′)を得た。 比較例 (2″) 実施例5における化合物(1)に代えて、2,6−
ジクロロ−p−ベンゾキノン(化合物(B))を添加
した以外は、実施例5と同様にして比較用の感光
体(2″)を得た。 比較例 2 CGL中の化合物(1)を除いた以外は実施例5と
同様にして比較用の感光体(2)を得た。 実施例 6 実施例5における化合物(1)に代えて、化合物(2)
を添加した以外は実施例5と同様にして本発明の
感光体6を得た。 実施例 7 実施例5のCGLから化合物(1)を除いた感光体
(比較例2の感光体に同じ)上に、実施例3に用
いた化合物(1)を含有するOCLを設け、本発明の
感光体(7)を得た。 実施例 8 実施例5のCGLから化合物(1)を除いた感光体
上に、実施例7に用いた化合物(1)を含有する
OCLを設け、本発明の感光体(8)を得た。 実施例 9 アルミニウム箔をラミネートしたポリエステル
フイルム、及びアルミニウムドラム上に、実施例
1と全く同様の中間層を形成した。 次いで昇華した4,10−ジブロモアンスアンス
ロン(−3)40gを磁製ボールミルにて40rpm
で24時間粉砕し、パンライトL−1250、(前出)
20gと1,2−ジクロロエタン1300mlを加え、更
に24時間分散してCGL用塗布液とした。これを
前記中間層上に塗布し膜厚1μmのCGLを設けた。 次いでCTM(−61)7.5g、パンライトL−
125010gおよび化合物1 0.75gを、1,2−ジ
クロロエタン80mlに溶解した溶液を前記CGLに
塗布して膜厚15μmのCTLを形成し、本発明の感
光体9を作成した。 比較例 (3′) 実施例9における化合物(1)に代えて、2,5−
ジクロロ−p−ベンゾキノン(化合物(A))を添加
した以外は、実施例9と同様にして比較用の感光
体(3′)を得た。 比較例 (3″) 実施例9における化合物(1)に代えて、2,6−
ジクロロ−p−ベンゾキノン(化合物(B))を添加
した以外は、実施例9と同様にして比較用の感光
体(3″)を得た。 比較例 (3) CTL中の化合物(1)を除いた以外は実施例9と
同様にして比較用の感光体(3)を得た。 実施例 10 アルミニウム箔をラミネートしたポリエステル
フイルム、及びアルミニウムドラムから成る導電
性支持体上に、実施例1と全く同様の中間層を形
成した。 次いでCGLとしてビスアゾ化合物(−7)
1.5gを1,2−ジクロロエタン/モノエタノー
ルアミン(1000/1体積比)混合溶媒100ml中に
ボールミルで8時間分散させた分散液を上記中間
層上に塗布し、充分乾燥して0.3g厚のCGLを設
けた。 次いでCTMとしてスチリル化合物(−43)
11.25g、パンライトL−1250(前出)15gおよび
化合物(1)1.25gを1,2−ジクロロエタン100ml
に溶解した溶液を前記CGLに塗布し、充分乾燥
して15μm厚のCTLを形成し、本発明の感光体(10)
を作成した。 比較例 (4′) 実施例10における化合物(1)に代えて、2,5−
ジクロロ−p−ベンゾキノン(化合物(A))を添加
した以外は、実施例10と同様にして比較用の感光
体(4′)を得た。 比較例 (4″) 実施例10における化合物(1)に代えて、2,6−
ジクロロ−p−ベンゾキノン(化合物(B))を添加
した以外は、実施例10と同様にして比較用の感光
体(4″)を得た。 比較例 (4) CTL中の化合物(1)を除いた以外は、実施例10
と同様にして比較用の感光体(4)を作成した。 前記実施例試料1〜10及び比較例試料(1)〜(4)に
ついてUV耐性について、帯電性に対する2万回
の実写テスト及びUV曝射による感度変化の定量
的測定を行つた。 帯電性実写テストは、U−Bix2812MR(小西六
写真工業(株)製)の改造実験機に試料感光体ドラム
を装着し、正または負帯電させ、前記感光体に対
する像露光をはじめとする各工程及び定着からな
る単位サイクルを2万回繰返し、実写テスト初期
の正、負帯電電位を±V0、2万回終了後の正、
負帯電電位を±V1とする。 またUV曝射による感度変化は、既知強度の紫
外線を試料フイルムを断裁した感光体シートに照
射し、その照射前後に於て、+または−600Vに帯
電させた該感光体の電位を夫々±100Vにまで齎
す露光量E600 100を用いて求めた。 感光体の感度SはE600 100∝1/Sの関係として定
義され、E600 100が小さいほど感度Sは大きく硬調な
画像がえられる。 UV曝射前後の感度を夫々S0,S1とすれば、そ
の逆数比RS;(1/S1)/(1/S0)=S0/S1
UV耐性を表し、RSが大きいほどUV耐性がある
ことになる。 UV照射は理化学用水銀ランプSHL−100UV−
2((株)東芝製)を用い試料の感光体シートを30cm
の距離に置き他の電磁波を遮断しUV強度
1500cd/m2で100分間照射を行い、感度測定は静
電試験機(川口電機製作所;SP−428型)によつ
た。 これらの結果を第1表に示す。
EXAMPLES The present invention will be explained below with reference to Examples, but the embodiments of the present invention are not limited thereby. Example 1 A conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum was coated with a layer of vinyl chloride-vinyl acetate-maleic anhydride copolymer (Eslec MF-10, manufactured by Sekisui Chemical Co., Ltd.). An intermediate layer with a thickness of 0.1 μm was formed. Next, CTM (-75)/polycarbonate resin (Panlite L-1250, manufactured by Teijin Chemicals) = 75/100
A 1,2-dichloroethane solution containing 15.5% by weight (weight ratio) was dip-coated onto the intermediate layer and dried to obtain a CTL with a thickness of 15 μm. Next, 4,10-dibromoanthrone (-3)/panlite L- was sublimed as CGM.
1250 = 50/100 (weight ratio) was ground in a ball mill for 24 hours, 1,2-dichloroethane was added to make it 9% by weight, and the mixture was further dispersed in a ball mill for 24 hours.
CTM (-75) to 75 against Panlite L-1250
Weight% and compound (1) of the present invention relative to CTM
Added 10% by weight. Monochlorobenzene was added to this dispersion to adjust the ratio of monochlorobenzene/1,2-dichloroethane to 3/7 (volume ratio), and the thickness was adjusted by spray coating onto CTL.
A photoreceptor 1 of the present invention having a photoreceptor layer having a laminated structure was obtained by forming a CGL of 5 μm. Comparative example (1)′ In place of compound (1) in Example 1, 2,5-
A comparative photoreceptor (1)' was obtained in the same manner as in Example 1 except that dichloro-p-benzoquinone (compound (A)) was added. Comparative Example (1)″ In place of compound (1) in Example 1, 2,6-
Comparative photoreceptor (1)'' was obtained in the same manner as in Example 1, except that dichloro-p-benzoquinone (compound (B)) was added. Comparative Example (1) Compound 1 in CGL was removed. A comparative photoreceptor (1) was obtained in the same manner as in Example 1 except for that.Example 2 Compound (2) was used in place of compound (1) in Example 1.
Photoreceptor 2 was prepared in the same manner as in Example 1 except that
I got it. Example 3 A thermosetting acrylic-melamine-epoxy (1:1:1) resin was placed on a photoreceptor (same as the photoreceptor of Comparative Example 1) obtained by removing compound (1) from the CGL of Example 1.
Spray coating with a coating solution obtained by dissolving 1.55 parts by weight and 0.155 parts by weight of the compound (1) of the present invention in 100 parts by weight of a mixed solvent of monomacrolobenzene/1,1,2-trichloroethane (1/1 volume ratio). , dried to form a 1 μm thick OCL, and photoreceptor 3 of the present invention.
I got it. Example 4 A silicone hard coat primer PH91 was applied onto the photoconductor obtained by removing compound (1) from the CGL of Example 1.
(manufactured by Toshiba Silicon Co., Ltd.) to a thickness of 0.1 μm, and on top of that, silicone hard coat Tossguard 510 (manufactured by Toshiba Silicon Co., Ltd.) and compound (1) are applied to the resin.
A solution added in an amount of 10 parts by weight per 100 parts by weight was spray applied and dried to form a 1 μm OCL, thereby obtaining a photoreceptor 4 of the present invention. Example 5 An intermediate layer exactly the same as in Example 1 was formed on a conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum. Next, as a coating liquid for CTL, 8% by weight of butyral resin (Eslec BX-1, manufactured by Sekisui Chemical Co., Ltd.),
A solution obtained by dissolving 6% by weight of CTM (-75) in methyl ethyl ketone was applied onto the intermediate layer and dried to form a 10 μm thick CTL. Next, apply 0.2 g of CGM (-7) to a paint conditioner (Paint Conditioner, manufactured by Red Devil).
Grind for 30 minutes, and add polycarbonate resin (Panlite L-1250, mentioned above) to this in a mixed solvent of 1,2-dichloroethane/1,1,2-trichloroethane.
After adding 8.3g of a solution dissolved to a concentration of 0.5% by weight and dispersing for 3 minutes, polycarbonate resin, CTM (-75) and Compound 1 were added to this, respectively.
Solution 19.1 obtained by dissolving in a mixed solvent of 1,2-dichloroethane/1,1,2-trichloroethane to give 3.3% by weight, 2.6% by weight and 0.26% by weight
g was added and the mixture was further dispersed for 30 minutes. The thus obtained dispersion was spray-coated onto the CTL and dried to form an OGL having a thickness of 5 μm, thereby obtaining a photoreceptor 5 according to an embodiment of the present invention having a photoreceptor layer having a laminated structure. Comparative example (2') In place of compound (1) in Example 5, 2,5-
A comparative photoreceptor (2') was obtained in the same manner as in Example 5, except that dichloro-p-benzoquinone (compound (A)) was added. Comparative example (2″) Instead of compound (1) in Example 5, 2,6-
A comparative photoreceptor (2″) was obtained in the same manner as in Example 5, except that dichloro-p-benzoquinone (compound (B)) was added.Comparative Example 2 Compound (1) in CGL was removed. A comparative photoreceptor (2) was obtained in the same manner as in Example 5 except for that.Example 6 Compound (2) was used in place of compound (1) in Example 5.
Photoreceptor 6 of the present invention was obtained in the same manner as in Example 5 except that . Example 7 OCL containing the compound (1) used in Example 3 was provided on a photoreceptor (same as the photoreceptor of Comparative Example 2) obtained by removing compound (1) from the CGL of Example 5, and the present invention A photoreceptor (7) was obtained. Example 8 Compound (1) used in Example 7 is contained on a photoreceptor obtained by removing compound (1) from the CGL of Example 5.
An OCL was provided to obtain a photoreceptor (8) of the present invention. Example 9 An intermediate layer exactly the same as in Example 1 was formed on a polyester film laminated with aluminum foil and an aluminum drum. Next, 40 g of sublimed 4,10-dibromoanthrone (-3) was milled at 40 rpm in a porcelain ball mill.
Grind for 24 hours with Panlite L-1250, (mentioned above)
20 g and 1,300 ml of 1,2-dichloroethane were added and dispersed for an additional 24 hours to obtain a CGL coating solution. This was applied onto the intermediate layer to form a CGL with a film thickness of 1 μm. Next, CTM (-61) 7.5g, Panlite L-
A solution of 125010 g and Compound 1 0.75 g dissolved in 80 ml of 1,2-dichloroethane was applied to the above CGL to form a CTL having a film thickness of 15 μm, thereby producing photoreceptor 9 of the present invention. Comparative example (3') In place of compound (1) in Example 9, 2,5-
A comparative photoreceptor (3') was obtained in the same manner as in Example 9 except that dichloro-p-benzoquinone (compound (A)) was added. Comparative example (3″) Instead of compound (1) in Example 9, 2,6-
A comparative photoreceptor (3″) was obtained in the same manner as in Example 9 except that dichloro-p-benzoquinone (compound (B)) was added.Comparative Example (3) Compound (1) in CTL was A comparative photoreceptor (3) was obtained in the same manner as in Example 9 except for the above.Example 10 On a conductive support consisting of a polyester film laminated with aluminum foil and an aluminum drum, Example 1 and A completely similar intermediate layer was formed. Then, bisazo compound (-7) was used as CGL.
A dispersion of 1.5 g of 1,2-dichloroethane/monoethanolamine (1000/1 volume ratio) mixed solvent (100 ml of 1,2-dichloroethane/monoethanolamine (1000/1 volume ratio) mixed solvent for 8 hours using a ball mill) was coated onto the above intermediate layer, thoroughly dried, and a 0.3 g thick layer was formed. CGL was established. Then styryl compound (−43) as CTM
11.25g, Panlite L-1250 (above) 15g and compound (1) 1.25g in 100ml of 1,2-dichloroethane
The photoreceptor (10) of the present invention is coated with a solution dissolved in the above CGL and dried sufficiently to form a 15 μm thick CTL.
It was created. Comparative example (4') In place of compound (1) in Example 10, 2,5-
A comparative photoreceptor (4') was obtained in the same manner as in Example 10, except that dichloro-p-benzoquinone (compound (A)) was added. Comparative example (4″) Instead of compound (1) in Example 10, 2,6-
A comparative photoreceptor (4″) was obtained in the same manner as in Example 10, except that dichloro-p-benzoquinone (compound (B)) was added. Comparative Example (4) Compound (1) in CTL was Example 10 except that
A comparative photoreceptor (4) was prepared in the same manner as described above. Regarding the UV resistance of the above Example Samples 1 to 10 and Comparative Example Samples (1) to (4), a 20,000-time photographic test for chargeability and a quantitative measurement of sensitivity change due to UV exposure were conducted. In the charging property live-action test, a sample photoreceptor drum was attached to a modified experimental machine U-Bix2812MR (manufactured by Konishiroku Photo Industry Co., Ltd.), and the sample photoreceptor drum was charged positively or negatively, and each process including image exposure of the photoreceptor was carried out. The unit cycle consisting of and fixing is repeated 20,000 times, and the positive and negative charging potentials at the beginning of the live-action test are ±V 0 , and the positive and negative charges after 20,000 times are
Let the negative charging potential be ±V 1 . Sensitivity changes due to UV exposure can be determined by irradiating ultraviolet rays of known intensity onto a photoreceptor sheet made from cut sample film, and before and after the irradiation, the potential of the photoreceptor, which has been charged to + or -600V, is adjusted to ±100V, respectively. It was determined using an exposure amount of E 600 100 that gives up to . The sensitivity S of the photoreceptor is defined as the relationship E 600 100 ∝1/S, and the smaller E 600 100 is, the greater the sensitivity S is, and a sharper image can be obtained. If the sensitivities before and after UV exposure are respectively S 0 and S 1 , then the reciprocal ratio R S ; (1/S 1 )/(1/S 0 )=S 0 /S 1 is
It represents UV resistance, and the larger R S is, the more UV resistance there is. UV irradiation is done using a mercury lamp for physical and chemical use SHL-100UV-
2 (manufactured by Toshiba Corporation) to 30 cm of the sample photoreceptor sheet.
Placed at a distance that blocks other electromagnetic waves and reduces UV intensity.
Irradiation was performed at 1500 cd/m 2 for 100 minutes, and the sensitivity was measured using an electrostatic tester (Kawaguchi Electric Seisakusho; Model SP-428). These results are shown in Table 1.

【表】【table】

【表】 註;括弧を付した試料No.は比較試料
第1表からも明らかなように、本発明の化合物
を添加することにより、紫外線照射下におけるコ
ロナ帯電での電位低下が著しく改善される。しか
も、本発明の化合物の添加により、感度低下も殆
どないことが判る。
[Table] Note: Sample numbers in parentheses are comparative samples. As is clear from Table 1, by adding the compound of the present invention, the potential drop due to corona charging under ultraviolet irradiation is significantly improved. . Furthermore, it can be seen that there is almost no decrease in sensitivity due to the addition of the compound of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の感光体の断面図であ
る。 1……支持体、2……電荷発生層(CGL)、3
……電荷輸送層(CTL)、4……感光層、5……
電荷発生物質(CGM)、6……電荷輸送物質
(CTM)、7……中間層、8……保護層(OCL)。
1 to 4 are cross-sectional views of the photoreceptor of the present invention. 1... Support, 2... Charge generation layer (CGL), 3
...Charge transport layer (CTL), 4...Photosensitive layer, 5...
Charge generating material (CGM), 6... Charge transporting material (CTM), 7... Intermediate layer, 8... Protective layer (OCL).

Claims (1)

【特許請求の範囲】 1 導電性支持体上に電荷発生物質を含んでなる
層及び電荷輸送物質を含んでなる層を少くとも有
する電子写真感光体に於て、下記一般式で表され
る化合物を含有することを特徴とする電子写真感
光体。 一般式 〔式中、Rは水素またはハロゲン原子を表し、
R1はアミノ、アルキル、アリールアミノ、アル
コキシ、フエニルオキシ、ニトロの各基またはハ
ロゲン原子を表し、アルキル基は置換基を有して
もよい。R2はアミノ、アルキル、アリールアミ
ノ、アルコキシ及びフエニルオキシの各基を表
す。〕
[Scope of Claims] 1. In an electrophotographic photoreceptor having at least a layer containing a charge-generating substance and a layer containing a charge-transporting substance on a conductive support, a compound represented by the following general formula: An electrophotographic photoreceptor characterized by containing. general formula [In the formula, R represents hydrogen or a halogen atom,
R 1 represents an amino, alkyl, arylamino, alkoxy, phenyloxy, nitro group or a halogen atom, and the alkyl group may have a substituent. R 2 represents each group of amino, alkyl, arylamino, alkoxy and phenyloxy. ]
JP30493986A 1986-12-18 1986-12-18 Electrophotographic sensitive body Granted JPS63155047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30493986A JPS63155047A (en) 1986-12-18 1986-12-18 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30493986A JPS63155047A (en) 1986-12-18 1986-12-18 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS63155047A JPS63155047A (en) 1988-06-28
JPH0547823B2 true JPH0547823B2 (en) 1993-07-19

Family

ID=17939135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30493986A Granted JPS63155047A (en) 1986-12-18 1986-12-18 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63155047A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286588A (en) * 1989-08-24 1994-02-15 Ricoh Company, Ltd. Electrophotographic photoconductor
EP0449565B1 (en) * 1990-03-26 1997-05-14 Matsushita Electric Industrial Co., Ltd. Photosensitive material for electrophotography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122444A (en) * 1981-01-23 1982-07-30 Canon Inc Electrophotographic receptor
JPS58152247A (en) * 1982-03-05 1983-09-09 Mita Ind Co Ltd Electrophotographic organic photoreceptor
JPS5924852A (en) * 1982-08-03 1984-02-08 Mita Ind Co Ltd Electrophotographic receptor
JPS59140454A (en) * 1983-01-31 1984-08-11 Mita Ind Co Ltd Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122444A (en) * 1981-01-23 1982-07-30 Canon Inc Electrophotographic receptor
JPS58152247A (en) * 1982-03-05 1983-09-09 Mita Ind Co Ltd Electrophotographic organic photoreceptor
JPS5924852A (en) * 1982-08-03 1984-02-08 Mita Ind Co Ltd Electrophotographic receptor
JPS59140454A (en) * 1983-01-31 1984-08-11 Mita Ind Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPS63155047A (en) 1988-06-28

Similar Documents

Publication Publication Date Title
JPH0547822B2 (en)
JPH0567230B2 (en)
JPH0513493B2 (en)
JPH0549223B2 (en)
JPS63159856A (en) Electrophotographic positive charge sensitive body and its image forming process
JPH0567232B2 (en)
JPH0547823B2 (en)
JPH0549222B2 (en)
JPS6350851A (en) Electrophotographic sensitive body for positive charging
JPH0582937B2 (en)
JPH10228121A (en) Electrophotographic photoreceptor
JPH0549221B2 (en)
JPS6344662A (en) Positively electrifiable electrophotographic sensitive body
JPH0522230B2 (en)
JPH0533792B2 (en)
JPH0513494B2 (en)
JPH0549225B2 (en)
JPH0549224B2 (en)
JPH0567946B2 (en)
JPH0297957A (en) Electrophotographic sensitive body and image forming method
JPH0560858B2 (en)
JPS63155049A (en) Electrophotographic positive charge sensitive body and image forming process thereof
JPS6350850A (en) Electrophotographic sensitive body for positive charging
JPH0297956A (en) Electrophotographic sensitive body and image forming method
JPH0555077B2 (en)