JPH054781U - Current limit circuit - Google Patents

Current limit circuit

Info

Publication number
JPH054781U
JPH054781U JP058585U JP5858591U JPH054781U JP H054781 U JPH054781 U JP H054781U JP 058585 U JP058585 U JP 058585U JP 5858591 U JP5858591 U JP 5858591U JP H054781 U JPH054781 U JP H054781U
Authority
JP
Japan
Prior art keywords
commutation
current
voltage
current limit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP058585U
Other languages
Japanese (ja)
Other versions
JP2553776Y2 (en
Inventor
▲のぼる▼ 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1991058585U priority Critical patent/JP2553776Y2/en
Publication of JPH054781U publication Critical patent/JPH054781U/en
Application granted granted Critical
Publication of JP2553776Y2 publication Critical patent/JP2553776Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

(57)【要約】 【目的】 可逆サイリスタレオナードにおける回生動作
時、交流電圧低下での転流失敗を抑制し、その電圧にお
いても転流が容易に行えるようにする。 【構成】 可逆サイリスタレオナード装置で、電流制限
付電流制御機能に交流電圧検出器と電流制限補正回路を
設け、回生運転時に電源電圧が低下(停電)しても、そ
の電圧に応じて補正回路により電流制限値を下げ、転流
失敗に至らぬよう抑制させるものである。
(57) [Summary] [Purpose] To suppress commutation failure due to AC voltage drop during regenerative operation in a reversible thyristor leonard, and to facilitate commutation even at that voltage. [Structure] In a reversible thyristor Leonard device, an AC voltage detector and a current limit correction circuit are provided for the current control function with current limit, and even if the power supply voltage drops (power failure) during regenerative operation, the correction circuit operates according to the voltage. The current limit value is lowered to prevent commutation failure.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、可逆、回生付サイリスタレオナード装置の速度及び電流制御を行う 直流電動機の制御装置に関するものである。 The present invention relates to a DC motor control device for controlling speed and current of a reversible and regenerative thyristor Leonard device.

【0002】[0002]

【従来の技術】[Prior Art]

強制転流回路を備えず交流電源電圧を転流手段とする三相純ブリッジのサイリ スタレオナードにおいて、交流電圧EACと直流平均電圧EDCとの関係は、一般に よく知られている三相全波整流回路の無負荷最高電圧の算出式、数1の式(1) (2)の様になる。In a three-phase pure-bridge thyristor leonard that uses an AC power supply voltage as a commutation means without a forced commutation circuit, the relationship between the AC voltage E AC and the DC average voltage E DC is generally well known. The calculation formula of the maximum no-load voltage of the wave rectifier circuit is as shown in the equations (1) and (2).

【0003】[0003]

【数1】 [Equation 1]

【0004】 特に、回生時には電源転流手段での交流電源電圧の低下は、転流失敗からの過 電流要因であり、保護動作が必要である事は公知である。このため、従来電源事 情の悪い受電端での使用などでは、電源変動巾が大きいため停電検出に至らない 範囲の使用もあり、やむを得ず定格直流出力電圧を低減したパワーダウン使用を したり、転流失敗の有無には無関係に低電圧では停電動作を故意に行ない転流失 敗を想定した後の過電流遮断を直流側に設けた遮断機構により回路の切り離しと 装置の停止保護動作をすることを行なっていた。 この場合、回生時の低電=即、転流失敗→過電流と言う憶測での故意の直流遮 断保護動作もあり装置の停止も多くなる欠点があった。In particular, it is well known that during regeneration, the decrease in the AC power supply voltage in the power supply commutation means is a cause of overcurrent due to commutation failure, and a protective operation is required. For this reason, when used at the power receiving end where power supply conditions are unfavorable, the power supply fluctuation range is large and it may be used in a range that does not lead to power failure detection.Therefore, it is unavoidable to use power down with a reduced rated DC output voltage, Regardless of whether or not there is a flow failure, a power cutoff operation is intentionally performed at low voltage, and an overcurrent cutoff after assuming a commutation failure is performed by a circuit breaker provided on the DC side to disconnect the circuit and protect the equipment from stoppage. I was doing it. In this case, there was a drawback in that the low current during regeneration = immediate, commutation failure → overcurrent caused a deliberate DC cutoff protection operation, and the equipment was often stopped.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

以上の様に電源に依存した転流動作を行っているにもかかわらず、制御情報と しては停電検出のみで転流失敗後の保護動作は行っていたが交流電圧低下時は積 極的に転流失敗を抑制する事では欠けていた。 Even though the commutation operation depends on the power supply as described above, the control information was only the power failure detection and the protection operation after the commutation failure was performed, but it was positive when the AC voltage dropped. It was lacking in suppressing commutation failure.

【0006】 図4が従来例の構成図であり、直流遮断回路14と直流遮断用ブレーカー4によ り交流電圧検出器8と停電検出器9の信号で停電時を検出することでOR回路13 を介し停電時には遮断保護をしていた。 ここで1は3相交流電源、2はACCT、3は可逆変換器、5は直流モータ、 6はゲート回路、7は電流制御回路、10は電流制限補正回路、11は信号優先ダイ オード、12は電流制限セツト器、IS は電流指令である。FIG. 4 is a block diagram of a conventional example. An OR circuit 13 is provided by detecting a power failure by the signals of the AC voltage detector 8 and the power failure detector 9 by the DC blocking circuit 14 and the DC breaking breaker 4. The power was cut off during a power outage. Here, 1 is a three-phase AC power supply, 2 is an ACCT, 3 is a reversible converter, 5 is a DC motor, 6 is a gate circuit, 7 is a current control circuit, 10 is a current limit correction circuit, 11 is a signal priority diode, and 12 Is a current limiting setter, and I S is a current command.

【0007】 本考案は簡単な方法で電圧低下時の転流限界を規定し、回生時の転流失敗の抑 制を行うものである。 回生モードでは主電源はあくまでも直流側であり、直流平均電圧EDCの大きさ により転流余裕角γが決まって来る。これは前述の数1の式(2)から明らかな ように、EDC=−1.35EAC・COSγであり、γは交流電圧EDCを一定とすると 直流平均電圧EDCが大きくなる程小さくなり、EDC=−1.35EACの時γ=0°と なる。 この事は、回生時EDC<1.35EACが転流限界を意味するが、実際には転流時に 回路リアクタンス及び回路電流によって起る転流重なり角μが生じ、γ=μの期 間以上予裕を見た電圧を考える必要がある。 一般的に転流重なり角μは、数2の式(3)になる事も、三相ブリッジ整流器 の算出式から公知であり、直流平均電流及び転流リアクタンスに比例された値に なることも知られている。The present invention defines the commutation limit at the time of voltage drop by a simple method and suppresses commutation failure at the time of regeneration. In the regenerative mode, the main power source is only on the DC side, and the commutation margin angle γ is determined by the magnitude of the DC average voltage E DC . This is E DC = -1.35E AC · COS γ, as is clear from the equation (2) of the above equation 1, and γ becomes smaller as the DC average voltage E DC becomes larger when the AC voltage E DC is constant. , E DC = -1.35E AC , γ becomes 0 °. This means that E DC <1.35E AC during regeneration means the commutation limit, but in reality, the commutation overlap angle μ caused by circuit reactance and circuit current occurs during commutation, and the period of γ = μ or more It is necessary to consider the voltage that has seen the margin. In general, the commutation overlap angle μ is given by the equation (3) of Equation 2, or is known from the calculation formula of the three-phase bridge rectifier, and may be a value proportional to the DC average current and the commutation reactance. Are known.

【0008】[0008]

【数2】 [Equation 2]

【0009】 よって、γ>μが転流上必要条件となってくるが、通常γ= 180°位にリミッ トされ、直流平均電流の大きさによる重なり角が問題にならない程度に設定され ているが、直流電流が少なくなる分にはそれだけ転流余裕が出る様に働く。 又、比較的高いEDCの所で回生に入った時にも前述した様に制御上 EDC=−1.35EAC・COSγとなる様γがきめられ、さらに有効電流を流す必要 から電流は電流制限にかかるまで増加しようとし、γは0°に近ずく。(転流失 敗を起す方向になる。)一般的にはEACは200Vとか400Vときめられているので直 流出力電圧が高く(高速)、直流電流が大きい方が転流余裕が少なくなる。 つまり、転流限界は交流電圧EACと、直流平均電流に主に左右される事と、電 流制限値を小さくしγが0°に近ずかない様にすれば、転流失敗の抑制が行える 事になる。Therefore, γ> μ is a necessary condition for commutation, but it is usually limited to γ = 180 ° and is set so that the overlapping angle due to the magnitude of the DC average current does not matter. However, as the DC current decreases, the commutation margin is increased accordingly. Also, when regenerative braking is performed at a relatively high E DC , γ is set so that E DC = -1.35E AC · COS γ, as described above, and the current is current limited because it is necessary to pass an effective current. Γ approaches 0 ° until it reaches (It tends to cause commutation loss.) Since E AC is generally set at 200V or 400V, the direct current output voltage is high (high speed), and the larger the DC current, the smaller the commutation margin. In other words, the commutation limit is mainly influenced by the AC voltage E AC and the DC average current, and the commutation failure can be suppressed by reducing the current limit value so that γ does not approach 0 °. You can do it.

【0010】 図5(a)が基本的な回路図、図5(b)が図5(a)の転流動作説明図であ り、公知の内容であるので、図5(b)の動作説明は省略するが、三相交流EAC と直流電圧EDC、回路リアクタンスXL 、負荷電流ID でT相からR相に転流す る所で転流重なり角μ及び角γを図示したものである。1′および2′はそのと きの負荷電流の流れを示している。 図6は、交流電圧EACと直流平均電圧EDCとの間で前述の転流限界ゾーンを図 示した説明図である。転流リアクタンス降下分の考慮が必要となる事も重要であ る。 本考案は前述した点に鑑みて創案されたもので、その目的とするところは、回 生時の低電時に起る転流失敗の抑制が行え、無駄な保護動作での装置の停止も少 なくなり、更にはシンプルな構成のものが得られる電流制限回路を提供するもの である。FIG. 5A is a basic circuit diagram, and FIG. 5B is a diagram for explaining the commutation operation of FIG. 5A. Since the content is known, the operation of FIG. those described which omitted, the three-phase alternating current E AC and a DC voltage E DC, illustrating the circuit reactance X L, the load current I commutation overlapping angle μ and corners at that flow inversion to R-phase from T phase D gamma Is. 1'and 2'show the load current flow at that time. FIG. 6 is an explanatory diagram illustrating the commutation limit zone described above between the AC voltage E AC and the DC average voltage E DC . It is also important to consider the commutation reactance drop. The present invention was devised in view of the above-mentioned points, and its purpose is to prevent commutation failure that occurs at low power during regeneration and to reduce the number of stoppages of the device due to unnecessary protection operation. It provides a current limiting circuit that eliminates the need for a simpler configuration.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

つまり、その目的を達成するための手段は、前述の転流限界を知る上で、交流 電圧EACの検出回路と、その値で電流制限値を下げていく補正回路を設けるよう にしたものいある。In other words, the means for achieving the purpose is to provide a detection circuit for the AC voltage E AC and a correction circuit for decreasing the current limit value by that value in order to know the above-mentioned commutation limit. is there.

【0012】[0012]

【作用】[Action]

その作用は、交流電圧検出器により、交流電圧が規定値にある場合は通常セッ トされている電流制限値で正常動作、交流電圧EACが低下して来た場合には補正 回路を介して低下に合せて正規の電流制限値を下げる様に働くようにしたもので ある。以下、本考案の一実施例を、図面に基づいて詳述する。The effect is that the AC voltage detector operates normally with the current limit value that is normally set when the AC voltage is at the specified value, and through the correction circuit when the AC voltage E AC decreases. It is designed to work to lower the regular current limit value in accordance with the decrease. An embodiment of the present invention will be described below in detail with reference to the drawings.

【0013】[0013]

【実施例】【Example】

図1は本考案の一実施例を示す構成図、図2は図1の具体的な回路図、図3は その内部動作レベル説明図であり、図中、図4と同符号のものは同じ構成部分を 有す。 図1,3において、電流制御回路7及びゲート回路6により、設定され電流指 令Is は、信号優先ダイオード11を介し電流制限セット器12と、本考案の電流制 限補正回路10の出力にそれぞれレベル優先として比較され、実際に流そうとする 電流はこの3者の一番小さな値で指令する様に接続される。 ゆえに、電流指令Is がいかに大きくとも、あるいは図3に示す電流制限セッ ト値VL がいかに大きくとも、補正回路10の出力VAXが小さければその値で働く 様にしている。FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a concrete circuit diagram of FIG. 1, and FIG. 3 is an explanatory diagram of its internal operation level. It has components. In FIGS. 1 and 3, the current command I s set by the current control circuit 7 and the gate circuit 6 is output to the current limit setter 12 and the current limit correction circuit 10 of the present invention through the signal priority diode 11. Each of them is compared as a level priority, and the current to be actually flown is connected so as to be commanded by the smallest value of these three. Therefore, no matter how large the current command I s or the current limit set value V L shown in FIG. 3, the output V AX of the correction circuit 10 will work at that value if it is small.

【0014】 図2において、図1の交流電圧検出器8により検出された値EACにより、補正 回路10の出力VAXが小さくなる様にオペアンプ16及びゲイン調整VR17にて構成 され、図3のように交流電圧EACが正規(100%)であれば優先出力15は電流制限 セット値VL で、EACが規定値(100%)より低下した場合は、補正回路出力VAX が低レベルになるので、電流制限セット値VL より低い値の優先出力15が可能に なり、電流制限値がしぼれて、転流電流を小さくして、転流余裕を多くする事に より転流失敗を抑制する様に導く。 又、回路リアクタンスの大小や電源変動の様子により微妙に変る定数の対応に オペアンプ16のゲイン調整VR17にて行う事で電流制限パターンの変更も可能に してある。In FIG. 2, the value E AC detected by the AC voltage detector 8 in FIG. 1 is configured by the operational amplifier 16 and the gain adjustment VR 17 so that the output V AX of the correction circuit 10 becomes smaller, When the AC voltage E AC is normal (100%), the priority output 15 is the current limit set value VL , and when E AC is lower than the specified value (100%), the correction circuit output V AX is at a low level. Therefore, the priority output 15 with a value lower than the current limit set value V L is possible, the current limit value is narrowed, the commutation current is reduced, and the commutation margin is increased to prevent commutation failure. Guide to suppress. In addition, the current adjustment pattern can be changed by adjusting the gain adjustment VR17 of the operational amplifier 16 in response to a constant that slightly changes depending on the magnitude of the circuit reactance and the power supply fluctuation.

【0015】[0015]

【考案の効果】[Effect of the device]

以上説明したように本考案によれば、転流制限を交流電圧の値により簡易的に 想定し、異常時にはいち早く電流をしぼって転流可能な小電流とし、転流余裕を 大きくする事で回生時の低電時に起る転流失敗の抑制が行え、無駄な保護動作で の装置の停止も少なくなる。 又、正確な転流余裕角γを出力波形や点弧位相の測定・計算等で設計構成し、 制御補正を行なう事も一般には行なわれている様であるが、ハード及びソフトを 含め複雑になる。この点本考案は、シンプルで同等な目的が得られる効果的があ る。 As described above, according to the present invention, the commutation limitation is simply assumed by the value of the AC voltage, and in the event of an abnormality, the current is swiftly reduced to a small current that allows commutation, and the commutation margin is increased to regenerate the regeneration. It is possible to suppress commutation failures that occur when the power is low, and the number of stoppages of the device due to unnecessary protection operations is reduced. It is also common to design and configure an accurate commutation allowance angle γ by measuring and calculating the output waveform and ignition phase, and to perform control correction, but it is complicated including hardware and software. Become. In this respect, the present invention is effective in that a simple and equivalent purpose can be obtained.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本考案の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図2は図1の具体的な回路図である。FIG. 2 is a specific circuit diagram of FIG.

【図3】図3はその内部動作レベル説明図である。FIG. 3 is an explanatory diagram of its internal operation level.

【図4】図4は従来例の構成図である。FIG. 4 is a configuration diagram of a conventional example.

【図5(a)】図5(a)は基本的な回路図である。FIG. 5 (a) is a basic circuit diagram.

【図5(b)】図5(b)は図5(a)の転流動作説明
図である。
5 (b) is a diagram for explaining the commutation operation of FIG. 5 (a).

【図6】図6は転流制限電圧説明図である。FIG. 6 is an explanatory diagram of a commutation limiting voltage.

【0017】[0017]

【符号の説明】[Explanation of symbols]

1 3相交流電源 2 ACCT 3 可逆サイリスタ変換器 4 直流遮断用ブレカー 5 直流モータ 6 ゲート回路 7 電流制御回路 8 交流電圧検出器 9 停電検出器 10 電流制限補正回路 11 信号優先ダイオード 12 電流制限セット器 13 OR回路 14 直流遮断回路 15 優先出力 16 オペアンプ 17 ゲイン調整VR 1 3 Phase AC Power Supply 2 ACCT 3 Reversible Thyristor Converter 4 DC Breaker 5 DC Motor 6 Gate Circuit 7 Current Control Circuit 8 AC Voltage Detector 9 Power Failure Detector 10 Current Limit Correction Circuit 11 Signal Priority Diode 12 Current Limit Set Device 13 OR circuit 14 DC cutoff circuit 15 Priority output 16 Operational amplifier 17 Gain adjustment VR

Claims (1)

【実用新案登録請求の範囲】 【請求項1】 可逆回生を行うサイリスタレオナード装
置で電流制御と電流制限機能を有し、過電流を制限機能
し保護する制御装置において、交流電源電圧検出器と、
電流制限補正回路を備えて、交流電源電圧の検出電圧値
に応じて回生時の電流制限値を下げ、転流電流を小さく
転流を容易にすることにより転流失敗からの過電流発生
の抑制を行うよう構成したことを特徴とする電流制限回
路。
[Claims for utility model registration] Claims: 1. A thyristor Leonard device for reversible regeneration, which has current control and current limiting functions, and which controls and protects overcurrent.
Equipped with a current limit correction circuit, the current limit value during regeneration is lowered according to the detected voltage value of the AC power supply voltage, and the commutation current is made small to facilitate commutation, thus suppressing the occurrence of overcurrent due to commutation failure. A current limiting circuit characterized by being configured to perform.
JP1991058585U 1991-06-28 1991-06-28 Current limit circuit Expired - Lifetime JP2553776Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991058585U JP2553776Y2 (en) 1991-06-28 1991-06-28 Current limit circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991058585U JP2553776Y2 (en) 1991-06-28 1991-06-28 Current limit circuit

Publications (2)

Publication Number Publication Date
JPH054781U true JPH054781U (en) 1993-01-22
JP2553776Y2 JP2553776Y2 (en) 1997-11-12

Family

ID=13088548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991058585U Expired - Lifetime JP2553776Y2 (en) 1991-06-28 1991-06-28 Current limit circuit

Country Status (1)

Country Link
JP (1) JP2553776Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034287A (en) * 2000-07-14 2002-01-31 Toyo Electric Mfg Co Ltd Control circuit of thyristor leonard device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055872A (en) * 1983-09-06 1985-04-01 Toshiba Corp Controller for motor
JPS6248282A (en) * 1985-08-23 1987-03-02 Hitachi Ltd Preventive circuit for commutation failure of thyristorlized leonard device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055872A (en) * 1983-09-06 1985-04-01 Toshiba Corp Controller for motor
JPS6248282A (en) * 1985-08-23 1987-03-02 Hitachi Ltd Preventive circuit for commutation failure of thyristorlized leonard device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034287A (en) * 2000-07-14 2002-01-31 Toyo Electric Mfg Co Ltd Control circuit of thyristor leonard device
JP4557387B2 (en) * 2000-07-14 2010-10-06 東洋電機製造株式会社 Thyristor Leonard device control circuit

Also Published As

Publication number Publication date
JP2553776Y2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
JP4759968B2 (en) Method and apparatus for protecting PWM rectifier circuit
AU776497B2 (en) Improved restraint-type differential relay
GB2047021A (en) Controlled current inverter system having semiconductor overvoltage protection
US5282124A (en) Power unit having overcurrent/undervoltage-responsive protective function
US5239253A (en) Portable engine generator
US4608619A (en) Ground fault voltage limiting for a locomotive electric traction motor
US3992659A (en) High voltage direct current transmission
JPH05137253A (en) Abnormal voltage detector/controller
JPH054781U (en) Current limit circuit
JP3478327B2 (en) Spark detector for electric dust collector
US4218728A (en) Polyphase hybrid rectifying bridge with commutation fault protection
JP3212738B2 (en) Voltage source self-excited conversion system
US4344026A (en) Static Scherbius system
JPH0631341U (en) Inverter device
JPS639228Y2 (en)
JPH0516153B2 (en)
JPS62221876A (en) Inverter of amplitude modulation type
KR830001379B1 (en) Multiphase Hybrid Rectifier Bridge Protected from Rectifier Obstruction
JPS63228916A (en) Air harmonizer protector
CA1145394A (en) Controlled current inverter system having semiconductor overvoltage protection
JPH01144380A (en) Speed abnormalcy detection circuit of motor
JPH03293969A (en) Protecting method of ac/dc converter
JPH07118892B2 (en) Field anomaly detector for brushless synchronous machine
JPH03226221A (en) Protector of reactive power compensating device
JPS59149718A (en) Dc line protecting device