JPH0547743A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH0547743A
JPH0547743A JP22875591A JP22875591A JPH0547743A JP H0547743 A JPH0547743 A JP H0547743A JP 22875591 A JP22875591 A JP 22875591A JP 22875591 A JP22875591 A JP 22875591A JP H0547743 A JPH0547743 A JP H0547743A
Authority
JP
Japan
Prior art keywords
film
cvd
semiconductor substrate
thickness
surface temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22875591A
Other languages
Japanese (ja)
Inventor
Shinichi Araki
新一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22875591A priority Critical patent/JPH0547743A/en
Publication of JPH0547743A publication Critical patent/JPH0547743A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a ratio of thicknesses of a grown film to a monitoring film by specifying a surface temperature of a semiconductor substrate, and specifying a volumetric ratio of oxygen gas of reaction gas to be supplied to silane. CONSTITUTION:A p<+> type diffused layer 4 is selectively formed on a surface of a semiconductor substrate 1, and a CVD film 2 is formed on the substrate 1 by a normal pressure hot CVD. In the CVD, oxygen gas O2 and silane SiH4 are supplied as reactive gases, and a volumetric ratio of the gas O2 of the reaction gas to be supplied to the silane SiH4 is set to 8 or less. And, the substrate is so heated that the surface temperature becomes 400 deg.C or higher. Thus, the thickness of the grown film can be set to a value near the thickness of a monitoring film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相成長法、特に成長
膜の膜厚をモニター膜厚に略一致させることができる気
相成長法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase epitaxy method, and more particularly to a vapor phase epitaxy method capable of making a thickness of a grown film substantially equal to a monitor thickness.

【0002】[0002]

【従来の技術】酸素ガスO2 とシランSiH4 を反応ガ
スとして用いての常圧熱CVDによる酸化膜の成長は、
一般に395℃程度の温度で、反応ガスの酸素ガスO2
とシランSiH4 の比を10〜20:1に設定して行わ
れていた。
2. Description of the Related Art The growth of an oxide film by atmospheric pressure thermal CVD using oxygen gas O 2 and silane SiH 4 as reaction gases is
Generally, at a temperature of about 395 ° C., oxygen gas O 2 as a reaction gas
And the ratio of silane SiH 4 to 10 to 20: 1.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述した従
来の常圧熱CVD法によれば、CVD膜の成長速度は半
導体基板の表面温度に非常に強く影響され、実際の成長
膜の膜厚とモニター膜厚との差が大きく、そのためCV
D膜の膜厚を所望通りにすることが難しかった。図3
(A)、(B)は従来の常圧熱CVD法による場合の半
導体基板を示す断面図であり、(A)は半導体基板がそ
の上面が凸曲するように反っている場合を示し、(B)
は半導体基板がその上面が凹曲するように反っている場
合を示す。図3(A)に示す場合は、半導体基板1の中
央部が支持台3から浮いているので、基板表面温度が中
央部よりも周縁部の方が高くなる。従って、CVD膜2
の成長速度は中央部よりも周縁部の方が速くなり、当然
のことながらCVD膜2の膜厚は中央部よりも周縁部の
方が厚くなる。
By the way, according to the conventional atmospheric pressure thermal CVD method described above, the growth rate of the CVD film is very strongly influenced by the surface temperature of the semiconductor substrate, and the actual growth film thickness and The difference from the monitor film thickness is large, so CV
It was difficult to make the film thickness of the D film as desired. Figure 3
(A) and (B) are sectional views showing a semiconductor substrate in the case of a conventional atmospheric thermal CVD method, (A) shows a case where the semiconductor substrate is warped so that its upper surface is convexly curved, B)
Shows the case where the semiconductor substrate is warped such that its upper surface is concavely curved. In the case shown in FIG. 3A, since the central portion of the semiconductor substrate 1 is floating from the support base 3, the substrate surface temperature is higher in the peripheral portion than in the central portion. Therefore, the CVD film 2
Of the CVD film 2 is faster in the peripheral portion than in the central portion, and naturally the CVD film 2 is thicker in the peripheral portion than in the central portion.

【0004】図3(B)に示す場合は、逆に、半導体基
板1の周縁部が支持台3から浮いているので、CVD膜
2の膜厚は図3(A)に示す場合とは逆に中央部よりも
周縁部の方が薄くなる。このように図3(A)、(B)
は従来の気相成長法により基板表面温度がCVD膜の成
長速度に大きく影響されることを示している。また、上
述した従来の常圧熱CVDによれば、半導体基板の表面
のプラズマダメージ、汚染が存在する部分上、あるいは
+ 型拡散層表面上にはCVD膜が形成しにくくCVD
膜が薄くなるという問題がある。図4はそのことを示す
断面図である。
On the contrary, in the case shown in FIG. 3B, since the peripheral portion of the semiconductor substrate 1 is floated from the support base 3, the film thickness of the CVD film 2 is opposite to that in the case shown in FIG. 3A. In addition, the peripheral portion becomes thinner than the central portion. As shown in FIGS. 3 (A) and 3 (B)
Have shown that the substrate surface temperature is greatly affected by the growth rate of the CVD film by the conventional vapor phase growth method. Further, according to the conventional atmospheric pressure thermal CVD described above, it is difficult to form a CVD film on the surface of the semiconductor substrate where plasma damage or contamination exists, or on the surface of the p + -type diffusion layer.
There is a problem that the film becomes thin. FIG. 4 is a sectional view showing this.

【0005】同図において、4は半導体基板1の表面部
に選択的に形成されたp+ 型拡散層であり、該半導体基
板1上に形成されたCVD膜2の該p+ 型拡散層4上の
部分における膜厚t2もそれ以外の部分における膜厚t
1よりも相当に小さくなる。具体例を挙げると、温度が
395℃、供給反応ガスがシランSiH4 42cc、酸
素ガスO2 750ce、成長速度が750オングストロ
ーム/minの条件で、自公転式常圧熱CVD膜形成装
置を用いてCVD膜2を形成した場合、CVD膜2のp
+型拡散層4、4上以外の部分における膜厚t1が30
00オングストロームあったとすると、CVD膜2のp
+ 型拡散層4、4上における膜厚t2は2100オング
ストロームにしかならなかった。尚、半導体基板1の反
りによりCVD膜の膜厚t1は一定ではないが、仮に反
りがないとするとその膜厚t1が略モニター膜厚とな
る。従って、CVD膜2のp+ 型拡散層4、4上におけ
る膜厚t2のモニター膜厚t1に対する比が70%程度
にしかならないことになる。かかる比はせめて90%は
欲しいところであるが、従来においてはそうはならなか
った。
In FIG. 1, reference numeral 4 denotes a p + type diffusion layer selectively formed on the surface of the semiconductor substrate 1, and the p + type diffusion layer 4 of the CVD film 2 formed on the semiconductor substrate 1 is shown. The film thickness t2 in the upper portion is also the film thickness t in other portions.
It is considerably smaller than 1. As a specific example, the temperature is 395 ° C., the supply reaction gas is silane SiH 4 42 cc, oxygen gas O 2 750ce, and the growth rate is 750 Å / min. When the CVD film 2 is formed, p of the CVD film 2
The film thickness t1 except for the + type diffusion layers 4 and 4 is 30.
If there is 00 angstrom, p of the CVD film 2
The film thickness t2 on the + type diffusion layers 4 and 4 was only 2100 angstroms. The thickness t1 of the CVD film is not constant due to the warp of the semiconductor substrate 1. However, if there is no warp, the film thickness t1 becomes a substantially monitor film thickness. Therefore, the ratio of the film thickness t2 on the p + type diffusion layers 4 and 4 of the CVD film 2 to the monitor film thickness t1 is only about 70%. We would like this ratio to be at least 90%, but this was not the case in the past.

【0006】本発明はこのような問題点を解決すべく為
されたものであり、成長膜の膜厚のモニター膜厚に対す
る比を大きくすることを目的とする。
The present invention has been made to solve such a problem, and an object thereof is to increase the ratio of the thickness of the growth film to the monitor thickness.

【0007】[0007]

【課題を解決するための手段】本発明気相成長法は、半
導体基板の表面温度を400℃以上にし、供給する反応
ガスの酸素ガスO2 のシランSiH4 に対する容積比を
8以下にすることを特徴とする。
In the vapor phase epitaxy method of the present invention, the surface temperature of a semiconductor substrate is set to 400 ° C. or higher and the volume ratio of oxygen gas O 2 of a reaction gas to be supplied to silane SiH 4 is set to 8 or less. Is characterized by.

【0008】[0008]

【実施例】以下、本発明気相成長法を図示実施例に従っ
て詳細に説明する。図1は本発明気相成長法の一つの実
施例を説明するための断面図である。図面において、1
は半導体基板、4、4は該半導体基板1の表面部に選択
的に形成されたp+ 型拡散層であり、該半導体基板1に
常圧熱CVDによりCVD膜2を形成する。
EXAMPLES The vapor phase growth method of the present invention will be described in detail below with reference to the illustrated examples. FIG. 1 is a sectional view for explaining one embodiment of the vapor phase growth method of the present invention. In the drawings, 1
Are semiconductor substrates 4 and 4 are p + -type diffusion layers selectively formed on the surface of the semiconductor substrate 1, and a CVD film 2 is formed on the semiconductor substrate 1 by atmospheric pressure thermal CVD.

【0009】本常圧熱CVDは、酸素ガスO2 とシラン
SiH4 を反応ガスとして供給するが、その供給する反
応ガスの酸素ガスO2 のシランSiH4 に対する容積比
Rは8以下にする。そして、基板表面温度が400℃以
上になるように加熱する。
In this atmospheric pressure thermal CVD, oxygen gas O 2 and silane SiH 4 are supplied as reaction gases, and the volume ratio R of the supplied reaction gas of oxygen gas O 2 to silane SiH 4 is 8 or less. Then, heating is performed so that the substrate surface temperature becomes 400 ° C. or higher.

【0010】一つの具体例を挙げると、基板表面温度を
460℃、酸素ガスO2 の供給量を360cc、シラン
SiH4 の供給量を45cc(従って酸素ガスO2 のシ
ランSiH4 に対する容積比R=8)で行った場合、C
VD膜2の成長速度が550オングストローム/min
になり、CVD膜2のp+ 型拡散層4、4以外の部分上
における膜厚t1(これが必ずしもモニター膜厚完全に
一致するとは限らないが、ウェハに反りがないとすれば
モニター膜厚と略一致すると考えられる。)が3000
オングストロームとなり、p+ 型拡散層4、4上におけ
る膜厚t2が2800オングストロームとなり、p+
拡散層上のCVD膜厚t2(P)のモニター膜厚t1
(T)に対する比、即ちP/T比率は約93.3%にも
なった。
As one specific example, the substrate surface temperature is 460 ° C., the oxygen gas O 2 supply amount is 360 cc, and the silane SiH 4 supply amount is 45 cc (accordingly, the volume ratio R of the oxygen gas O 2 to the silane SiH 4 is R). = 8), C
VD film 2 growth rate is 550 Å / min
Therefore, the film thickness t1 on the portions of the CVD film 2 other than the p + type diffusion layers 4 and 4 (this does not always match the monitor film thickness completely, but if the wafer does not warp, the monitor film thickness is It is thought that they are almost the same.) Is 3000
The film thickness t2 on the p + -type diffusion layers 4 and 4 is 2800 angstroms, and the monitor film thickness t1 of the CVD film thickness t2 (P) on the p + -type diffusion layer is angstroms.
The ratio to (T), that is, the P / T ratio was about 93.3%.

【0011】図2はRをパラメータとする基板表面温度
とP/T比率との関係図で、この図からRが低くなる
程、そして、基板表面温度が高くなる程、P/T比率を
高くすることができ、延いてはCVD膜の成長速度が、
基板表面温度や基板表面のダメージ、不純物に非敏感で
あることが明らかである。そして、P/T比率は90%
以上必要であり、その90%以上のP/T比率を得るに
は基板表面温度が400℃以上でRが8以下であれば良
いのである。
FIG. 2 is a diagram showing the relationship between the substrate surface temperature with R as a parameter and the P / T ratio. From this figure, the lower the R and the higher the substrate surface temperature, the higher the P / T ratio. And thus the growth rate of the CVD film,
It is clearly insensitive to substrate surface temperature, substrate surface damage, and impurities. And the P / T ratio is 90%
The above is necessary, and in order to obtain the P / T ratio of 90% or more, the substrate surface temperature is 400 ° C. or more and R is 8 or less.

【0012】[0012]

【発明の効果】本発明気相成長法は、半導体基板の表面
温度を400℃以上にし、反応ガスの酸素ガスO2 のシ
ランSiH4 に対する容積比を8以下にすることを特徴
とするものであり、従って、本発明気相成長法によれ
ば、前述したところから明らかなように、成長膜の膜厚
をモニター膜厚に近い値にすることができる。
The vapor phase growth method of the present invention is characterized in that the surface temperature of the semiconductor substrate is set to 400 ° C. or higher and the volume ratio of the oxygen gas O 2 of the reaction gas to the silane SiH 4 is set to 8 or less. Therefore, according to the vapor phase epitaxy method of the present invention, as is clear from the above description, the thickness of the grown film can be made close to the monitor thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明気相成長法の一つの実施例を示す断面図
である。
FIG. 1 is a cross-sectional view showing one embodiment of the vapor phase growth method of the present invention.

【図2】基板表面温度と、モニター膜厚の成長膜の膜厚
に対する比率との関係図である。
FIG. 2 is a relationship diagram of a substrate surface temperature and a ratio of a monitor film thickness to a film thickness of a grown film.

【図3】(A)、(B)は問題点を示す断面図である。3A and 3B are cross-sectional views showing a problem.

【図4】問題点を示す断面図である。FIG. 4 is a cross-sectional view showing a problem.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 成長膜 t1 モニター膜厚 t2 成長膜の拡散層上の膜厚 1 semiconductor substrate 2 growth film t1 monitor film thickness t2 film thickness of diffusion film on diffusion layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シランSiH4 と酸素ガスO2 を反応ガ
スとして供給して気相成長膜を形成する気相成長法にお
いて、 半導体基板の表面温度を400℃以上にし、 上記反応ガスの酸素ガスO2 のシランSiH4 に対する
容積比を8以下にすることを特徴とする気相成長法
1. A vapor phase growth method in which silane SiH 4 and oxygen gas O 2 are supplied as a reaction gas to form a vapor phase growth film, the surface temperature of a semiconductor substrate is set to 400 ° C. or higher, and the oxygen gas of the reaction gas is used. Vapor growth method characterized in that the volume ratio of O 2 to silane SiH 4 is 8 or less
JP22875591A 1991-08-13 1991-08-13 Vapor growth method Pending JPH0547743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22875591A JPH0547743A (en) 1991-08-13 1991-08-13 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22875591A JPH0547743A (en) 1991-08-13 1991-08-13 Vapor growth method

Publications (1)

Publication Number Publication Date
JPH0547743A true JPH0547743A (en) 1993-02-26

Family

ID=16881322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22875591A Pending JPH0547743A (en) 1991-08-13 1991-08-13 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH0547743A (en)

Similar Documents

Publication Publication Date Title
US5051380A (en) Process for producing semiconductor device
Kamins et al. Structure and stability of low pressure chemically vapor‐deposited silicon films
US6461985B1 (en) Semiconductor wafer assemblies comprising silicon nitride, methods of forming silicon nitride, and methods of reducing stress on semiconductive wafers
US4504521A (en) LPCVD Deposition of tantalum silicide
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JPH10310496A (en) Apparatus for growing silicon epitaxial layer and method therefor
JPH0547743A (en) Vapor growth method
JP2000164588A (en) Substrate-heating method and device
US5037674A (en) Method of chemically vapor depositing a thin film of GaAs
JP3213437B2 (en) Semiconductor device
JPH01301506A (en) Production of hydrogenated amorphous carbon thin film
KR930000309B1 (en) Manufacturing method of semiconductor device
JP3214109B2 (en) Method for manufacturing silicon oxide film
US20020070636A1 (en) Substrate usable for an acoustic surface wave device, a method for fabricating the same substrate and an acoustic surface wave device having the same substrate
JPH0258217A (en) Metallic film forming method
JPH02130818A (en) Formation of electrode wiring of semiconductor device
JPS62159421A (en) Manufacture of semiconductor device
JPH01157517A (en) Formation of crystal
JPH03200321A (en) Vapor phase epitaxial growth method
JPH08227994A (en) Manufacture of semiconductor device
JPH0793278B2 (en) Diffusion method of phosphorus into polycrystalline silicon film
KR20070066329A (en) Epitaxial wafer and maufacturing method thereof
JPH06101440B2 (en) Vapor growth method
JPH0974055A (en) Composite semiconductor substrate
JPS613424A (en) Dielectric isolation substrate