JPH0547653A - Apparatus and method for curing resin - Google Patents

Apparatus and method for curing resin

Info

Publication number
JPH0547653A
JPH0547653A JP23076391A JP23076391A JPH0547653A JP H0547653 A JPH0547653 A JP H0547653A JP 23076391 A JP23076391 A JP 23076391A JP 23076391 A JP23076391 A JP 23076391A JP H0547653 A JPH0547653 A JP H0547653A
Authority
JP
Japan
Prior art keywords
resin
curing
refractive index
resist
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23076391A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Ishii
哲好 石井
Jiro Nakamura
二朗 中村
Korehito Matsuda
維人 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23076391A priority Critical patent/JPH0547653A/en
Publication of JPH0547653A publication Critical patent/JPH0547653A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain a predetermined degree of cure to be obtained for resin in which curing sensitivity is largely varied due to an aging change, etc. CONSTITUTION:After a sample 8 coated with resist is pattern-exposed, it is placed on a heating plate 3, heated at 105 deg.C, and its curing is advanced. On the other hand, as a process is started, a polarized laser light 7 from a laser light source 4 is obliquely incident to an exposure resin to be monitored on the surface of the sample 8, its reflected light is detected by a detector 5, its refractive index is calculated, a refractive index change is monitored in real time with curing process, and a predetermined degree of cure is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硬化性樹脂を用いた製
造・加工プロセス、特に半導体集積回路などの微細パタ
ン形成プロセスにおいて、レジスト薄膜の硬化度を高精
度に制御し、高精度なパタン寸法制御を可能とする樹脂
硬化装置および方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls a curing degree of a resist thin film with high precision in a manufacturing / processing process using a curable resin, particularly in a fine pattern forming process of a semiconductor integrated circuit or the like, to provide a highly precise pattern. The present invention relates to a resin curing device and a method capable of controlling dimensions.

【0002】[0002]

【従来の技術】半導体集積回路等の製造プロセスにおい
て、微細パタン形成のためにレジストと呼ばれる感光性
樹脂が使用されている。近年の半導体集積回路の高集積
化に伴い、レジストに対してはより一層の高解像・高感
度化が要求されている。この要求に応えるものとして、
最近、化学増幅系レジストが開発され、一部はすでに商
品化されている。このレジストは従来のフォトレジスト
と同様非膨潤のアルカリ現像が可能であることから高解
像性を保持していると同時に、露光により発生した酸を
触媒とする連鎖反応を利用することにより、従来のレジ
ストでは得られない高感度化を可能とする特性も合わせ
もっている。化学増幅系レジストは、材料の不安定性や
酸の失活などに起因するレジスト感度の経時変化に問題
は残っているが、次世代大規模集積回路製造用遠紫外線
レジストとして最有力視されている。化学増幅系レジス
トのうちネガ形のものは、露光後樹脂硬化装置において
加熱され、露光時に発生した酸の触媒作用により露光部
が架橋されパタンの潜像が形成される。したがって、露
光後の樹脂硬化装置による硬化処理が形成パタンの寸法
に大きく影響を与える。従来の樹脂硬化装置はオーブン
式またはホットプレート式で、処理温度,処理時間の高
精度化に重点がおかれ、処理中、温度,時間とも一定値
に固定されるようになっていた。
2. Description of the Related Art In the manufacturing process of semiconductor integrated circuits and the like, a photosensitive resin called a resist is used for forming fine patterns. As semiconductor integrated circuits have become highly integrated in recent years, resists are required to have higher resolution and higher sensitivity. To meet this demand,
Recently, chemically amplified resists have been developed and some have already been commercialized. This resist retains high resolution because it can be developed by non-swelling alkali like conventional photoresists, and at the same time, by utilizing the chain reaction using the acid generated by exposure as a catalyst, It also has characteristics that enable higher sensitivity, which cannot be obtained with the resist. Chemically amplified resists still have problems with changes in resist sensitivity over time due to instability of materials and deactivation of acids, but they are regarded as the most promising far-ultraviolet resist for the production of next-generation large-scale integrated circuits. .. The negative type of the chemically amplified resist is heated in the resin curing device after exposure, and the exposed portion is crosslinked by the catalytic action of the acid generated during exposure to form a latent image of the pattern. Therefore, the curing process by the resin curing device after the exposure has a great influence on the size of the forming pattern. A conventional resin curing device is an oven type or a hot plate type, and emphasis is placed on improving the accuracy of processing temperature and processing time, and during processing, both temperature and time are fixed at fixed values.

【0003】[0003]

【発明が解決しようとする課題】上述したような従来の
樹脂硬化装置では、到達硬化度は処理前に設定した温度
と時間とによって一義的に決まってしまうので、材料の
不安定性や経時変化により硬化感度が数時間で大きく変
動するような樹脂を硬化処理する場合、常に一定の目的
硬化度を得ることは困難であった。したがって、前述し
たような化学増幅系ネガ形レジストを従来の樹脂硬化装
置で硬化処理し潜像パタンを形成する場合、触媒である
酸の失活という現象からレジスト感度、すなわち硬化感
度の経時変化は化学増幅の原理上避けられないので、被
硬化試料毎に高精度なパタン寸法制御を実現することは
困難であった。
In the conventional resin curing apparatus as described above, the ultimate curing degree is uniquely determined by the temperature and the time set before the treatment, so that the instability of the material or the change with time may lead to It was difficult to always obtain a constant degree of target curing when curing a resin whose curing sensitivity greatly varies in several hours. Therefore, when a chemically amplified negative resist as described above is cured by a conventional resin curing device to form a latent image pattern, the resist sensitivity, that is, the curing sensitivity does not change with time due to the phenomenon of deactivation of the acid as a catalyst. Since the principle of chemical amplification is unavoidable, it has been difficult to realize highly precise pattern size control for each cured sample.

【0004】本発明の目的は、硬化感度が経時変化など
により大きく変動するような樹脂に対しても、常に一定
の目的硬化度が得られるような高精度な硬化処理を可能
とする樹脂硬化装置および方法を提供することにある。
An object of the present invention is to provide a resin curing apparatus capable of performing a highly accurate curing treatment such that a constant degree of target curing can always be obtained even for a resin whose curing sensitivity largely changes with time. And to provide a method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明による樹脂硬化装置は、被硬化樹脂試料の硬
化度を屈折率により検出する検出手段を備えており、硬
化度の測定がリアルタイム、かつ非接触・非破壊的に可
能であることを特徴としている。
In order to achieve the above object, the resin curing apparatus according to the present invention is provided with a detection means for detecting the degree of curing of a resin sample to be cured by the refractive index, and the degree of curing can be measured. The feature is that it is possible in real time, non-contact and non-destructive.

【0006】また、本発明による樹脂硬化方法は、パタ
ンが露光された樹脂を加熱により所定の屈折率とし、さ
らに樹脂に紫外線を照射して樹脂が他の所定の屈折率に
なるようにするものである。
Further, the resin curing method according to the present invention heats the pattern-exposed resin to a predetermined refractive index, and further irradiates the resin with ultraviolet rays so that the resin has another predetermined refractive index. Is.

【0007】[0007]

【作用】図2は半導体集積回路の製造に使用されている
化学増幅系ネガ形レジストを電子ビームで露光した後、
熱硬化させた場合において、熱処理時間に対して樹脂硬
化度を表す単位時間当たりの現像液による溶解量と、な
らびにそのときの屈折率とをプロットしたものである。
この図から熱処理時間の増加とともに樹脂の硬化度と屈
折率が単調増加することがわかり、屈折率により樹脂の
硬化度を定量的に表すことが可能となる。屈折率は偏光
解析装置(エリプソメータ)により測定したものである
が、この装置を用いた測定法によれば、薄膜化された樹
脂の屈折率を高精度、かつ高速に測定することが可能で
ある。なお、図2は露光量約10μC/cm2 、加熱温
度105℃についての例を示したものである。上述した
硬化度の指標となる屈折率の検出手段を樹脂硬化装置に
備えることにより、レジスト膜など樹脂薄膜の硬化度の
測定がリアルタイム、かつ被接触・非破壊的に可能とな
り、処理時に硬化度をモニタしそれをフィードバックし
て処理温度、時間に補正を加えることが可能となるた
め、常に一定の硬化度が得られるようになる。
After the chemical amplification type negative resist used in the manufacture of semiconductor integrated circuits is exposed to an electron beam,
When heat-cured, the amount of dissolution by a developing solution per unit time, which represents the degree of resin curing with respect to heat treatment time, and the refractive index at that time are plotted.
It can be seen from this figure that the degree of cure and the refractive index of the resin monotonically increase as the heat treatment time increases, and it becomes possible to quantitatively express the degree of cure of the resin by the refractive index. The refractive index is measured by a polarization analyzer (ellipsometer). According to the measuring method using this device, the refractive index of the thinned resin can be measured with high accuracy and high speed. .. Note that FIG. 2 shows an example in which the exposure amount is about 10 μC / cm 2 and the heating temperature is 105 ° C. By equipping the resin curing device with the above-mentioned refractive index detection means that serves as an index of the degree of curing, it is possible to measure the degree of curing of a resin thin film such as a resist film in real time and in a contacted / non-destructive manner. Since it is possible to monitor the temperature and feed it back to correct the processing temperature and time, it is possible to always obtain a certain degree of curing.

【0008】[0008]

【実施例】【Example】

(実施例1)図1は本発明の一実施例で、半導体集積回
路製造用の化学増幅系ネガ形レジストの露光後の潜像形
成プロセスを屈折率によりモニタしながら処理する樹脂
硬化装置の一実施例を示したものである。以下に樹脂硬
化装置ならびに樹脂硬化方法の実施例を説明する。本発
明にかかる樹脂硬化装置は、従来の半導体集積回路製造
用プロセスに使用されている樹脂硬化装置に樹脂の屈折
率を非接触,非破壊で測定する手段として自動偏光解析
装置(エリプソメータ)が組み込まれた構成となってい
る。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention, which is an example of a resin curing apparatus for processing a latent image forming process after exposure of a chemically amplified negative resist for manufacturing a semiconductor integrated circuit while monitoring it by a refractive index. It shows an example. Examples of the resin curing device and the resin curing method will be described below. In the resin curing device according to the present invention, an automatic ellipsometer (ellipsometer) is incorporated as a means for measuring the refractive index of the resin in a non-contact and non-destructive manner in the resin curing device used in the conventional semiconductor integrated circuit manufacturing process. It has been configured.

【0009】図1において、1は樹脂硬化装置全体を示
し、2は紫外線ランプ、3は加熱プレート、4はレーザ
光源部、5は検出部、6は計算機、7はレーザ光、8は
試料を示す。本願発明の樹脂硬化装置による硬化処理
は、まず、基板にレジストが塗布された試料8をあらか
じめ電子ビームで所定パタンにしたがって露光し(露光
量約10μC/cm2 )、次に前記試料8を加熱プレー
ト3に乗せ、105℃で加熱し架橋反応を促進させて硬
化を進める。処理開始とともに、計算機6にあらかじめ
入力したプログラムにより、レーザ光源部4より偏光さ
れたレーザ光7を前記試料8面のモニタ用露光領域に斜
入射させ、その反射光を検出部5で検光し、前記計算機
6で入射光と反射光との偏光状態の変化量を解析するこ
とにより屈折率を算出し、屈折率変化を硬化処理とリア
ルタイムでモニタする。本実施例で使用したレジスト
は、シプレイ社製SAL601−ER−7で、上記試料
8に約1.5μmの厚さで回転塗布した。このレジスト
の露光後加熱処理前の屈折率は1.618で、露光後の
加熱処理により解像性が最大となる屈折率は約1.63
5である。解像性は電子顕微鏡を用い0.5μmのライ
ンアンドスペースパタンで評価した。屈折率が1.63
5に到達した時間は約120秒であった。
In FIG. 1, 1 is the whole resin curing apparatus, 2 is an ultraviolet lamp, 3 is a heating plate, 4 is a laser light source section, 5 is a detection section, 6 is a calculator, 7 is a laser beam, and 8 is a sample. Show. In the curing treatment by the resin curing apparatus of the present invention, first, the sample 8 having the substrate coated with the resist is exposed in advance with an electron beam according to a predetermined pattern (exposure amount: about 10 μC / cm 2 ), and then the sample 8 is heated. It is placed on the plate 3 and heated at 105 ° C. to accelerate the crosslinking reaction and proceed with curing. When the processing is started, a laser light 7 polarized by the laser light source unit 4 is obliquely incident on the monitor exposure area on the surface of the sample 8 by a program previously input to the computer 6, and the reflected light is detected by the detection unit 5. The computer 6 analyzes the amount of change in the polarization state of the incident light and the reflected light to calculate the refractive index, and the change in the refractive index is monitored in real time with the curing process. The resist used in this example was SAL601-ER-7 manufactured by Shipley Co., Ltd., and the sample 8 was spin-coated with a thickness of about 1.5 μm. The refractive index of this resist after exposure and before heat treatment is 1.618, and the refractive index at which the resolution is maximized by the heat treatment after exposure is about 1.63.
It is 5. The resolution was evaluated by a line and space pattern of 0.5 μm using an electron microscope. Refractive index is 1.63
The time to reach 5 was about 120 seconds.

【0010】上記実施例は露光直後に硬化処理をした場
合について述べたものである。前記レジストつき試料8
を電子ビームによる露光後大気中に40時間放置してお
いた場合には約10%レジスト感度が低下し、加熱処理
時間120秒では高解像度に対応する屈折率値1.63
5に到達しなかったので、熱処理時間を約60秒のばし
屈折率のモニタ値が1.635になるようにした。現像
後のパタンの電子顕微鏡観察の結果、露光直後硬化処理
した場合とほぼ同様な0.5μmのラインアンドスペー
スパタンが得られた。
The above embodiment describes the case where the curing treatment is performed immediately after the exposure. Sample 8 with resist
When exposed to the electron beam for 40 hours in the atmosphere after exposure, the resist sensitivity decreases by about 10%, and when the heat treatment time is 120 seconds, the refractive index value corresponding to high resolution is 1.63.
Since it did not reach 5, the heat treatment time was set to be about 1.635 for the extended refractive index monitor value of 1.635. As a result of observing the pattern after development with an electron microscope, a 0.5 μm line-and-space pattern similar to that in the case of curing treatment immediately after exposure was obtained.

【0011】なお、本実施例で使用した屈折率モニタ用
のレーザ光7には従来の偏光解析装置に広く使用されて
いるヘリウム−ネオンレーザ(波長633nm)を用い
たが、樹脂試料に損傷を与えないのであれば他の波長域
のレーザ光を用いることも可能である。 (実施例2)さらに、このパタンのコントラストを向上
させるために、実施例1で使用したレジストを試料8上
に実施例1と同一の膜厚で塗布し、電子ビームによりモ
ニタパタンも含め実施例1と同一露光量で露光した後、
実施例1と同様な加熱処理を行いモニタ領域の屈折率を
1.635とした後、前記試料8を引き続き紫外線ラン
プ2により紫外線を照射しレジスト上層のみを難溶化す
る処理を行った。この場合、最も高コントラストのパタ
ンが得られたのはモニタ領域の屈折率で約1.65であ
った。この屈折率に到達する紫外線照射時間は約180
秒であった。本実施例では熱硬化処理の後に紫外線硬化
処理を行ったが、紫外線強度を最適化することにより上
記両処理を同時に進行させることも可能である。また、
本実施例では屈折率のモニタのみを自動化したが、紫外
線ランプ2、加熱プレート3も計算機6に接続すること
により、上記処理の自動化が可能である。
Although the helium-neon laser (wavelength 633 nm) widely used in the conventional ellipsometer was used as the laser light 7 for the refractive index monitor used in this embodiment, the resin sample was damaged. If it is not given, it is possible to use laser light in other wavelength regions. (Example 2) Further, in order to improve the contrast of this pattern, the resist used in Example 1 was applied on the sample 8 in the same film thickness as in Example 1, and the sample including the monitor pattern was also formed by electron beam. After exposing with the same exposure amount as 1,
The same heat treatment as in Example 1 was performed to adjust the refractive index of the monitor region to 1.635, and then the sample 8 was subsequently irradiated with ultraviolet rays from the ultraviolet lamp 2 to make only the resist upper layer insoluble. In this case, the highest contrast pattern was obtained with a refractive index of about 1.65 in the monitor region. The ultraviolet irradiation time to reach this refractive index is about 180
It was seconds. In this embodiment, the ultraviolet curing treatment was performed after the heat curing treatment, but it is possible to proceed with both treatments simultaneously by optimizing the ultraviolet intensity. Also,
Although only the refractive index monitor is automated in this embodiment, the above process can be automated by connecting the ultraviolet lamp 2 and the heating plate 3 to the computer 6.

【0012】なお、屈折率の測定において、硬化に伴う
樹脂の屈折率変化の範囲があらかじめ分かっている場合
には(例えば図2のように1.60〜1.65)、範囲
を限定することによりエリプソメータにおける計算時間
を短くできる。また、硬化における膜厚の変化が無視で
きる場合には、他の簡易な方法で屈折率を測定すること
ができる。図2の場合のように、屈折率の変化の幅が小
さいとき、高精度に屈折率を測定することが容易にでき
る。
In the measurement of the refractive index, if the range of the refractive index change of the resin due to curing is known in advance (for example, 1.60 to 1.65 as shown in FIG. 2), the range should be limited. Can shorten the calculation time in the ellipsometer. Further, when the change in the film thickness during curing can be ignored, the refractive index can be measured by another simple method. As in the case of FIG. 2, when the width of the change in the refractive index is small, it is possible to easily measure the refractive index with high accuracy.

【0013】[0013]

【発明の効果】以上説明したように、本発明にかかる樹
脂硬化装置は、樹脂の屈折率を非接触,非破壊で測定す
る手段を備えたので、樹脂の硬化度をリアルタイム、か
つ非接触・非破壊的に検出でき、樹脂硬化度を高精度に
制御する硬化処理が可能となる。特に、半導体集積回路
の微細パタン形成プロセスなどのような高信頼性が要求
される分野において、感度すなわち硬化度の経時変化の
大きいレジスト材料を使用する場合でも、硬化度をロッ
ト内、ロット間で高精度に制御し、高精度なパタン寸法
制御を実現することができる。
As described above, the resin curing device according to the present invention is provided with means for measuring the refractive index of the resin in a non-contact and non-destructive manner. Non-destructive detection is possible, and a curing process that controls the resin curing degree with high accuracy becomes possible. In particular, even in the field where high reliability is required, such as in the process of forming fine patterns of semiconductor integrated circuits, even when using a resist material whose sensitivity, that is, the degree of cure changes greatly over time, the degree of cure can be varied between lots and between lots. It is possible to control with high precision and to realize highly precise pattern dimension control.

【0014】また、本発明にかかる樹脂硬化方法は、熱
処理を樹脂に加える他、紫外線を照射して上層を下層よ
りも大きい硬化度にしたので、コントラストを向上させ
ることができる。
Further, in the resin curing method according to the present invention, the heat treatment is applied to the resin, and the resin is irradiated with ultraviolet rays so that the upper layer has a higher degree of curing than the lower layer, so that the contrast can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の樹脂硬化装置の一実施例の構成を示す
図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a resin curing device of the present invention.

【図2】化学増幅系ネガ形レジストの熱処理時間と屈折
率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a heat treatment time and a refractive index of a chemically amplified negative resist.

【符号の説明】[Explanation of symbols]

1 樹脂硬化装置 2 紫外線ランプ 3 加熱プレート 4 レーザ光源部 5 検出部 6 計算機 7 レーザ光 8 試料 DESCRIPTION OF SYMBOLS 1 Resin curing device 2 Ultraviolet lamp 3 Heating plate 4 Laser light source part 5 Detection part 6 Calculator 7 Laser light 8 Sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機あるいは無機高分子から構成されて
いる樹脂を加熱により硬化させる装置において、前記樹
脂の屈折率を非接触,非破壊で測定する手段を備えたこ
とを特徴とする樹脂硬化装置。
1. An apparatus for curing a resin composed of an organic or inorganic polymer by heating, comprising a means for measuring the refractive index of the resin in a non-contact and non-destructive manner. ..
【請求項2】 パタンが露光された樹脂を、この樹脂が
所定の屈折率になるまで熱処理する工程と、この工程
後、またはこの工程と同時に前記樹脂の上層のみを難溶
化するために前記樹脂の上層が他の所定の屈折率になる
まで前記樹脂に紫外線を照射する工程とを含むことを特
徴とする樹脂硬化方法。
2. A step of heat-treating a pattern-exposed resin until the resin has a predetermined refractive index, and after or at the same time as the step, the resin is made insoluble only in the upper layer of the resin. Irradiating the resin with ultraviolet rays until the upper layer has another predetermined refractive index.
JP23076391A 1991-08-19 1991-08-19 Apparatus and method for curing resin Pending JPH0547653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23076391A JPH0547653A (en) 1991-08-19 1991-08-19 Apparatus and method for curing resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23076391A JPH0547653A (en) 1991-08-19 1991-08-19 Apparatus and method for curing resin

Publications (1)

Publication Number Publication Date
JPH0547653A true JPH0547653A (en) 1993-02-26

Family

ID=16912884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23076391A Pending JPH0547653A (en) 1991-08-19 1991-08-19 Apparatus and method for curing resin

Country Status (1)

Country Link
JP (1) JPH0547653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121469A (en) * 1993-12-23 2000-09-19 The Regents Of The University Of California Therapeutically effective 1α,25-dihydroxyvitamin D3 analogs
JP2012040513A (en) * 2010-08-19 2012-03-01 Nippon Shokubai Co Ltd Microcapsule and method for manufacturing the same
US9346074B2 (en) 2010-09-13 2016-05-24 Nordson Corporation Conformal coating applicator and method
JP2018200930A (en) * 2017-05-26 2018-12-20 大日本印刷株式会社 Pattern forming method, uneven structure manufacturing method, replica mold manufacturing method, resist pattern reforming device, and pattern forming system
US10441460B2 (en) 2013-04-26 2019-10-15 Med-Logics, Inc. Tissue removal devices, systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121469A (en) * 1993-12-23 2000-09-19 The Regents Of The University Of California Therapeutically effective 1α,25-dihydroxyvitamin D3 analogs
JP2012040513A (en) * 2010-08-19 2012-03-01 Nippon Shokubai Co Ltd Microcapsule and method for manufacturing the same
US9346074B2 (en) 2010-09-13 2016-05-24 Nordson Corporation Conformal coating applicator and method
US10441460B2 (en) 2013-04-26 2019-10-15 Med-Logics, Inc. Tissue removal devices, systems and methods
US11896524B2 (en) 2013-04-26 2024-02-13 Med-Logics, Inc. Tissue removal devices, systems and methods
JP2018200930A (en) * 2017-05-26 2018-12-20 大日本印刷株式会社 Pattern forming method, uneven structure manufacturing method, replica mold manufacturing method, resist pattern reforming device, and pattern forming system

Similar Documents

Publication Publication Date Title
KR100334301B1 (en) Heating apparatus and a test method of the heating apparatus
KR101846109B1 (en) Metrology for measurement of photosensitizer concentration within photo-sensitized chemically-amplified resist
KR20060105437A (en) Integrated optical metrology and lithographic process track for dynamic critical dimension control
JP5610665B2 (en) Real-time dynamic CD control method
US6806008B2 (en) Method for adjusting a temperature in a resist process
US6654660B1 (en) Controlling thermal expansion of mask substrates by scatterometry
CN102053506A (en) Method for monitoring focusing of exposure machine
US5212028A (en) Fabrication of fine patterns by selective surface reaction and inspection method therefor
JPH0547653A (en) Apparatus and method for curing resin
JP3707793B2 (en) Photoactive compound
JPS60249327A (en) Method of detecting resist pattern
KR20020071404A (en) Method for exposing a peripheral part of wafer and Apparatus for performing the same
JPH07280739A (en) Foreign matter inspecting method
JPH0423816B2 (en)
Jung et al. Sub-millisecond post exposure bake of chemically amplified resists by CO2 laser heat treatment
JP4361830B2 (en) Method for evaluating in-plane distribution of resist pattern dimensions, photomask blank manufacturing method, photomask blank, and resist pattern forming process management method
US20060147839A1 (en) Photosensitive coating material for a substrate
US6800407B2 (en) Method for experimentally verifying imaging errors in photomasks
JP2913988B2 (en) How to measure heat treatment effect
JPH1172927A (en) Method for dimensional control of resist pattern and heating treatment device
JP4354166B2 (en) Method for correcting critical dimensions after exposure in mask manufacturing
JPH06167308A (en) Measuring method of overlapping accuracy
KR100649003B1 (en) Method for Testing Mask
KR20060012530A (en) Spinner equipment for semiconductor manufacturing and control method thereof
JPH0346969B2 (en)