JPH0547636A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH0547636A
JPH0547636A JP3197616A JP19761691A JPH0547636A JP H0547636 A JPH0547636 A JP H0547636A JP 3197616 A JP3197616 A JP 3197616A JP 19761691 A JP19761691 A JP 19761691A JP H0547636 A JPH0547636 A JP H0547636A
Authority
JP
Japan
Prior art keywords
polarization
laser light
narrowed
light source
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197616A
Other languages
Japanese (ja)
Inventor
Shoichi Tanimoto
昭一 谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3197616A priority Critical patent/JPH0547636A/en
Publication of JPH0547636A publication Critical patent/JPH0547636A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To improve the quality of an image at the time of exposure by means of a projection optical system by reducing the ASE light which, without being narrowed, leaks into the narrowed laser light from an excimer laser light source by a polarization selecting device such as a polarization beam splitter. CONSTITUTION:The spectrum-narrowed beam emitted from a KrF excimer laser light source 1 is narrowed down to a specified beam intensity through a polarization selecting device 2, a polarization cancelling device 3 and a variable attenuator for adjusting the beam intensity 4. The beam illuminates a reticle R through a beam quality unification optical system 5, a splitter 6, a variable blind mechanism 7, a mirror 8 and a condensing lens 9. At the same time, spectrum-narrowed beam including a background component as the ASE light is emitted from the laser light source 1. Since the ASE light has no specific polarized light, the narrowed main spectrum having specific polarized light is taken out without being attenuated and at the same time the intensity of the ASE light lowers to nearly half.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はULSI、VLSI等の
回路パターンを転写する投影露光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for transferring circuit patterns such as ULSI and VLSI.

【0002】[0002]

【従来の技術】LSIの微細化を推進する上で、回路パ
ターンを転写する投影露光装置(ステッパー)の解像性
能向上は欠かせない。KrFエキシマレーザの発振スペ
クトルを狭くし、投影レンズ系の色収差が出ないように
した型式のエキシマステッパーは、1986年のATT
社の発表以来、実用化の努力が続けられている。この種
の装置では従来の水銀ランプのg線やi線を用いたステ
ッパーに比べて短波長の光源を用いているので解像力が
高く、マスクとしてのレチクルに形成されたパターンの
転写の忠実度が高いので、0.35μmルールのLSI
に最も適した露光装置であると考えられる。
2. Description of the Related Art In promoting miniaturization of LSI, it is essential to improve the resolution performance of a projection exposure apparatus (stepper) that transfers a circuit pattern. The excimer stepper of the type that narrows the oscillation spectrum of the KrF excimer laser and prevents the chromatic aberration of the projection lens system is the 1986 ATT.
Since the company's announcement, efforts have been made to put it into practical use. This type of device uses a light source of a shorter wavelength than a stepper using a g-line or i-line of a conventional mercury lamp, so that the resolution is high and the fidelity of transfer of a pattern formed on a reticle as a mask is high. High, so LSI with 0.35 μm rule
It is considered to be the most suitable exposure apparatus for.

【0003】[0003]

【発明が解決しようとする課題】上記の型式のエキシマ
ステッパーにおいてはスペクトルを狭帯化しているが、
狭帯化された本来必要なスペクトル以外に、狭帯化され
ないでそのまま放出されてくるバックグランドスペクト
ルが存在することが最近の実験等により判明した。この
バックグランドスペクトルは、結像光学系(投影レンズ
系)において大きな色収差を生じさせ、正規の転写パタ
ーン像に対してフレアが生じたかのようになり、結像の
コントラストを低下させる。このコントラストの低下に
より最小解像線幅が大きくなるだけでなく、最小解像線
幅より大きな0.35μm線幅のパターンにおいて焦点
深度が浅くなるという問題点があった。
In the excimer stepper of the above type, the spectrum is narrowed.
Recent experiments have revealed that, in addition to the originally narrowed spectrum, there is a background spectrum that is emitted as it is without being narrowed. This background spectrum causes a large chromatic aberration in the image forming optical system (projection lens system), and it becomes as if flare occurs with respect to the regular transfer pattern image, thus lowering the contrast of image formation. Due to this decrease in contrast, not only the minimum resolution line width becomes large, but also the depth of focus becomes shallow in a 0.35 μm line width pattern larger than the minimum resolution line width.

【0004】本発明はこの様な従来の問題点を解決する
ためになされたもので、コントラストの高い良好な結像
を得ることを目的とする。
The present invention has been made in order to solve such a conventional problem, and an object thereof is to obtain an excellent image with high contrast.

【0005】[0005]

【課題を解決するための手段】本発明は、狭帯化された
スペクトル幅の出力ビームを放出するレーザ光源(エキ
シマレーザ光源1)と、出力ビームの空間的な一様性を
改善して、被転写パターンを有する第1基板(レチクル
R)を一様な強度分布で照射するための照明系(2〜
9)と、被転写パターンを第2基板(ウェハW)へ結像
投影する投影系(投影レンズPL)とを備えた装置に関
するものである。そして本発明では、さらにレーザ光源
(1)と投影系(PL)との間に、レーザ光源(1)か
らの出力ビーム(LB)のうち主偏光以外の成分(AS
E光)を所定量減衰させる偏光選択手段(偏光ビームス
プリッター,ブリュースタ角の石英板等の素子2)を設
けるようにした。
According to the present invention, a laser light source (excimer laser light source 1) that emits an output beam having a narrowed spectral width and a spatial uniformity of the output beam are improved. An illumination system (2 to 2) for irradiating the first substrate (reticle R) having the transferred pattern with a uniform intensity distribution.
9) and a projection system (projection lens PL) for imaging and projecting the transferred pattern onto the second substrate (wafer W). Further, in the present invention, between the laser light source (1) and the projection system (PL), a component (AS) other than the main polarized light in the output beam (LB) from the laser light source (1) is further added.
A polarization selecting means (element 2 such as a polarization beam splitter and a quartz plate having Brewster's angle) for attenuating E light) by a predetermined amount is provided.

【0006】[0006]

【作用】本発明に於ては、偏光が偏よるエキシマレーザ
の出力光に対し、強い偏光の方向の直線偏光を通過させ
るような偏光選択素子を用いるので、この偏光と直交す
る直線偏光は遮光される。波長幅を狭帯化しても広いス
ペクトル幅で残るバックグランド光は大部分がASE
(Amplified Spontaneous Emission) であり、偏光して
いないので、偏光選択素子により強度が約半分に減衰す
る。
In the present invention, since the polarization selection element that allows the linearly polarized light having a strong polarization direction to pass with respect to the output light of the excimer laser whose polarized light is polarized, the linearly polarized light orthogonal to this polarized light is shielded. To be done. Most of the background light that remains with a wide spectrum width even if the wavelength band is narrowed is ASE
Since it is (Amplified Spontaneous Emission) and it is not polarized, the intensity is attenuated to about half by the polarization selection element.

【0007】[0007]

【実施例】図1は本発明の実施例によるエキシマステッ
パーの構成を示す図であって、基本的な構成は、198
9年のProc.of SPIE vol.1088の
434頁〜440頁の論文「Excimer Laser Stepper fo
r Sub-half Micron Lithography」に開示されたものと
同様である。
FIG. 1 is a diagram showing the structure of an excimer stepper according to an embodiment of the present invention, the basic structure of which is 198.
Proc. of SPIE vol. 1088, pages 434-440, "Excimer Laser Stepper fo
r Sub-half Micron Lithography ”.

【0008】図1において、KrFエキシマレーザ光源
1は、発振スペクトルを狭帯化するとともに、狭帯化さ
れた中心波長の絶対値を安定化する機構を備えている。
このレーザ光源1からの放出ビームは偏光選択素子2、
偏光解消素子3を通ってビーム強度調整用の可変減衰器
4に入射し、所定のビーム強度に絞られる。減衰器4か
らのビームはビーム品質一様化光学系5によって、ビー
ムの断面方向の強度分布が均一化される。一様化光学系
5を射出したビームのうち大半は、ビームスプリッター
6を透過して可変ブラインド機構(可変照明視野絞り)
7に入射する。この可変ブラインド機構7によって断面
形状が規定された照明ビームは、ミラー8で反射してコ
ンデンサーレンズ9に達し、レチクルRのパターン領域
を一様の照度分布で照明する。レチクルRのパターン領
域を通った光束は投影レンズPLに入射し、感光基板と
してのウェハW上にパターン領域の像を結像する。
In FIG. 1, the KrF excimer laser light source 1 has a mechanism for narrowing the oscillation spectrum and stabilizing the absolute value of the narrowed center wavelength.
The emitted beam from this laser light source 1 is a polarization selection element 2,
The beam passes through the depolarizer 3 and is incident on the variable attenuator 4 for adjusting the beam intensity, and the beam is focused to a predetermined beam intensity. The beam from the attenuator 4 is made uniform in the cross-sectional intensity distribution of the beam by the beam quality equalizing optical system 5. Most of the beams emitted from the homogenizing optical system 5 are transmitted through the beam splitter 6 and have a variable blind mechanism (variable illumination field diaphragm).
It is incident on 7. The illumination beam whose cross-sectional shape is defined by the variable blind mechanism 7 is reflected by the mirror 8 and reaches the condenser lens 9 to illuminate the pattern area of the reticle R with a uniform illuminance distribution. The light flux that has passed through the pattern area of the reticle R enters the projection lens PL and forms an image of the pattern area on the wafer W as a photosensitive substrate.

【0009】一方、ビームスプリッター6で分割された
一部のビームは、積算露光量をモニターするための光電
センサー(インテグレータセンサー)11に受光され、
露光量制御部10はセンサー11の出力に基づいてウェ
ハW上の1つのショット領域に対する実露光量、及びエ
キシマビームの1パルス当たりの光量(又はピーク値)
をモニターする。また露光量制御部10はステッパーの
主制御用コンピュータとも接続され、レーザ光源1との
間の制御、可変減衰器4との間の制御も行う。制御部1
0のレーザ光源1との間の制御としては、発振用のトリ
ガパルスの生成、内部シャッターの駆動、レーザチャン
バー内のガスのモニター,ガスの交換制御等がある。
On the other hand, a part of the beam divided by the beam splitter 6 is received by a photoelectric sensor (integrator sensor) 11 for monitoring the integrated exposure amount,
The exposure amount control unit 10 uses the output of the sensor 11 to determine the actual exposure amount for one shot area on the wafer W and the light amount (or peak value) of the excimer beam per pulse.
To monitor. The exposure amount control unit 10 is also connected to the main control computer of the stepper and controls the laser light source 1 and the variable attenuator 4. Control unit 1
The control with the laser light source 1 of 0 includes generation of a trigger pulse for oscillation, driving of an internal shutter, monitoring of gas in the laser chamber, gas exchange control, and the like.

【0010】さらに本実施例では、偏光選択素子2とし
て偏光ビームスプリッター、あるいはビームに対してブ
リュースタ角で配置した平板状の合成石英板を用いるも
のとする。これらの光学素子は、直線偏光成分の多いレ
ーザ光源1からの放出ビームのうち、偏光成分の強い方
を通すように設定される。また偏光解消素子3としては
1/4波長板(λ/4板)を使うことができるが、理想
的には水晶を用いた偏光解消プリズムを使うことが望ま
しい。このように偏光解消素子3を設けるのは、それ以
後の光学系、特に投影レンズPLを通る光束が投影レン
ズPL内のレンズ素子による偏光特性に影響されないよ
うに、具体的には複数のレンズ素子、光学素子等での偏
光作用による光量低下、像面での照度ムラ等が起きない
ようにするためである。従って偏光選択素子2と偏光解
消素子3とは、レーザ光源1からコンデンサーレンズ9
までの照明光学系の中で極力レーザ光源1に近い位置に
設けるのが望ましいが、装置構成上の都合によっては必
ずしもそれに限るものではなく、照明ビームが投影レン
ズPLに入射する前であればどこにあってもよい。さら
に偏光選択素子2と偏光解消素子3とは必ずしも隣り合
わせて配置する必要はなく、場合によっては分離しても
よい。
Further, in this embodiment, a polarization beam splitter or a flat synthetic quartz plate arranged at Brewster's angle with respect to the beam is used as the polarization selection element 2. These optical elements are set so as to pass one of the emitted beams from the laser light source 1 having a large linear polarization component, which has a stronger polarization component. Further, as the depolarization element 3, a quarter wavelength plate (λ / 4 plate) can be used, but ideally, it is desirable to use a depolarization prism using quartz. In this way, the depolarizing element 3 is provided in order to prevent the light flux passing through the optical system, especially the projection lens PL, from being affected by the polarization characteristics of the lens elements in the projection lens PL, specifically, a plurality of lens elements. This is to prevent a decrease in the amount of light due to the polarization effect of the optical element and the like, and the occurrence of uneven illuminance on the image plane. Therefore, the polarization selection element 2 and the depolarization element 3 are connected to the condenser lens 9 from the laser light source 1.
It is desirable to provide it in a position as close as possible to the laser light source 1 in the illumination optical system up to, but it is not necessarily limited to that depending on the configuration of the device, and where it is before the illumination beam is incident on the projection lens PL. It may be. Furthermore, the polarization selection element 2 and the depolarization element 3 do not necessarily have to be arranged adjacent to each other, and may be separated in some cases.

【0011】尚、図1中の各ブロックのうち偏光選択素
子2、偏光解消素子3以外は先の論文(Proc.of
SPIE,Vol.1088,P434〜440)に
開示されたステッパーと全く同様に機能するので、以下
の動作では専ら偏光選択素子2、偏光解消素子3に重点
を置いて説明する。図2は図1中のエキシマレーザ光源
1の内部構成の一例を示し、Kr(クリプトン)、F
(フッ素)、Ne(ネオン)の混合ガスを所定の圧力比
で密封し、放電によって光増幅を行うゲイン部(レーザ
チャンバー)14と、出力用の部分ミラーとして作用す
るビームスプリッターー17と、分光(狭帯化)用のプ
リズム15と、グレーティング16とによって狭帯化さ
れたレーザ発振が行われる。出力側のビームスプリッタ
ーー17から放出したビームLBの一部はビームスプリ
ッターー18によって分割され、モニター用のビーム1
9となって波長モニター20に入射する。波長モニター
20は出力ビームLBの中心波長の絶対値とスペクトル
幅とを検出し、その検出情報を波長制御部21へ送る。
波長制御部21は中心波長が予め定められた値からずれ
たとき、それを元に戻すようにグレーティング16のビ
ームに対する入射角を微調するための駆動部22を制御
する。このグレーティング16の回転微動を出力ビーム
LBの発振毎に、又は所定の発振回数毎に逐時サーボ制
御することによって、出力ビームLBの狭帯化された中
心波長は一定値に安定化される。
It should be noted that, except for the polarization selection element 2 and the depolarization element 3 in each block in FIG. 1, the previous paper (Proc. Of
SPIE, Vol. 1088, pp. 434-440), it functions exactly the same as the stepper disclosed in U.S. Pat. FIG. 2 shows an example of the internal configuration of the excimer laser light source 1 shown in FIG.
A gain part (laser chamber) 14 that seals a mixed gas of (fluorine) and Ne (neon) at a predetermined pressure ratio and performs optical amplification by discharge, a beam splitter 17 that acts as a partial mirror for output, and a spectroscope. The laser oscillation narrowed by the (narrowing) prism 15 and the grating 16 is performed. A part of the beam LB emitted from the beam splitter 17 on the output side is split by the beam splitter 18, and the beam 1 for monitoring is
It becomes 9 and enters the wavelength monitor 20. The wavelength monitor 20 detects the absolute value of the center wavelength of the output beam LB and the spectral width, and sends the detection information to the wavelength controller 21.
When the central wavelength deviates from a predetermined value, the wavelength control unit 21 controls the driving unit 22 for finely adjusting the incident angle of the grating 16 with respect to the beam so as to restore it. The narrowed central wavelength of the output beam LB is stabilized to a constant value by servo-controlling the rotational fine movement of the grating 16 every oscillation of the output beam LB or every predetermined number of oscillations.

【0012】図3は図2のレーザ光源によって狭帯化さ
れるスペクトルの様子を示すグラフであり、横軸は波長
λを表し、縦軸はスペクトルの強度Iを表す。図3にお
いて、狭帯化用のプリズム15やグレーティング16が
なく、単なる全反射鏡がゲイン部14からのビームと垂
直に配置された場合の出力ビームLBのスペクトルは破
線13のようにブロードになっている。この時のスペク
トル幅Δλg(FWHM)は300〜400pmであ
る。これに対してプリズム15とグレーティング16を
入れて狭帯化したときの出力ビームLBのスペクトルは
実線12のように半値幅Δλ0 が約3pmとなり、狭帯
化しないときに比べて1/100以下になる。図3のよ
うに狭帯化の中心波長はλ0 であり、狭帯化されたスペ
クトルは特定の偏光(例えば直線偏光)に偏っている。
このように狭帯化されたスペクトルの出力ビームLBを
使うことによって、投影レンズPLの持つ色収差がほぼ
無視できるようになる。ところが実際には、スペクトル
のバックグランド成分がASE光として同時に放出され
ている。このASE光(バックグランド光)の強度I BG
は、中心波長λ0 の主スペクトルのピーク値に比べると
格段に低いが、投影レンズPLでの高解像度化を考える
とき、ASE光の強度IBGはなるべく小さくできれば零
に押さえ込まれていることが望ましい。
FIG. 3 shows a band narrowed by the laser light source of FIG.
Is a graph showing the state of the spectrum, where the horizontal axis is wavelength
represents λ, and the vertical axis represents the intensity I of the spectrum. In Figure 3
The narrowing prism 15 and grating 16
Instead, a mere total reflection mirror does not interfere with the beam from the gain unit 14.
The spectrum of the output beam LB when arranged directly is broken.
It is broad like line 13. Spec at this time
Torr width Δλg (FWHM) is 300 to 400 pm
It On the other hand, the prism 15 and the grating 16
The spectrum of the output beam LB when narrowed by inserting
Half-width Δλ as shown by solid line 120Is about 3 pm, narrow band
It is 1/100 or less compared to when it is not converted. In Figure 3
The central wavelength of the band narrowing is λ0And the narrowed space
The cuttle is biased to a specific polarization (eg linear polarization).
The output beam LB of the spectrum narrowed in this way is
By using it, the chromatic aberration of the projection lens PL is almost
You can ignore it. However, in reality, the spectrum
Background component of is emitted at the same time as ASE light
ing. The intensity I of this ASE light (background light) BG
Is the central wavelength λ0Compared to the peak value of the main spectrum of
Though it is much lower, consider a higher resolution with the projection lens PL.
When the intensity of ASE light IBGIs zero if possible
It is desirable to be suppressed by.

【0013】さて、そのASE光は狭帯化されたスペク
トル(図3の実線12)と異なり、特定の偏光をもたな
いことがわかった。そこで図1中の偏光選択素子2によ
って、特定の偏光をもつ狭帯化された主スペクトル(波
長λ0 )はほとんど減衰なく取り出し、同時にASE光
の強度IBGはほぼ半分に減衰するようにする。従って、
偏光選択素子2を射出したビームには、不純成分として
のASE光が含まれるが、従来の場合(素子2,3がな
いとき)と比べるとASE光の強度は半分程度に低減さ
れる。このため、投影レンズPLによる微細パターンの
解像力や像質は従来のものより向上する。特にネガレジ
ストを用いた場合、ASE光の低減による像質の改善効
果は大きく、焦点深度の拡大に大きな効果がある。
Now, it was found that the ASE light does not have a specific polarization, unlike the narrowed spectrum (solid line 12 in FIG. 3). Therefore, by the polarization selection element 2 in FIG. 1, the main spectrum (wavelength λ 0 ) having a specific polarization and having a narrow band is extracted with almost no attenuation, and at the same time, the intensity I BG of the ASE light is attenuated to almost half. .. Therefore,
The beam emitted from the polarization selection element 2 contains ASE light as an impure component, but the intensity of ASE light is reduced to about half as compared with the conventional case (without the elements 2 and 3). Therefore, the resolution and image quality of the fine pattern by the projection lens PL are improved as compared with the conventional one. In particular, when a negative resist is used, the effect of improving the image quality by reducing the ASE light is great, and the effect of increasing the depth of focus is great.

【0014】以上の説明において、偏光解消素子3とし
ては、例えば特開平3−16114号公報に開示したよ
うな複屈折性結晶プリズム(水晶プリズム)を使うこと
が好ましい。以上の実施例においてはレーザ光源1は直
線偏光に偏っているものとしたが、円偏光に偏っている
場合は偏光選択素子2は右回り又は左回りのいずれか一
方の円偏向のみを通過させる性質を持つようにすればよ
い。具体的にはλ/4板と偏光ビームスプリッターの組
合わせ等が考えられる。
In the above description, as the depolarizer 3, it is preferable to use a birefringent crystal prism (quartz prism) as disclosed in, for example, Japanese Patent Laid-Open No. 3-16114. In the above embodiments, the laser light source 1 is supposed to be polarized to linearly polarized light, but when it is polarized to circularly polarized light, the polarization selection element 2 allows only either clockwise or counterclockwise circular polarization to pass. It should have a property. Specifically, a combination of a λ / 4 plate and a polarization beam splitter can be considered.

【0015】また上記実施例ではKrFエキシマレーザ
を用いるものとしたが他のArF等のエキシマレーザや
2 レーザでも本発明の適用は可能である。さらに、Y
AG等の固体レーザの高周波や自由電子レーザ等を用い
る場合においても本発明を適用すればスペクトルの純度
が向上する。
Although the KrF excimer laser is used in the above embodiment, the present invention can be applied to other excimer lasers such as ArF and F 2 laser. Furthermore, Y
When the high frequency of a solid state laser such as AG or a free electron laser is used, the purity of the spectrum is improved by applying the present invention.

【0016】[0016]

【発明の効果】以上のように本発明によれば、狭帯域化
されない不純なスペクトル強度を低減できるので、第2
基板(ウェハ)の表面に形成されるパターン像のコント
ラストが上昇する効果がある。像のコントラストの上昇
により、さらに細かいパターンが転写でき、LSIの高
密度化に対応できるだけでなく、焦点深度が深くなるこ
とによって、LSIの線幅制御精度の向上が期待でき、
商品率の向上が達成できるので有用である。
As described above, according to the present invention, it is possible to reduce the impure spectrum intensity that is not narrowed, and therefore the second
This has the effect of increasing the contrast of the pattern image formed on the surface of the substrate (wafer). By increasing the contrast of the image, a finer pattern can be transferred, and not only can the density of the LSI be increased, but the line width control accuracy of the LSI can be expected to be improved by increasing the depth of focus.
This is useful because it can achieve an improvement in the product rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による装置のブロック図である。1 is a block diagram of an apparatus according to the present invention.

【図2】本発明の実施例に用いられるエキシマレーザ光
源のブロック図である。
FIG. 2 is a block diagram of an excimer laser light source used in an embodiment of the present invention.

【図3】スペクトル狭帯化の説明図である。FIG. 3 is an explanatory diagram of spectrum narrowing.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 エキシマレーザ光源 2 偏光選択素子 3 偏光解消素子 4 可変減衰器 15 プリズム 16 グレーティング R レチクル PL 投影レンズ W ウェハ 1 Excimer Laser Light Source 2 Polarization Selector 3 Depolarizer 4 Variable Attenuator 15 Prism 16 Grating R Reticle PL Projection Lens W Wafer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 狭帯化されたスペクトル幅の出力ビーム
を放出するレーザ光源と、該出力ビームの空間的な一様
性を改善して、被転写パターンを有する第1基板を一様
な強度分布で照射する照明系と、前記被転写パターンを
第2基板に結像投影する投影系とを備えた投影露光装置
において、 前記レーザ光源と前記投影系との間に、前記レーザ光源
からの出力ビームのうち主偏光以外の成分を所定量減衰
させる偏光選択手段を設けたことを特徴とする投影露光
装置。
1. A laser light source that emits an output beam having a narrowed spectral width, and a spatial uniformity of the output beam is improved so that the first substrate having a transferred pattern has a uniform intensity. In a projection exposure apparatus including an illumination system for irradiating with a distribution and a projection system for image-forming and projecting the transferred pattern onto a second substrate, an output from the laser light source is provided between the laser light source and the projection system. A projection exposure apparatus comprising a polarization selection means for attenuating a component of the beam other than the main polarization by a predetermined amount.
【請求項2】 前記偏光選択手段と前記投影系との間
に、前記出力ビームの偏光特性を解消するための偏光解
消素子を設けたことを特徴とする請求項1に記載の投影
露光装置。
2. The projection exposure apparatus according to claim 1, further comprising a depolarization element for eliminating the polarization characteristic of the output beam between the polarization selection unit and the projection system.
【請求項3】 前記照明系は、前記第1基板の被転写パ
ターンの領域に対して前記出力ビームの照射領域を絞る
照明視野絞りと、該照明視野絞りを通る出力ビームの空
間的な一様性を改善するビーム一様化光学系とを備え、
前記偏光選択手段と前記偏光解消素子とを前記レーザ光
源と前記ビーム一様化光学系との間に配置したことを特
徴とする請求項2に記載の装置。
3. The illumination system includes an illumination field diaphragm that narrows an irradiation area of the output beam with respect to a transferred pattern area of the first substrate, and a spatially uniform output beam that passes through the illumination field diaphragm. Beam uniformizing optics to improve the
3. The apparatus according to claim 2, wherein the polarization selecting means and the depolarizing element are arranged between the laser light source and the beam uniformizing optical system.
JP3197616A 1991-08-07 1991-08-07 Projection aligner Pending JPH0547636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197616A JPH0547636A (en) 1991-08-07 1991-08-07 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197616A JPH0547636A (en) 1991-08-07 1991-08-07 Projection aligner

Publications (1)

Publication Number Publication Date
JPH0547636A true JPH0547636A (en) 1993-02-26

Family

ID=16377441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197616A Pending JPH0547636A (en) 1991-08-07 1991-08-07 Projection aligner

Country Status (1)

Country Link
JP (1) JPH0547636A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005694A1 (en) * 2003-07-10 2005-01-20 Nikon Corporation Artificail crystal member, exposure system, and producton method for exposure system
US7611810B2 (en) 2006-02-28 2009-11-03 Canon Kabushiki Kaisha Charged beam processing apparatus
US11591713B2 (en) 2016-03-30 2023-02-28 Nikon Corporation Aluminum oxide, method for manufacturing aluminum oxide and optical component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005694A1 (en) * 2003-07-10 2005-01-20 Nikon Corporation Artificail crystal member, exposure system, and producton method for exposure system
US7835070B2 (en) 2003-07-10 2010-11-16 Nikon Corporation Synthetic quartz member, exposure apparatus, and method of manufacturing exposure apparatus
US7611810B2 (en) 2006-02-28 2009-11-03 Canon Kabushiki Kaisha Charged beam processing apparatus
US11591713B2 (en) 2016-03-30 2023-02-28 Nikon Corporation Aluminum oxide, method for manufacturing aluminum oxide and optical component

Similar Documents

Publication Publication Date Title
US6636295B2 (en) Exposure apparatus and device manufacturing method
Pol et al. Excimer laser-based lithography: a deep ultraviolet wafer stepper
US5475491A (en) Exposure apparatus
US7701555B2 (en) Exposure apparatus, exposure method, device manufacturing method, and system
US8208126B2 (en) Exposure apparatus and device fabrication method
US20070065734A1 (en) Exposure method, exposure mask, and exposure apparatus
US6069739A (en) Method and lens arrangement to improve imaging performance of microlithography exposure tool
US4922290A (en) Semiconductor exposing system having apparatus for correcting change in wavelength of light source
US5597670A (en) Exposure method and apparatus
US5010230A (en) Laser processor
JPH06204121A (en) Illuminator and projection aligner using the same
JP2003090978A (en) Illumination device, exposure device and method for manufacturing device
US20080088815A1 (en) Polarization optical system
KR19980071344A (en) Exposure amount control method, exposure method, exposure apparatus, and manufacturing method thereof
JPH0547636A (en) Projection aligner
JPH01119020A (en) Aligner
KR20090060155A (en) Scanning exposure apparatus and method of manufacturing device
JP3358090B2 (en) Illumination apparatus, exposure apparatus having the illumination apparatus, and device manufacturing method using the exposure method
JPH01239923A (en) Aligner
JP4829429B2 (en) Transmittance measuring device
JPH08203806A (en) Exposure illuminating device
JPH08306619A (en) Aligner and manufacture of device which uses this aligner
US8045139B2 (en) Exposure apparatus capable of asymmetrically adjusting light intensity
JP2688991B2 (en) Narrow-band oscillation excimer laser
JP2591582B2 (en) Projection type exposure equipment