JPH0547626B2 - - Google Patents
Info
- Publication number
- JPH0547626B2 JPH0547626B2 JP61159749A JP15974986A JPH0547626B2 JP H0547626 B2 JPH0547626 B2 JP H0547626B2 JP 61159749 A JP61159749 A JP 61159749A JP 15974986 A JP15974986 A JP 15974986A JP H0547626 B2 JPH0547626 B2 JP H0547626B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thickness
- steel plate
- aluminum
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 47
- 239000010959 steel Substances 0.000 claims description 47
- 229910052782 aluminium Inorganic materials 0.000 claims description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 24
- 239000010936 titanium Substances 0.000 claims description 24
- 229910052719 titanium Inorganic materials 0.000 claims description 24
- 238000005260 corrosion Methods 0.000 claims description 22
- 230000007797 corrosion Effects 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 150000002739 metals Chemical class 0.000 claims description 12
- 238000007733 ion plating Methods 0.000 claims description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 238000012805 post-processing Methods 0.000 claims description 5
- 238000001771 vacuum deposition Methods 0.000 claims description 3
- 239000010408 film Substances 0.000 description 52
- 238000012545 processing Methods 0.000 description 13
- 238000007747 plating Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007738 vacuum evaporation Methods 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910021364 Al-Si alloy Inorganic materials 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000576 Laminated steel Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
[産業上の利用分野]
この発明は、アルミニウムめつき鋼板の改良に
関する。
[従来技術及びその問題点]
溶融アルミニウムめつき鋼板は、耐食性、耐熱
性に優れためつき鋼板としてよく知られている。
しかし溶融アルミニウムめつきに純Al浴を用い
ると、鋼板とAl層との間に脆いFe−Al合金層が
著しく成長し、強度な加工によりめつき層が剥離
してしまう。
そこでAl浴中にSiを少量添加し、Al−Si合金
めつきを施して、Fe−Al合金層の生成を抑える
ことが行なわれている。この溶融Al−Si合金め
つき鋼板は、溶融Alめつき鋼板に比べ加工性が
改善されしかも600℃以下では優れた耐高温酸化
性を有している。しかし700〜800℃になると急激
に酸化が進み、耐熱性が劣化してしまう。
このことから、下地鋼板として極低炭素Cr−
Tiキルド鋼板を用いて、700〜800℃での耐高温
酸化性を改善することが試みられている。しか
し、これらのめつき鋼板は、いずれも溶融めつき
法で作られるため、めつき層と鋼板との間に合金
層が生成されることが避けられず、その結果加工
性が劣る。しかもめつき鋼板の膜厚が数十μm以
上と厚く、経済的ではない。
そこで溶融めつきに代えて真空蒸着によるAl
めつきが開発されている。真空蒸着めつきは、真
空中でAlを加熱蒸着させ、その蒸気を鋼板上で
凝縮させて、鋼板上に純度の高いAl皮膜を形成
するめつき方法である。この方法によれば、Al
皮膜と鋼板との間にFe−Al合金層が形成されず、
得られるAlめつき鋼板を密着性及び加工性に優
れたものとすることができる。
しかし真空蒸着Alめつき鋼板は、Al皮膜中に
ピンホールが多く存在し、ピンホール近傍のAl
層と下地鋼板中のFeとの間で腐食電流が流れて
Alが急速に溶解する。このため十分な耐食性が
得られない。しかし高温では、AlとFeが著しく
合金化し、合金層の剥離部から下地鋼板の酸化が
進み、十分な耐熱性が得られないという問題があ
る。
そこで本発明者は鋼板表面に、厚さ0.02μm〜
5μmのチタン皮膜と、アルミニウム皮膜を順次
形成し、かつ全皮膜厚さを0.5〜20μmで前記チタ
ン皮膜の厚さを全皮膜厚さの60%以下としためつ
き鋼板を先に提案した。このめつき鋼板によれ
ば、耐食性、加工性及び耐熱性に優れているが、
本発明者は更にめつき鋼板の耐熱性を向上すべく
研究を重ねた結果、希土類金属やミツシユメタル
をアルミニウム皮膜中へ添加すると、これが耐熱
性に寄与することを見出し、本発明を完成するに
到つた。
[発明が解決しようとする技術的課題]
この発明は、耐食性、耐熱性及び加工性に優れ
ためつき鋼板を提供することを目的とする。
[技術的課題を解決する手段]
本発明は、鋼板表面に厚さ0.02μm〜5μmのチ
タン皮膜とアルミニウム皮膜がイオンプレーテイ
ング法又は真空蒸着により順次形成されためつき
鋼板であつて、全皮膜厚さを0.5〜20μm、前記チ
タン皮膜の厚さを全皮膜厚さの60%以下とし、更
にアルミニウム皮膜中に希土類金属及びミツシユ
メタルから選択された1又は2以上の金属を0.01
〜1重量%含有している加工後密着性及び加工後
耐食性に優れためつき鋼板である。
[発明の具体的説明]
まず鋼板表面を清浄化した後ここにチタン皮膜
を形成する。チタン皮膜の形成は、イオンプレー
テイングあるいは真空蒸着でおこない、とくに薄
い膜厚を得んとする場合、高真空中のイオンプレ
ーテイングが好適である。なお直流放電イオンプ
レーテイングや高周波放電イオンプレーテイング
のように導入ガスを用いた低、中真空中のイオン
プレーテイングも可能であるが、この場合皮膜の
密着性や緻密さの点で高真空中のイオンプレーテ
イングより劣る。このようにして緻密でピンホー
ルが少なくかつ密着性の良い皮膜が生成される。
次いでチタン皮膜上にアルミニウム皮膜を形成
する。形成方法はイオンプレーテイング又は真空
蒸着が好ましい。このアルミニウム皮膜形成時に
同時に希土類金属(Y、Hf、Thなど)及びミツ
シユメタルから選択された1種又は2種以上の金
属をイオンプレーテイング又は真空蒸着して、ア
ルミニウム皮膜中に上記金属を含有せしめる。そ
の含有量は0.01〜1重量%とする。このことによ
り緻密で加工性に優れ、下地との密着性の良いア
ルミニウム皮膜が得られる。(とくにアルミニウ
ム皮膜中に含有されている希土類金属及びミツシ
ユメタルは、アルミニウム皮膜と下地との密着性
の向上に寄与する。なお、上記金属の含有量を限
定したのは、少なすぎると添加効果がなく、逆に
多すぎると加工後密着性及び加工後耐食性が劣化
するためである。
ここで、全めつき皮膜の膜厚は、0.5〜20μmで
ある必要があり、とくに2〜8μmの範囲が望ま
しい。この理由は、0.5μm未満では十分な耐食
性、耐熱性を得ることができず、又20μmを越え
ると皮膜生成時に下地鋼板の温度が上昇し鋼板の
機械的特性を損なうおそれがあり、しかも経済的
ではないためである。
チタン皮膜の膜厚は0.02〜5μmである必要があ
り、とくに0.5〜3μmの範囲が望ましい。この理
由は、0.02μm未満ではチタン皮膜の効果が得ら
れず、又5μmを越えると加工性が劣化するため
である。
更に全膜厚に対するチタン皮膜の膜厚は60%以
下である必要がある。この理由は、60%を越える
と耐食性、耐熱性が得られなくなるためである。
この構成によれば、仮にアルミニウム皮膜中に
ピンホールが存在しても直接下地鋼板に到達せ
ず、しかもチタン皮膜とアルミニウム皮膜の相互
作用により耐食性が著しく高められる。
しかも高温加熱時にチタン皮膜は、アルミニウ
ム皮膜に下地鋼板中のFeが拡散するのを防止し、
同時に表層から拡散してくる酸素を酸化物として
とらえて下地鋼板への拡散を防止する。この結
果、耐高温酸化性を著しく向上させる。
またアルミニウム皮膜中の希土類金属、ミツシ
ユメタルが、下地との密着性の向上に寄与するの
で、めつき鋼板の耐熱性を更に向上する。
実施例 1
まず板厚0.8mmのAlキルド鋼板をArイオンボン
バードにより前処理した。この処理は、1.0×
10-3TorrのArガス雰囲気中で高周波放電を起こ
し、同時に鋼板に=1kVの負電圧を印加してAr
イオンを鋼板に衝突させ、もつて鋼板表面上の酸
化物などを除去し、清浄な鋼板表面を得る方法で
おこなつた。
次いで鋼板を200℃に加熱してチタンをめつき
した。この処理は、1.0×10-5Torr以下の雰囲気
圧力で、チタンメツキ材を水冷銅るつぼに入れ、
10kV、300〜1000mAの電子ビームによつて加熱
蒸発させ、蒸発したチタン粒子を、20Vの正電圧
を印加したモリブデン電極によつてイオン化し、
−500Vの負電圧を印加した鋼板にめつきするこ
とによりなされた。
しかる後同じ雰囲気圧力でアルミニウムをめつ
きした。この処理は、アルミニウム及びイツトリ
ウムをセラミツク製るつぼに入れ、10kV、300〜
1000mAの電子ビームによつて加熱蒸発させて鋼
板にめつきすることによりなされた。
上述しためつき処理によりチタン皮膜及びアル
ミニウム皮膜(Y含有量0.1重量%)を有するめ
つき鋼板を、各皮膜の膜厚をそれぞれ変えて製造
した。また比較のためチタン皮膜の膜厚が本発明
範囲から外れるものを製造した。
これら鋼板について、密着性、加工後密着性、
耐食性、加工後耐食性及び耐熱性について調べ
た。その結果を表1に示す。
密着性は、折り曲げテープ剥離試験によつて評
価した。この試験は、180゜、ot曲げを1回行なう
ごとにテープ剥離試験を行ない、それを母材が折
り切れるまで繰り返し、めつき皮膜の剥離の有無
を調べることにより、評価した。
加工後密着性は、エリクセン加工(7cm押し出
し)後、テープ剥離試験を行ない、めつき層の剥
離の有無を調べることによつて評価した。
耐食性は、5%塩水噴霧試験で評価した。
加工後耐食性は、エリクセン加工(7cm押し出
し)後の5%塩水噴霧試験で評価した。
耐熱性は、800℃、48時間大気中加熱後室温ま
で空冷する加熱サイクルを2回繰り返した時の酸
化増量で評価した。
[Industrial Application Field] This invention relates to improvements in aluminum-plated steel sheets. [Prior art and its problems] Hot-dip aluminum plated steel sheets are well known as laminated steel sheets with excellent corrosion resistance and heat resistance.
However, when a pure Al bath is used for molten aluminum plating, a brittle Fe-Al alloy layer grows significantly between the steel sheet and the Al layer, and the plating layer peels off due to intense processing. Therefore, a small amount of Si is added to the Al bath and Al--Si alloy plating is applied to suppress the formation of the Fe--Al alloy layer. This hot-dip Al--Si alloy plated steel sheet has improved workability compared to hot-dip Al-plated steel sheets, and has excellent high-temperature oxidation resistance at temperatures below 600°C. However, at temperatures of 700 to 800 degrees Celsius, oxidation rapidly progresses and heat resistance deteriorates. For this reason, ultra-low carbon Cr-
Attempts have been made to improve high-temperature oxidation resistance at 700-800°C using Ti-killed steel sheets. However, since these plated steel plates are all made by the hot-dip galvanizing method, it is inevitable that an alloy layer will be formed between the plated layer and the steel plate, resulting in poor workability. Moreover, the film thickness of the plated steel plate is as thick as several tens of micrometers or more, which is not economical. Therefore, instead of melt plating, Al was formed by vacuum evaporation.
Metsuki has been developed. Vacuum evaporation plating is a plating method that heats and evaporates Al in a vacuum and condenses the vapor on the steel plate to form a highly pure Al film on the steel plate. According to this method, Al
No Fe-Al alloy layer is formed between the coating and the steel plate,
The resulting Al-plated steel plate can have excellent adhesion and workability. However, vacuum-deposited aluminum-plated steel sheets have many pinholes in the aluminum coating, and the aluminum near the pinholes
Corrosion current flows between the layer and the Fe in the underlying steel plate.
Al dissolves rapidly. For this reason, sufficient corrosion resistance cannot be obtained. However, at high temperatures, Al and Fe are significantly alloyed, and oxidation of the base steel sheet progresses from the peeled part of the alloy layer, resulting in a problem that sufficient heat resistance cannot be obtained. Therefore, the inventor of the present invention applied a thickness of 0.02μm to 0.02μm on the surface of the steel plate.
We have previously proposed a tightened steel sheet in which a titanium film of 5 μm and an aluminum film are sequentially formed, the total film thickness is 0.5 to 20 μm, and the thickness of the titanium film is 60% or less of the total film thickness. This plated steel sheet has excellent corrosion resistance, workability, and heat resistance, but
As a result of further research aimed at improving the heat resistance of galvanized steel sheets, the inventor discovered that adding rare earth metals or Mitsushi metals to the aluminum coating contributes to heat resistance, and was able to complete the present invention. Ivy. [Technical Problems to be Solved by the Invention] An object of the present invention is to provide a toughened steel plate that has excellent corrosion resistance, heat resistance, and workability. [Means for Solving Technical Problems] The present invention provides a plated steel sheet in which a titanium film and an aluminum film with a thickness of 0.02 μm to 5 μm are sequentially formed on the surface of the steel sheet by ion plating or vacuum deposition, and the total film thickness is The thickness of the titanium film is 0.5 to 20 μm, the thickness of the titanium film is 60% or less of the total film thickness, and the aluminum film contains 0.01 of one or more metals selected from rare earth metals and Mitsushi metals.
It is a toughened steel plate containing ~1% by weight and excellent in adhesion and corrosion resistance after processing. [Detailed Description of the Invention] First, the surface of a steel plate is cleaned, and then a titanium film is formed thereon. The titanium film is formed by ion plating or vacuum evaporation, and especially when a thin film thickness is desired, ion plating in a high vacuum is preferred. Ion plating in low to medium vacuum using an introduced gas such as DC discharge ion plating and high frequency discharge ion plating is also possible, but in this case, high vacuum is preferable in terms of the adhesion and density of the film. Inferior to ion plating. In this way, a dense film with few pinholes and good adhesion is produced. Next, an aluminum film is formed on the titanium film. The preferred formation method is ion plating or vacuum deposition. At the same time as this aluminum film is formed, one or more metals selected from rare earth metals (Y, Hf, Th, etc.) and Mitsushi metals are ion-plated or vacuum-deposited to incorporate the metals into the aluminum film. Its content is 0.01 to 1% by weight. This results in an aluminum film that is dense, has excellent workability, and has good adhesion to the base. (In particular, the rare earth metals and Mitsushi metals contained in the aluminum film contribute to improving the adhesion between the aluminum film and the base.The reason for limiting the content of the above metals is that if there is too little, the addition effect will be ineffective.) On the other hand, if the amount is too large, the adhesion after processing and the corrosion resistance after processing will deteriorate.The thickness of the fully plated film needs to be 0.5 to 20 μm, and the range of 2 to 8 μm is particularly desirable. The reason for this is that if the thickness is less than 0.5 μm, sufficient corrosion resistance and heat resistance cannot be obtained, and if the thickness exceeds 20 μm, the temperature of the base steel sheet increases during film formation, which may impair the mechanical properties of the steel sheet. The thickness of the titanium film must be 0.02 to 5 μm, and the range of 0.5 to 3 μm is particularly desirable. If the thickness exceeds 60%, the workability deteriorates.Furthermore, the thickness of the titanium film must be less than 60% of the total film thickness.The reason for this is that if it exceeds 60%, corrosion resistance and heat resistance cannot be obtained. According to this structure, even if a pinhole exists in the aluminum film, it will not directly reach the underlying steel plate, and the corrosion resistance will be significantly improved due to the interaction between the titanium film and the aluminum film.Furthermore, even if a pinhole exists in the aluminum film, it will not reach the underlying steel plate. The film prevents Fe in the underlying steel plate from diffusing into the aluminum film,
At the same time, it captures oxygen that diffuses from the surface layer as an oxide and prevents it from diffusing into the underlying steel plate. As a result, high temperature oxidation resistance is significantly improved. Furthermore, the rare earth metal and Mitsushi metal in the aluminum film contribute to improving the adhesion to the base, further improving the heat resistance of the plated steel sheet. Example 1 First, an Al-killed steel plate with a thickness of 0.8 mm was pretreated by Ar ion bombardment. This process is 1.0×
A high-frequency discharge is generated in an Ar gas atmosphere of 10 -3 Torr, and at the same time a negative voltage of =1kV is applied to the steel plate to generate Ar gas.
This was done by bombarding the steel plate with ions to remove oxides and other substances on the surface of the steel plate, resulting in a clean steel plate surface. Next, the steel plate was heated to 200°C and plated with titanium. This treatment involves placing the titanium plating material into a water-cooled copper crucible at an atmospheric pressure of 1.0×10 -5 Torr or less.
The titanium particles were heated and evaporated using an electron beam of 10 kV and 300 to 1000 mA, and the evaporated titanium particles were ionized using a molybdenum electrode to which a positive voltage of 20 V was applied.
This was done by plating a steel plate to which a negative voltage of -500V was applied. Thereafter, aluminum was plated at the same atmospheric pressure. In this process, aluminum and yttrium are placed in a ceramic crucible at 10kV, 300~
This was done by heating and vaporizing it with a 1000mA electron beam and plating it onto a steel plate. Plated steel sheets having a titanium film and an aluminum film (Y content: 0.1% by weight) were produced by the above-mentioned plating process, with the thickness of each film being varied. For comparison, a titanium film having a thickness outside the range of the present invention was manufactured. Regarding these steel plates, adhesion, adhesion after processing,
Corrosion resistance, post-processing corrosion resistance, and heat resistance were investigated. The results are shown in Table 1. Adhesion was evaluated by a folded tape peel test. In this test, a tape peeling test was performed every time 180° ot bending was performed, and this was repeated until the base material broke off, and evaluation was made by examining whether or not the plating film peeled off. The adhesion after processing was evaluated by performing a tape peeling test after Erichsen processing (7 cm extrusion) and examining whether or not the plating layer peeled off. Corrosion resistance was evaluated by a 5% salt spray test. Corrosion resistance after processing was evaluated by a 5% salt spray test after Erichsen processing (7 cm extrusion). Heat resistance was evaluated by oxidation weight gain when a heating cycle of heating at 800°C for 48 hours in the air and air cooling to room temperature was repeated twice.
【表】【table】
【表】
上表から密着性及び加工後密着性は、実施例、
比較例とも優れていることがわかる。しかし本発
明鋼板の耐食性が優れているのに対し、アルミニ
ウム及びチタン単膜のもの(No.1、No.7、No.8、
No.10、No.11、No.14)及び全膜厚に対するチタン膜
厚の比が60%を越える場合(No.5、No.6、No.13)
は耐食性が劣化することがわかる。更に加工後耐
食性については、本発明のものは優れているのに
対し、アルミニウム単膜のもの、全膜厚に対する
チタン膜厚の比が60%を越えるもの、及びチタン
皮膜の膜厚が5μmを越える場合(No.13、No.16)
は、加工後耐食性が劣化していることがわかる。
更にまた本発明鋼板は、比較例のものに比べて耐
熱性が優れていることがわかる。
実施例 2
実施例1と同じ処理方法で鋼板表面に厚さ0.2μ
mのチタン皮膜を形成し、更にイツトリウム又は
ミツシユメタルの含有量を変えて厚さ5.8μmのア
ルミニウム皮膜を形成した。得られた各種めつき
鋼板について密着性、加工後密着性、耐食性、加
工後耐食性及び耐熱性を調べた。試験方法は耐熱
性以外は実施例1と同じである。耐熱性は、800
℃、48時間大気中加熱後室温まで空冷するサイク
ルを5回繰り返した時の酸化増量で評価した。[Table] From the table above, the adhesion and post-processing adhesion are shown in Examples,
It can be seen that both comparative examples are excellent. However, while the steel sheets of the present invention have excellent corrosion resistance, those with aluminum and titanium single films (No. 1, No. 7, No. 8,
No. 10, No. 11, No. 14) and cases where the ratio of titanium film thickness to the total film thickness exceeds 60% (No. 5, No. 6, No. 13)
It can be seen that the corrosion resistance deteriorates. Furthermore, regarding post-processing corrosion resistance, the one of the present invention is excellent, whereas the one with a single aluminum film, the one with a ratio of titanium film thickness to the total film thickness of more than 60%, and the one with a titanium film thickness of 5 μm or more. When exceeding (No.13, No.16)
It can be seen that the corrosion resistance has deteriorated after processing.
Furthermore, it can be seen that the steel sheet of the present invention has better heat resistance than the steel sheet of the comparative example. Example 2 A thickness of 0.2μ was applied to the surface of the steel plate using the same treatment method as Example 1.
A titanium film with a thickness of 5.8 μm was formed, and an aluminum film with a thickness of 5.8 μm was formed by changing the content of yttrium or Mitsushi metal. The various plated steel sheets obtained were examined for adhesion, adhesion after processing, corrosion resistance, corrosion resistance after processing, and heat resistance. The test method was the same as in Example 1 except for heat resistance. Heat resistance is 800
The weight gain by oxidation was evaluated by repeating a cycle of heating in the air at ℃ for 48 hours and air cooling to room temperature five times.
【表】【table】
【表】
この結果から、希土類元素、ミツシユメタルを
アルミニウム皮膜中に添加することにより耐熱性
が向上し、またこれら金属の添加量が本発明の範
囲を越える加工後耐食性が劣化することがわか
る。[Table] From the results, it can be seen that heat resistance is improved by adding rare earth elements and Mitsushi metals to the aluminum film, and that the corrosion resistance after processing is deteriorated when the amount of these metals added exceeds the range of the present invention.
Claims (1)
とアルミニウム皮膜がイオンプレーテイング法又
は真空蒸着により順次形成されためつき鋼板であ
つて、全皮膜厚さを0.5〜20μm、前記チタン皮膜
の厚さを全皮膜厚さの60%以下とし、更にアルミ
ニウム皮膜中に希土類金属及びミツシユメタルか
ら選択された1又は2以上の金属を0.01〜1重量
%含有している加工後密着性及び加工後耐食性に
優れためつき鋼板。1. A toughened steel plate in which a titanium film and an aluminum film with a thickness of 0.02 μm to 5 μm are sequentially formed on the surface of the steel plate by ion plating or vacuum deposition, and the total film thickness is 0.5 to 20 μm, and the thickness of the titanium film is is 60% or less of the total coating thickness, and the aluminum coating contains 0.01 to 1% by weight of one or more metals selected from rare earth metals and Mitsushi metals.It has excellent post-processing adhesion and post-processing corrosion resistance. Tamed steel plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15974986A JPS6318054A (en) | 1986-07-09 | 1986-07-09 | Plated steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15974986A JPS6318054A (en) | 1986-07-09 | 1986-07-09 | Plated steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6318054A JPS6318054A (en) | 1988-01-25 |
JPH0547626B2 true JPH0547626B2 (en) | 1993-07-19 |
Family
ID=15700423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15974986A Granted JPS6318054A (en) | 1986-07-09 | 1986-07-09 | Plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6318054A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123343A (en) * | 1976-04-10 | 1977-10-17 | Mitsubishi Heavy Ind Ltd | Composite vapor depositing method |
JPS5385736A (en) * | 1977-01-06 | 1978-07-28 | Mitsubishi Heavy Ind Ltd | Surface treatment method of metallic body |
-
1986
- 1986-07-09 JP JP15974986A patent/JPS6318054A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52123343A (en) * | 1976-04-10 | 1977-10-17 | Mitsubishi Heavy Ind Ltd | Composite vapor depositing method |
JPS5385736A (en) * | 1977-01-06 | 1978-07-28 | Mitsubishi Heavy Ind Ltd | Surface treatment method of metallic body |
Also Published As
Publication number | Publication date |
---|---|
JPS6318054A (en) | 1988-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6295329B2 (en) | Magnesium-aluminum coated steel sheet and method for producing the same | |
JPH0588310B2 (en) | ||
KR101353451B1 (en) | Coated steel sheet and method for manufacturing the same | |
US5098540A (en) | Method for depositing chromium coatings for titanium oxidation protection | |
US5612090A (en) | Iron-based material having excellent oxidation resistance at elevated temperatures and process for the production thereof | |
JPH0547626B2 (en) | ||
JPH0518905B2 (en) | ||
KR20130074646A (en) | Coated steel sheet and method for manufacturing the same | |
JPH0211753A (en) | Tial-type composite member and its production | |
EP0481346B1 (en) | Multilayer metal-coated steel sheet | |
JPH0259865B2 (en) | ||
JP2000054114A (en) | Film structure excellent in heat and wear resistance | |
JP2001226761A (en) | Oxidation resistant film structure for niobium type heat resistant material and method of its deposition | |
JPH0673530A (en) | Vapor deposition double layer plated steel sheet | |
JPH05222516A (en) | Double layer plated steel sheet good in corrosion resistance after working | |
KR20130074648A (en) | Coated steel sheet and method for manufacturing the same | |
JP2859729B2 (en) | Multi-layer coated steel sheet | |
JPS62109967A (en) | Heat resistant plated steel sheet | |
JPH06158285A (en) | Production of al base vapor deposition plating material | |
JPH06272031A (en) | Production of high corrosion resistant plated steel | |
JP2822838B2 (en) | Al-Cr alloy deposited metal material with excellent workability and red rust resistance | |
KR0164960B1 (en) | Zn-sn two layer coated steel sheet and production thereof | |
JPH07138770A (en) | Multiple coated steel plate | |
JPH0673529A (en) | Vapor deposition double layer plated steel sheet | |
JPH0551668B2 (en) |