JPH0547551B2 - - Google Patents

Info

Publication number
JPH0547551B2
JPH0547551B2 JP1097394A JP9739489A JPH0547551B2 JP H0547551 B2 JPH0547551 B2 JP H0547551B2 JP 1097394 A JP1097394 A JP 1097394A JP 9739489 A JP9739489 A JP 9739489A JP H0547551 B2 JPH0547551 B2 JP H0547551B2
Authority
JP
Japan
Prior art keywords
group
silane
composition
carbon atoms
less carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1097394A
Other languages
Japanese (ja)
Other versions
JPH02279688A (en
Inventor
Minoru Sato
Norio Tsujioka
Shinichi Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI SHUEEBERU KK
Original Assignee
ASAHI SHUEEBERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI SHUEEBERU KK filed Critical ASAHI SHUEEBERU KK
Priority to JP1097394A priority Critical patent/JPH02279688A/en
Publication of JPH02279688A publication Critical patent/JPH02279688A/en
Publication of JPH0547551B2 publication Critical patent/JPH0547551B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は無機質支持体と有機樹脂間のカツプリ
ング剤として使用されるシラン組成物に関する。
更に詳しくは、本発明は、珪酸質表面、特にガラ
ス表面に対する樹脂の接着性を著しく向上させた
特定の官能基を有する有機珪素化合物を主成分と
するシラン組成物に関するものである。 〔従来の技術〕 近年、無機剤と不飽和高分子との混和性、接着
性などの改良を目的とした多種多様のシランカツ
プリング剤が開発され、広く使用されている。該
シランカツプリング剤は、通常不飽和高分子との
親和性及び結合性をもたらすための有機鎖部と、
無機材料表面に処理された際、酸素原子を介して
珪素と無機材料との間に化学結合を形成させるた
めのヒドロキシル基又はアルコキシ基を有する部
とから成つている。 ところで、無機充填材あるいは無機繊維材料と
不飽和高分子化合物との複合材料に於いては、カ
ツプリング剤の機能がその物性発現に重要な役割
を果たしているといえる。すなわち、この複合材
料に外部から力学的衝撃が加えられると、力学的
応力は弾性率の異なる界面に集中するため、界面
の接着力が十分でない場合、界面の破壊が生じて
しまうし、また、熱衝撃が加えられると、材料が
膨張、収縮するが、基材と樹脂の膨張率の差によ
る熱応力が界面に集中するので、界面の接着力が
十分でない場合、やはり界面の破壊が生じてしま
うのである。従つて、カツプリング剤によつて界
面の接着力が高められるならば、このような破壊
を防止することが可能となるからである。 近年、不飽和ポリエステル樹脂を用いたプリン
ト配線基板が多く作製されるようになつてきた
が、これ等の基板に於いても、ガラス−エポキシ
基板と類似したミーズリング状の欠陥が問題とな
つている。ここでいうミーズリングとはクレージ
ングとも呼ばれるものであつて、ガラス繊維の織
りの交点で顕著に発生する現象であり、該基板の
製造工程に於いて熱衝撃や力学的衝撃が加えられ
た場合、ガラス繊維と樹脂との接着が十分でない
と、この界面で剥離が生じてしまう。 一方、不飽和高分子樹脂に対して汎用されてい
るシランカツプリング剤の大部分は、末端に不飽
和基、例えば、アクリル基、メタクリル基、スチ
リル基を有機官能基として有する直鎖状の構造を
しており、例えば、式及び で表わされるシランカツプリング剤が知られてい
る。該シランカツプリング剤でガラス織物を処理
し、不飽和ポリエステル樹脂でプリント配線基板
を作製した場合、本発明者等の実験によると、耐
ミーズリング性に於いては十分満足すべき結果は
得られなかつた。 即ち、最近のガラス強化樹脂に要求される高度
な物性に対して、これら既存のシランカツプリン
グ剤の性能では十分な成果を上げることが出来
ず、急速に高度化したエレクトロニクス業界の要
請に対応できなくなつてきているのである。 〔発明が解決しようとする課題〕 本発明はこのような状況のもとで、珪酸質表
面、特にガラス表面に対する不飽和高分子、例え
ば不飽和ポリエステル樹脂などの接着性を著しく
向上させることを可能にするシラン組成物を提供
することを目的としてなされたものである。 本発明は又、耐ミーズリング性のより優れたプ
リント配線基板の補強材として有用なガラス織物
の表面処理用シランカツプリング剤組成物を提供
するものである。 〔課題を解決するための手段〕 本発明者等は、前記の優れた特徴と有するシラ
ン組成物を開発するために鋭意検討を重ねた結
果、分子内に式で表わされる基を複数個有し、
多官能化された有機珪素化合物を主成分とする組
成物が、その目的に適合しうることを見出し、こ
の知見に基づいて本発明を完成するに至つた。 即ち、本発明は(イ)一般式 〔式中のQ1、Q2、Q3は式 で表わされる基あるいは水素であつて、n=0
のときはQ1及びQ2は式で表わされる基であ
り、n=1又は2のときはQ1、Q2、Q3の少な
くとも2個は式の基で表わされる基である。
R1は炭素数が6個以下の2価の脂肪族炭化水
素基であり、R2は炭素数が10個以下の2価の
脂肪族炭化水素基、又は芳香族環を含む炭化水
素基であり、R3は炭素数が6個以下のアルキ
ル基又はシクロアルキル基、又はフエニル基で
あり、R4はアルコキシ及びアリールオキシ基
から成る群から選択された加水分解可能な基で
あり、R5は炭素数が6以下の2価の脂肪族炭
化水素基である。nは0又は1もしくは2の整
数であり、aは0から2の整数である。〕で表
わされるシラン化合物またはその酸塩と (ロ) (イ)を溶解し得る水溶性有機溶媒とから成るシ
ラン組成物を提供するものである。 以下、本発明を詳細に説明する。 本発明のシラン組成物主成分、一般式 (式中のQ1〜Q3は式R1〜R5及びn、aは前記と
同じ意味を持つ) で表わされるアミノシランである。 両端で窒素原子と結合している炭素数6以下の
2価の脂肪族炭化水素基であるR1の炭素原子数
は7以上とすることも原理的に可能であるが、最
終化合物を無機材表面に処理する際好都合なのは
水溶液の形態であり、水への溶解性を有する必要
性から、6以下であることが望ましい。 珪素原子に直接し、他端で窒素原子に結合して
いる2価の脂肪族炭化水素基又は芳香族環を含む
炭化水素基であるR2の炭素原子数についても同
様の理由で10以下が望ましい。 R2の例としてはメチレン、エチレン、プロピ
レン、ブチレン、ヘキシレンなどのアルキレン
基、フエニレン基、
[Industrial Application Field] The present invention relates to a silane composition used as a coupling agent between an inorganic support and an organic resin.
More specifically, the present invention relates to a silane composition whose main component is an organosilicon compound having a specific functional group that significantly improves the adhesion of a resin to a siliceous surface, particularly a glass surface. [Prior Art] In recent years, a wide variety of silane coupling agents have been developed and widely used to improve the miscibility and adhesion between inorganic agents and unsaturated polymers. The silane coupling agent usually contains an organic chain moiety for providing affinity and bonding properties with the unsaturated polymer;
It consists of a moiety having a hydroxyl group or an alkoxy group for forming a chemical bond between silicon and the inorganic material via oxygen atoms when the surface of the inorganic material is treated. By the way, in a composite material of an inorganic filler or an inorganic fiber material and an unsaturated polymer compound, it can be said that the function of the coupling agent plays an important role in the expression of its physical properties. In other words, when a mechanical shock is applied to this composite material from the outside, the mechanical stress is concentrated at the interface where the elastic modulus differs, so if the adhesive force at the interface is insufficient, the interface will break. When a thermal shock is applied, the material expands and contracts, but thermal stress due to the difference in expansion coefficients between the base material and resin is concentrated at the interface, so if the adhesive force at the interface is insufficient, destruction of the interface will still occur. It's put away. Therefore, if the adhesive force at the interface is increased by the coupling agent, it will be possible to prevent such destruction. In recent years, many printed wiring boards using unsaturated polyester resin have been manufactured, but these boards also have problems with measling defects similar to glass-epoxy boards. There is. Measling here is also called crazing, and is a phenomenon that occurs noticeably at the intersections of glass fiber weaves, and when thermal shock or mechanical shock is applied during the manufacturing process of the substrate, If the adhesion between the glass fiber and the resin is not sufficient, separation will occur at this interface. On the other hand, most of the silane coupling agents commonly used for unsaturated polymer resins have a linear structure with an unsaturated group at the end, such as an acrylic group, a methacrylic group, or a styryl group as an organic functional group. For example, the formula and A silane coupling agent represented by is known. According to experiments conducted by the present inventors, when a glass fabric is treated with the silane coupling agent and a printed wiring board is made from an unsaturated polyester resin, sufficiently satisfactory results in measling resistance are not obtained. Nakatsuta. In other words, the performance of existing silane coupling agents cannot meet the advanced physical properties required of recent glass-reinforced resins, and cannot meet the demands of the rapidly becoming more sophisticated electronics industry. It is starting to disappear. [Problems to be Solved by the Invention] Under these circumstances, the present invention makes it possible to significantly improve the adhesion of unsaturated polymers, such as unsaturated polyester resins, to silicic surfaces, especially glass surfaces. The purpose of this invention is to provide a silane composition that can The present invention also provides a silane coupling agent composition for surface treatment of glass fabric, which is useful as a reinforcing material for printed wiring boards and has excellent measling resistance. [Means for Solving the Problems] As a result of intensive studies to develop a silane composition having the above-mentioned excellent characteristics, the present inventors have found that the silane composition has a plurality of groups represented by the formula in its molecule. ,
The present inventors have discovered that a composition containing a polyfunctionalized organosilicon compound as a main component is suitable for this purpose, and have completed the present invention based on this finding. That is, the present invention relates to (a) general formula [Q 1 , Q 2 , Q 3 in the formula are A group or hydrogen represented by n=0
When n = 1 or 2 , at least two of Q 1 , Q 2 and Q 3 are groups represented by the formula.
R 1 is a divalent aliphatic hydrocarbon group having 6 or less carbon atoms, and R 2 is a divalent aliphatic hydrocarbon group having 10 or less carbon atoms, or a hydrocarbon group containing an aromatic ring. , R 3 is an alkyl group or cycloalkyl group having 6 or less carbon atoms, or a phenyl group, R 4 is a hydrolyzable group selected from the group consisting of alkoxy and aryloxy groups, and R 5 is a divalent aliphatic hydrocarbon group having 6 or less carbon atoms. n is 0 or an integer of 1 or 2, and a is an integer of 0 to 2. The present invention provides a silane composition comprising a silane compound or an acid salt thereof represented by the following formula and a water-soluble organic solvent capable of dissolving (b) and (a). The present invention will be explained in detail below. Main components of the silane composition of the present invention, general formula (In the formula, Q1 to Q3 are the formulas R1 to R5, and n and a have the same meanings as above.) It is an aminosilane represented by the following formula. Although it is theoretically possible to make the number of carbon atoms of R 1 , which is a divalent aliphatic hydrocarbon group with 6 or less carbon atoms bonded to nitrogen atoms at both ends, to 7 or more, it is possible to make the final compound inorganic. When treating the surface, it is convenient to use the form of an aqueous solution, and because of the need for solubility in water, it is desirable that the number is 6 or less. For the same reason, the number of carbon atoms in R2 , which is a divalent aliphatic hydrocarbon group directly bonded to a silicon atom and bonded to a nitrogen atom at the other end or a hydrocarbon group containing an aromatic ring, is 10 or less. desirable. Examples of R2 include alkylene groups such as methylene, ethylene, propylene, butylene, and hexylene, phenylene groups,

【式】【formula】

〔発明の作用及び効果〕[Operation and effect of the invention]

本発明によるシラン組成物は、特徴的な構造と
して、分子中にマトリツクス樹脂と架橋する式
で表わされる基を複数個有する化合物を主成分と
して含んでいる。 一般にシランカツプリング剤は、珪素原子が酸
素を介して無機機材と結合するとともに有機官能
基でマトリツクス樹脂と結合するが、本発明によ
るシラン組成物を使用した場合、式で表わされ
る基が分子中に複数個存在するので、シラン分子
がマトリツクス樹脂と高密度で架橋して、マトリ
ツクス樹脂と無機機材が強靭な結合を形成すると
推定される。更に該シラン化合物が分子中に有す
るビニルベンジル基がスチレンと等価の反応性を
有することから、不飽和樹脂、例えばアクリル修
飾エポキシ樹脂、各種の不飽和ポリエステル樹脂
などとの共重合性、混和性に優れている。 本発明のシラン組成物の最も好ましい適用例と
しては、プリント配線基板の補強材として有用な
ガラス織物の表面処理用シランカツプリング剤と
しての適用が挙げられ、半田耐熱性、耐ミーズリ
ング性などの改良に著しい効果を示す。 実施例 次に実施例により本発明を更に詳細に説明する
が、本発明はこれらの例によつてなんら限定され
るものではない。 なお、各物性は次のようにして求めた。 (1) 樹脂の含浸性 目視により樹脂の含浸性の良否を判定した。 ◎:極めて良好、〇:良好、△:普通、×:不
良 (2) 半田耐熱性 260℃の半田浴に10秒、20秒、30秒それぞれ
浸漬し、フクレの有(×)、無(〇)を調べた。 (3) ミーズリング特性 240℃、260℃、280℃にそれぞれ加熱した直
径5mmの半田ごてを10秒間、100g加重をかけ
て押あて、ミーズリングの発生の有(×)、無
(〇)を調べた。 (4) 電位差滴定 東亜電波工業(株)HM−5AのPHメーターを用
い、加水分解性のクロルイオンをナトリウムメ
チラートのメタノール溶液で滴定を行つた。測
定は室温で行つた。 (5) 動粘度 ウベローデ型粘度管を用い、恒温水槽中、25
℃で動粘度の測定を行つた。 (6) NMR 日本電子(株)JNM−PMX60SIのNMR分光器
を用いて測定を行つた。 (7) IR 島津製作所(株)FTIR−4100の赤外分光器を用
いて測定を行つた。 実施例 1 N−β−(N−ビニルベンジルアミノエチル)−
γ−アミノプロピルトリメトキシシラン・塩酸塩
の40%シランのメタノール溶液300gを攪拌しな
がら、ナトリウムメチラート28%のメタノール溶
液618gを添加し、室温で2時間攪拌した。攪拌
を止め、室温で一昼夜放置した後、沈殿物を濾過
して除去した。該シラン溶液267gにビニルベン
ジルクロライド36.7gを添加した後、3時間還流
下で反応させた。反応終了後、反応物を薄層クロ
マトグラフイー(TLC)により展開し、ビニル
ベンジルクロライドの付加が行われたことを確認
した。さらに、反応に伴つて生じるクロルイオン
を電位差滴定により定量したところ、90%以上の
ビニルベンジルクロライドが反応したことを確認
した。 該組成物中には、未反応のN−β−(N−ビニ
ルベンジルアミノエチル)−γ−アミノプロピル
トリメトキシシランおよび/またはその塩酸塩の
ほかに、 で表わされるN−β−(N−ビニルベンジルアミ
ノエチル)−N−γ−(ビニルベンジル)−γ−ア
ミノプロピルトリメトキシシランおよび/または
その塩酸塩、 で表わされるN−β−(N−ジ(ビニルベンジル)
アミノエチル)−γ−アミノプロピルトリメトキ
シシランおよび/またはその塩酸塩、 で表わされるN−β−(N−ジ(ビニルベンジル)
アミノエチル)−N−γ−(ビニルベンジル)−γ
−アミノプロピルトリメトキシシランおよび/ま
たはその塩酸塩などの生成物が含まれる。 このようにして得られた溶液は茶色から赤褐色
の液体であり、動粘度は1.16センチトークス、比
重は0.85g/cm3、クロルイオン濃度は2.1wt%で
あつた。該組成物のIFチヤートを第1図に、又
NMRチヤートを第2図に示す。 次に、反応組成物のシラン化合物の0.5重量%
水溶液を調製し、これらに酢酸を加えてPH4に調
製した(処理液)。 この処理液に厚さ0.19mmのガラスクロス(旭シ
ユエーベル(株)製7628)を浸漬し、次いでガラスク
ロスに対し約30重量%の処理液保持率になるよう
に脱液した後、110℃の熱風によつて乾燥した。 また、不飽和ポリエステル樹脂100重量部、重
合単量体スチレン40重量部、キユメンハイドロパ
ーオキサイド1重量部を配合して不飽和ポリエス
テルワニスを調製した。 該ワニスを前記反応組成物で処理したガラスク
ロスに含浸させた。該クロスを2枚重ね、その両
表層に厚さ35μmの銅箔を重ねて2分間脱泡して
後、130℃で120分間加熱して一体に成形し、厚さ
0.4mmの銅張積層板を得た。更に、エツチング液
で銅箔を全面エツチアウト後、水洗し、風乾して
物性試験用積層板とした。 この積層板について、樹脂の含浸性、半田耐熱
性、耐ミーズリング特性を測定した。結果を第1
表に示す。 実施例 2 実施例1におけるN−β−(N−ビニルベンジ
ルアミノエチル)−γ−アミノプロピルトリメト
キシシラン・塩酸塩の代わりに、N−ビニルベン
ジル−γ−アミノプロピルトリエトキシシラン・
塩酸塩を用いて、実施例1と同様にして反応組成
物を得た。これを実施例1と同様にしてガラスク
ロス処理し、積層板とした後、特性を測定した。
結果を第1表に示す。 実施例 3 N−β−(N−ビニルベンジルアミノエチル)−
γ−アミノプロピルトリメトキシシラン・塩酸塩
の40%シランのメタノール溶液50.0gに、ビニル
ベンジルクロライド4.07gを添加した後、3時間
還流下で反応させた。反応に伴つて生じるクロル
イオンを電位差滴定により定量したところ、92%
のビニルベンジルクロライドが反応したことを確
認した。得られた反応組成物を実施例1と同様に
してガラスクロス処理し、積層板とした後、特性
を測定した。結果を第1表に示す。 実施例 4 実施例3におけるN−β−(N−ビニルベンジ
ルアミノエチル)−γ−アミノプロピルトリメト
キシシラン・塩酸塩の代わりに、N−ビニルベン
ジル−γ−アミノプロピルトリエトキシシラン・
塩酸塩を用いて、実施例3と同様にして反応組成
物を得た。これを実施例1と同様にしてガラスク
ロス処理し、積層板とした後、特性を測定した。
結果を第1表に示す。 実施例 5 はじめに、1−トリメトキシシリルプロピル−
7−ビニルベンジルジエチレントリアミン塩酸塩
を40wt%含有するメタノール溶液の加水分解性
クロル濃度を、実施例1と同様の方法で定量し
て、3.2wt%であることを確認した。 次に、該溶液50.00gを、還流管を有する300ml
セパラブルフラスコに投入し、マグネチツクスタ
ーラーを用いて撹拌しながら、ナトリウムメチラ
ートを28wt%含有するメタノール溶液8.32gを滴
下漏斗を用いて5分かけて滴下した。液様は生成
した塩化ナトリウムによつて黄白色の懸濁液に変
化した。 次にフラスコをオイルバスにより加熱、昇温さ
せ、還流温度で10分間撹拌、還流させた後、ビニ
ルベンジルクロライド6.57gを3分間かけて滴下
漏斗から滴下し、窒素気流雰囲気下で3時間還流
反応させた後、室温まで冷却し、撹拌を停止し
た。さらに、室温で2時間放置した後、白色沈澱
をデカンテーシヨンにより除き、目的とする組成
物を得た。また、生じた白色沈澱物をクロロホル
ム100gで洗浄し、濾過、乾燥して塩化ナトリウ
ム2.4gを得た。 このようにして得られた溶液は、黄褐色液体で
あり、動粘度は5.32cst、比重に0.932g/cm3クロ
ロイオン濃度は3.0wt%であつた。該組成物のIR
チヤートを第3図に、NMRチヤートを第4図に
示す。 得られた組成物を実施例1と同様にしてガラス
クロス処理して積層板とした後、諸特性を測定し
た結果を第1表に示す。 該組成物中には、 で表わされる未反応の化合物および/またはその
塩酸塩のほかに で表わされる化合物および/またはその塩酸塩な
どの生成物が含まれる。 比較例 1 比較薬剤として、N−β−(N−ビニルベンジ
ルアミノエチル)−γ−アミノプロピルトリメト
キシシラン・塩酸塩を用いた。この薬剤を用いて
実施例1と同様にしてガラスクロス処理し、積層
板とした後、特性を測定した。結果を第1表に示
す。 比較例 2 比較薬剤として、γ−メタクリロキシプロピル
トリメトキシシランを用いた。該薬剤を実施例1
と同様にしてガラスクロス処理し、積層板とした
後、特性を測定した。結果を第1表に示す。 比較例 3 比較薬剤として、γ−メタクリロキシプロピル
ジメトキシメチルシランを用いた。該薬剤を実施
例1と同様にしてガラスクロス処理し、積層板と
した後、特性を測定した。 結果を第1表に示す。 比較例 4 比較薬剤として、γ−アクリロキシメチルトリ
メトキシシランを用いた。該薬剤を実施例1と同
様にしてガラスクロス処理し、積層板とした後、
特性を測定した。結果を第1表に示す。 比較例 5 比較薬剤として、N−ビニルベンジル−γ−ア
ミノプロピルトリエトキシシランを用いた。該薬
剤を実施例1と同様にしてガラスクロス処理し、
積層板とした後、特性を測定した。結果を第1表
に示す。
As a characteristic structure, the silane composition according to the present invention contains as a main component a compound having a plurality of groups represented by the formula that crosslinks with the matrix resin in the molecule. Generally, in a silane coupling agent, a silicon atom is bonded to an inorganic material via oxygen and bonded to a matrix resin via an organic functional group, but when the silane composition according to the present invention is used, the group represented by the formula Since there are multiple silane molecules in the matrix resin, it is presumed that the silane molecules cross-link with the matrix resin at high density, forming a strong bond between the matrix resin and the inorganic material. Furthermore, since the vinylbenzyl group contained in the molecule of the silane compound has a reactivity equivalent to that of styrene, it has good copolymerizability and miscibility with unsaturated resins, such as acrylic-modified epoxy resins and various unsaturated polyester resins. Are better. The most preferred example of the application of the silane composition of the present invention is as a silane coupling agent for surface treatment of glass fabric useful as a reinforcing material for printed wiring boards. It shows a remarkable effect on improvement. Examples Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. In addition, each physical property was calculated|required as follows. (1) Resin impregnability The impregnability of the resin was determined visually. ◎: Very good, 〇: Good, △: Average, ×: Poor (2) Soldering heat resistance Immersed in a solder bath at 260℃ for 10 seconds, 20 seconds, and 30 seconds respectively, with blisters (×) and without (〇 ) was investigated. (3) Measling characteristics A soldering iron with a diameter of 5 mm heated to 240°C, 260°C, and 280°C was pressed for 10 seconds with a load of 100 g to determine whether measling occurred (x) or not (〇). I looked into it. (4) Potentiometric titration Hydrolyzable chloride ions were titrated with a methanol solution of sodium methylate using a PH meter manufactured by Toa Denpa Kogyo Co., Ltd. HM-5A. Measurements were performed at room temperature. (5) Kinematic viscosity Using an Ubbelohde type viscosity tube, in a constant temperature water bath, 25
Kinematic viscosity measurements were carried out at °C. (6) NMR Measurements were performed using an NMR spectrometer manufactured by JEOL Ltd. JNM-PMX60SI. (7) IR Measurement was performed using an infrared spectrometer of Shimadzu Corporation FTIR-4100. Example 1 N-β-(N-vinylbenzylaminoethyl)-
While stirring 300 g of a 40% silane methanol solution of γ-aminopropyltrimethoxysilane/hydrochloride, 618 g of a 28% sodium methylate methanol solution was added, and the mixture was stirred at room temperature for 2 hours. After stopping the stirring and leaving the mixture at room temperature overnight, the precipitate was removed by filtration. After adding 36.7 g of vinylbenzyl chloride to 267 g of the silane solution, the mixture was reacted under reflux for 3 hours. After the reaction was completed, the reaction product was developed by thin layer chromatography (TLC), and it was confirmed that vinylbenzyl chloride had been added. Furthermore, when the chlorine ions produced during the reaction were quantified by potentiometric titration, it was confirmed that more than 90% of vinylbenzyl chloride had reacted. In the composition, in addition to unreacted N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane and/or its hydrochloride, N-β-(N-vinylbenzylaminoethyl)-N-γ-(vinylbenzyl)-γ-aminopropyltrimethoxysilane and/or its hydrochloride, N-β-(N-di(vinylbenzyl)
(aminoethyl)-γ-aminopropyltrimethoxysilane and/or its hydrochloride, N-β-(N-di(vinylbenzyl)
aminoethyl)-N-γ-(vinylbenzyl)-γ
products such as -aminopropyltrimethoxysilane and/or its hydrochloride. The solution thus obtained was a brown to reddish brown liquid with a kinematic viscosity of 1.16 centiTokes, a specific gravity of 0.85 g/cm 3 , and a chloride ion concentration of 2.1 wt%. The IF chart of the composition is shown in Figure 1, and
The NMR chart is shown in Figure 2. Then 0.5% by weight of the silane compound in the reaction composition
Aqueous solutions were prepared, and acetic acid was added to them to adjust the pH to 4 (treatment liquid). A glass cloth with a thickness of 0.19 mm (7628 manufactured by Asahi Schwebel Co., Ltd.) was immersed in this treatment solution, and then the liquid was removed so that the treatment solution retention rate was approximately 30% by weight relative to the glass cloth. Dry with hot air. Further, an unsaturated polyester varnish was prepared by blending 100 parts by weight of an unsaturated polyester resin, 40 parts by weight of polymerized monomer styrene, and 1 part by weight of kyumene hydroperoxide. A glass cloth treated with the reaction composition was impregnated with the varnish. Layer two sheets of the cloth, layer copper foil with a thickness of 35 μm on both surfaces, degas for 2 minutes, heat at 130℃ for 120 minutes, mold into one piece, and
A 0.4 mm copper clad laminate was obtained. Further, the entire surface of the copper foil was etched out using an etching solution, washed with water, and air-dried to obtain a laminate for physical property testing. Regarding this laminate, resin impregnation properties, solder heat resistance, and measling resistance were measured. Results first
Shown in the table. Example 2 In place of N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride in Example 1, N-vinylbenzyl-γ-aminopropyltriethoxysilane.
A reaction composition was obtained in the same manner as in Example 1 using the hydrochloride. This was treated with glass cloth in the same manner as in Example 1 to form a laminate, and its properties were then measured.
The results are shown in Table 1. Example 3 N-β-(N-vinylbenzylaminoethyl)-
After adding 4.07 g of vinylbenzyl chloride to 50.0 g of a 40% silane methanol solution of γ-aminopropyltrimethoxysilane hydrochloride, the mixture was reacted under reflux for 3 hours. When the chlorine ion generated during the reaction was quantified by potentiometric titration, it was found to be 92%.
It was confirmed that vinylbenzyl chloride had reacted. The obtained reaction composition was treated with glass cloth in the same manner as in Example 1 to form a laminate, and then its properties were measured. The results are shown in Table 1. Example 4 In place of N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride in Example 3, N-vinylbenzyl-γ-aminopropyltriethoxysilane.
A reaction composition was obtained in the same manner as in Example 3 using the hydrochloride. This was treated with glass cloth in the same manner as in Example 1 to form a laminate, and its properties were then measured.
The results are shown in Table 1. Example 5 First, 1-trimethoxysilylpropyl-
The hydrolyzable chloride concentration of a methanol solution containing 40 wt% of 7-vinylbenzyldiethylenetriamine hydrochloride was determined in the same manner as in Example 1, and was confirmed to be 3.2 wt%. Next, 50.00 g of the solution was added to a 300 ml tube equipped with a reflux tube.
The mixture was placed in a separable flask, and while stirring using a magnetic stirrer, 8.32 g of a methanol solution containing 28 wt% of sodium methylate was added dropwise using a dropping funnel over 5 minutes. The liquid state changed to a yellow-white suspension due to the produced sodium chloride. Next, the flask was heated in an oil bath to raise the temperature, stirred and refluxed for 10 minutes at reflux temperature, and then 6.57 g of vinylbenzyl chloride was added dropwise from the dropping funnel over 3 minutes, followed by reflux reaction for 3 hours under a nitrogen atmosphere. After that, the mixture was cooled to room temperature and stirring was stopped. Further, after being left at room temperature for 2 hours, the white precipitate was removed by decantation to obtain the desired composition. Further, the resulting white precipitate was washed with 100 g of chloroform, filtered, and dried to obtain 2.4 g of sodium chloride. The solution thus obtained was a yellow-brown liquid with a kinematic viscosity of 5.32 cst and a specific gravity of 0.932 g/cm 3 chloro ion concentration of 3.0 wt%. IR of the composition
The chart is shown in Figure 3, and the NMR chart is shown in Figure 4. The resulting composition was treated with glass cloth to form a laminate in the same manner as in Example 1, and various properties were measured. Table 1 shows the results. In the composition, In addition to the unreacted compound and/or its hydrochloride represented by and/or products such as its hydrochloride. Comparative Example 1 N-β-(N-vinylbenzylaminoethyl)-γ-aminopropyltrimethoxysilane hydrochloride was used as a comparative drug. Using this chemical, glass cloth was treated in the same manner as in Example 1 to form a laminate, and the properties were then measured. The results are shown in Table 1. Comparative Example 2 γ-methacryloxypropyltrimethoxysilane was used as a comparative drug. Example 1
After processing the glass cloth in the same manner as above to form a laminate, its properties were measured. The results are shown in Table 1. Comparative Example 3 γ-methacryloxypropyldimethoxymethylsilane was used as a comparative drug. The drug was treated with glass cloth in the same manner as in Example 1 to form a laminate, and its properties were then measured. The results are shown in Table 1. Comparative Example 4 γ-acryloxymethyltrimethoxysilane was used as a comparative drug. The drug was treated with glass cloth in the same manner as in Example 1 to form a laminate, and then
Characteristics were measured. The results are shown in Table 1. Comparative Example 5 N-vinylbenzyl-γ-aminopropyltriethoxysilane was used as a comparative drug. The drug was treated with glass cloth in the same manner as in Example 1,
After forming a laminate, its properties were measured. The results are shown in Table 1.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシラン組成物(実施例1)か
ら溶媒を揮発除去した後のIRスペクトルであり、
第2図は該組成物のNMRスペクトルである。ま
た、第3図は実施例5の組成物から溶媒を揮発除
去して得られたIRスペクトルであり、第4図は
該組成物のNMRスペクトルである。
FIG. 1 is an IR spectrum after the solvent was removed by volatilization from the silane composition of the present invention (Example 1),
FIG. 2 is an NMR spectrum of the composition. Moreover, FIG. 3 is an IR spectrum obtained by removing the solvent by volatilization from the composition of Example 5, and FIG. 4 is an NMR spectrum of the composition.

Claims (1)

【特許請求の範囲】 1 (イ) 一般式 〔式中のQ1、Q2、Q3は式 で表わされる基あるいは水素であつて、n=0
のときはQ1及びQ2は式で表わされる基であ
り、n=1又は2のときはQ1、Q2、Q3の少な
くとも2個は式の基で表わされる基である。
R1は炭素数が6個以下の2価の脂肪族炭化水
素基であり、R2は炭素数が10個以下の2価の
脂肪族炭化水素基、又は芳香族環を含む炭化水
素基であり、R3は炭素数が6個以下のアルキ
ル基又はシクロアルキル基、又はフエニル基で
あり、R4はアルコキシ及びアリールオキシ基
から成る群から選択された加水分解可能な基で
あり、R5は炭素数が6以下の2価の脂肪族炭
化水素基である。nは0又は1もしくは2の整
数であり、aは0又は1もしくは2の整数であ
る。〕で表わされるシラン化合物またはその酸
塩と (ロ) (イ)を溶解し得る水溶性有機溶媒とから成るシ
ラン組成物。
[Claims] 1 (a) General formula [Q 1 , Q 2 , Q 3 in the formula are A group or hydrogen represented by n=0
When n = 1 or 2 , at least two of Q 1 , Q 2 and Q 3 are groups represented by the formula.
R 1 is a divalent aliphatic hydrocarbon group having 6 or less carbon atoms, and R 2 is a divalent aliphatic hydrocarbon group having 10 or less carbon atoms, or a hydrocarbon group containing an aromatic ring. , R 3 is an alkyl group or cycloalkyl group having 6 or less carbon atoms, or a phenyl group, R 4 is a hydrolyzable group selected from the group consisting of alkoxy and aryloxy groups, and R 5 is a divalent aliphatic hydrocarbon group having 6 or less carbon atoms. n is 0 or an integer of 1 or 2, and a is 0 or an integer of 1 or 2. ] A silane composition comprising a silane compound or an acid salt thereof and (b) and a water-soluble organic solvent capable of dissolving (a).
JP1097394A 1989-04-19 1989-04-19 Silane composition Granted JPH02279688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097394A JPH02279688A (en) 1989-04-19 1989-04-19 Silane composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097394A JPH02279688A (en) 1989-04-19 1989-04-19 Silane composition

Publications (2)

Publication Number Publication Date
JPH02279688A JPH02279688A (en) 1990-11-15
JPH0547551B2 true JPH0547551B2 (en) 1993-07-19

Family

ID=14191303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097394A Granted JPH02279688A (en) 1989-04-19 1989-04-19 Silane composition

Country Status (1)

Country Link
JP (1) JPH02279688A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794464A (en) * 1993-09-27 1995-04-07 Nec Corp Methods for protecting and etching circuit pattern formed on silicon wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195046A (en) * 1984-10-17 1986-05-13 Asahi Shiyueebell Kk Composition for surface treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6195046A (en) * 1984-10-17 1986-05-13 Asahi Shiyueebell Kk Composition for surface treatment

Also Published As

Publication number Publication date
JPH02279688A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
EP0234450B1 (en) Thermosetting resin and prepreg and laminate using the same
US5001010A (en) Curable polyphenylene ether-polyepoxide compositions from melt processed polyphenylene ethers, and laminates prepared therefrom
JPH0255721A (en) Curable composition useful for manufacture of printed wiring board
TWI713531B (en) Thermosetting resin composition, prepreg, build-up board and printed circuit board
JPH02269732A (en) Curable, dielectric polyphenylene ether/ polyepoxide composition
CN110862668A (en) Halogen-free low dielectric resin composition, and prepreg, metal foil laminate and printed wiring board manufactured using the same
KR20020063828A (en) Thermosetting Resin Composition Having High Performance and Use Thereof
US5141791A (en) Curable polyphenylene ether-polyepoxide compositions from melt processed polyphenylene ethers, and laminates prepared therefrom
EP0506366B1 (en) High performance curable PPO/monomeric epoxy compositions with tin metal salt compatibilizing agent
US5089343A (en) Curable dielectric polyphenylene ether-polyepoxide compositions
EP0269021B1 (en) Resin composition for printed circuit board and such board formed by use thereof
KR101828762B1 (en) Thermosetting resin composition and its production method, prepreg, laminate, and printed wiring board
JPS6026494B2 (en) Curable resin composition
JPH0547551B2 (en)
JPH04132730A (en) Hardenable polyphenylene ether polyepoxide composition
EP0310424B1 (en) Thermosetting resin composition
JP2577752B2 (en) Novel water-soluble silane composition
JP2577753B2 (en) Water-soluble silane composition
JPH0476019A (en) Curable polyphenylene ether/epoxy resin composition
JPH07258415A (en) Silane composition
JPH0476018A (en) New curable polyphenylene ether/epoxy resin composition
JPH0228228A (en) Silane composition
EP0424135A1 (en) Imide prepolymers and cured products thereof
JPH06256515A (en) Thermosetting adhesive sheet and copper-clad laminated board produced by using the sheet
JP3464025B2 (en) New aminosilane compounds

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 16

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 16