JPH0547395A - Fuel cell power generating device - Google Patents
Fuel cell power generating deviceInfo
- Publication number
- JPH0547395A JPH0547395A JP3229747A JP22974791A JPH0547395A JP H0547395 A JPH0547395 A JP H0547395A JP 3229747 A JP3229747 A JP 3229747A JP 22974791 A JP22974791 A JP 22974791A JP H0547395 A JPH0547395 A JP H0547395A
- Authority
- JP
- Japan
- Prior art keywords
- reformers
- fuel
- fuel cell
- gas
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、天然ガスを使用する燃
料電池発電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator using natural gas.
【0002】[0002]
【従来の技術】周知の如く、天然ガスや石炭ガス等の燃
料ガスを利用した平板型固体電解質燃料電池が知られて
いる。こうした燃料電池は、一般に、空気極と電解質と
燃料極とを備えた構成になっている。しかるに、本発明
者らは、こうした平板型固体電解質燃料を用いた燃料電
池発電装置の発表例については、まだ知るに至っていな
い。2. Description of the Related Art As is well known, a flat plate type solid electrolyte fuel cell using a fuel gas such as natural gas or coal gas is known. Such a fuel cell generally has a structure including an air electrode, an electrolyte, and a fuel electrode. However, the inventors of the present invention have not yet found out about the published examples of the fuel cell power generation device using such a flat plate type solid electrolyte fuel.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
平板型固体電解質燃料電池では、 (a) 燃料ガス(天然ガス,石炭ガス)の改質に必要とす
る燃料極側での吸熱量と (b) 発電によって空気極側に発生する発電量に比例する
発熱量のため、燃料電池内に大きな温度差が生じ、燃料
電池が熱応力により破損する。従って、こうした燃料電
池を用いた燃料電池発電装置の実施例がないのが現状で
ある。However, in the conventional flat plate solid electrolyte fuel cell, (a) the amount of heat absorption on the fuel electrode side required for reforming the fuel gas (natural gas, coal gas) and (b) ) Because of the amount of heat generated that is proportional to the amount of power generated on the air electrode side due to power generation, a large temperature difference occurs within the fuel cell, and the fuel cell is damaged by thermal stress. Therefore, at present, there is no example of a fuel cell power generator using such a fuel cell.
【0004】本発明は上記事情に鑑みてなされたもの
で、吸熱量と発熱量をバランスさせることにより発生熱
応力を小さくし、もって改質器を有した燃料電池発電装
置を提供することを目的とする。The present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel cell power generator having a reformer by reducing the generated thermal stress by balancing the heat absorption amount and the heat generation amount. And
【0005】[0005]
【課題を解決するための手段】本発明は、複数個の平板
型固体電解質燃料電池と、前記燃料電池の上流側に夫々
配置された改質器とを有し、前記改質器と燃料電池とを
複数個燃料ガスの流れ方向に交互に直列に連結し、かつ
前記改質器に必要とする熱量を排ガスにて加熱した空気
より供給し、更に前記各改質器により直後の燃料電池に
必要とする必要最小限の燃料ガスを順次改質することを
特徴とする燃料電池発電装置である。The present invention has a plurality of flat plate type solid electrolyte fuel cells and a reformer arranged upstream of the fuel cell, respectively, and the reformer and the fuel cell are provided. And a plurality of fuel cells are alternately connected in series in the flow direction of the fuel gas, and the amount of heat required for the reformer is supplied from the air heated by the exhaust gas. It is a fuel cell power generation device characterized by sequentially reforming a required minimum required fuel gas.
【0006】[0006]
【作用】燃料電池と改質器を分離したことにより改質器
には最適な組成と形状の触媒の選定が可能となる。ま
た、改質器と燃料電池の複数個の組み合わせかつそれを
直列に配置することにより、各改質器は直後の燃料電池
の温度分布を制御可能になるとともに、改質に必要とす
る熱量の一部を燃料ガスの燃料電池による昇温の形で
(直前の燃料電池の発電量)の利用が可能となる。更
に、排ガス中に設置した空気加熱器の小型化も可能とな
る。By separating the fuel cell and the reformer, it becomes possible to select a catalyst having an optimum composition and shape for the reformer. In addition, by combining a plurality of reformers and fuel cells and arranging them in series, each reformer can control the temperature distribution of the fuel cell immediately after it and reduce the amount of heat required for reforming. A part of the fuel gas can be used in the form of temperature rise by the fuel cell (the amount of power generated by the immediately preceding fuel cell). Further, it becomes possible to downsize the air heater installed in the exhaust gas.
【0007】[0007]
【実施例】以下、本発明の一実施例に係る多段内部改質
燃料電池発電装置について図1を参照して説明する。EXAMPLE A multistage internal reforming fuel cell power generator according to an example of the present invention will be described below with reference to FIG.
【0008】図中の1,2は、夫々1段目,2段目の平
板型固体電解質燃料電池(平板型SOFC)を示す。前
記SOFC1,2の上流側には、夫々1段目,2段目の
改質器3,4が配置されている。ここで、前記SOFC
1,2及び改質器3,4は、燃料ガスの流れ方向Xに交
互に直列に連結されている。前記SOFC2の下流側に
は、アフタ−バ−ナ5,空気加熱器6が配置されてい
る。Reference numerals 1 and 2 in the figure respectively denote a first-stage and a second-stage flat-plate solid electrolyte fuel cell (flat-plate SOFC). First-stage and second-stage reformers 3 and 4 are disposed upstream of the SOFCs 1 and 2, respectively. Where the SOFC
1, 2 and reformers 3, 4 are alternately connected in series in the flow direction X of the fuel gas. An after-burner 5 and an air heater 6 are arranged on the downstream side of the SOFC 2.
【0009】前記改質器3には、天然ガス(石炭ガス)
7,水蒸気8aが夫々導入される。ここで、触媒21の作
用により部分改質ガス(水素及び一酸化炭素及び未改質
の天然ガスの混合ガス)9になり、下流側の燃料電池1
に供給される。また、改質に必要とする熱は、前記空気
加熱器6に供給された空気10が加熱空気11a,11bとな
って前記改質器3,4に夫々供給される。The reformer 3 contains natural gas (coal gas).
7 and steam 8a are introduced respectively. Here, by the action of the catalyst 21, it becomes a partial reformed gas (mixed gas of hydrogen and carbon monoxide and unreformed natural gas) 9, and the fuel cell 1 on the downstream side.
Is supplied to. Further, the heat required for reforming is supplied to the reformers 3 and 4 from the air 10 supplied to the air heater 6 as heated air 11a and 11b.
【0010】前記SOFC1では、部分改質ガス9と電
池用空気12aにて電力を発生するとともに、夫々の残ガ
スとして電池残燃料ガス13と電池残空気14を排出する。
前記電池残燃料ガス13は部分改質ガス9から水素,一酸
化炭素が消費され、大部分の天然ガス7と少量の水蒸気
と炭酸ガスの混合ガスとなっている。これらは、下流側
の前記改質器4に再添加される水蒸気8bと共に流入
し、2段目の前記改質器4の作用で改質ガス15となって
2段目のSOFC2に流入する。なお、図中の16は加熱
管、17は排ガスを示す。In the SOFC 1, electric power is generated by the partial reformed gas 9 and the battery air 12a, and the battery residual fuel gas 13 and the battery residual air 14 are discharged as respective residual gases.
Hydrogen and carbon monoxide are consumed from the partial reformed gas 9 in the residual fuel gas 13 of the cell, and it becomes a mixed gas of most natural gas 7 and a small amount of steam and carbon dioxide gas. These flow in along with the steam 8b to be added again to the reformer 4 on the downstream side, and become the reformed gas 15 by the action of the reformer 4 in the second stage, and flow into the SOFC 2 in the second stage. In the figure, 16 indicates a heating pipe and 17 indicates exhaust gas.
【0011】本実施例では、SOFC2が最終段のた
め、改質ガス15は天然ガス7を残すことなく完全に水素
と一酸化炭素に改質し、SOFC2にて電力として有効
に変換する。In this embodiment, since the SOFC 2 is the final stage, the reformed gas 15 is completely reformed into hydrogen and carbon monoxide without leaving the natural gas 7, and the SOFC 2 effectively converts it into electric power.
【0012】しかして、上記実施例によれば、 (1) 改質器3,4の熱源として、下流側に設置した空気
加熱器6にて回収した加熱空気11a,11bを利用でき
る。Therefore, according to the above-described embodiment, (1) The heated air 11a, 11b collected by the air heater 6 installed on the downstream side can be used as the heat source of the reformers 3, 4.
【0013】(2) 改質器3,4とSOFC1,2を多段
に燃料ガスの流れ方向に直列に交互に組み合わせ、上流
側の改質器3,4へ供給する熱量と、水蒸気の調整にて
改質ガスの成分を調整し、直後のSOFC1,2の温度
分布を調整できる。(2) The reformers 3 and 4 and the SOFCs 1 and 2 are alternately combined in series in the flow direction of the fuel gas in series to adjust the amount of heat supplied to the reformers 3 and 4 on the upstream side and steam. By adjusting the components of the reformed gas, the temperature distribution of the SOFCs 1 and 2 immediately after can be adjusted.
【0014】(3) 2段目以後の改質器3,4では上流側
のSOFCにて発生する発電に伴う発熱と水蒸気の利用
も可能である。従って、多段改質平板型固体電解質燃料
電池による発電装置を実現できる。(3) In the reformers 3 and 4 of the second and subsequent stages, it is possible to utilize the heat generated by the power generation generated in the upstream SOFC and the use of steam. Therefore, it is possible to realize a power generator using a multi-stage reforming flat plate type solid electrolyte fuel cell.
【0015】なお、上記実施例では、SOFC,改質器
をそれぞれ2段づつ配置した場合について述べたが、こ
れに限らず、3段以上づつ配置しても良いことは勿論の
事である。In the above embodiment, the SOFC and the reformer are arranged in two stages, but the present invention is not limited to this, and it is a matter of course that three or more stages may be arranged.
【0016】[0016]
【発明の効果】以上詳述した如く本発明によれば、吸熱
量と発熱量をバランスさせることにより発生熱応力を小
さくし、これにより改質器を有した燃料電池発電装置を
提供できる。As described above in detail, according to the present invention, it is possible to provide a fuel cell power generator having a reformer by reducing the generated thermal stress by balancing the heat absorption amount and the heat generation amount.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例に係る多段内部改質燃料電池
発電装置。FIG. 1 is a multistage internal reforming fuel cell power generator according to an embodiment of the present invention.
1,2…平板型固体電解質燃料電池、3,4…改質器、
5…アフターバーナ、6…空気加熱器、7…天然ガス、
8a,8b…水蒸気、9…部分改質ガス、10…空気、11
a,11b…加熱空気、12a,12b…電池用空気、13…電
池残燃料ガス、16…加熱管、17…排ガス。1, 2 ... Flat plate solid electrolyte fuel cell, 3, 4 ... Reformer,
5 ... Afterburner, 6 ... Air heater, 7 ... Natural gas,
8a, 8b ... Steam, 9 ... Partially reformed gas, 10 ... Air, 11
a, 11b ... Heating air, 12a, 12b ... Battery air, 13 ... Battery residual fuel gas, 16 ... Heating pipe, 17 ... Exhaust gas.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 江崎 義美 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社内 (72)発明者 服部 雅俊 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社内 (72)発明者 入野 光博 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 田中 量久 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 橋田 和信 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 南條 房幸 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 舟津 正之 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshimi Ezaki, No. 20 Kitakanyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Chubu Electric Power Co., Inc. (72) Inventor Masatoshi Hattori Otaka, Midori-ku, Nagoya-shi, Aichi 1 of 20 Kitakanzan, Chubu Electric Power Co., Inc. (72) Inventor Mitsuhiro Irino 1-1-1, Niihama, Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Kazuhisa Tanaka Takasago, Hyogo Prefecture 2-1-1 Niihama, Arai-cho, Aichi-machi, Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Kazunobu Hashida 2-1-1, Niihama, Niihama, Arai-cho, Takasago-shi, Hyogo (72) Inventor Fusako Nanjo 1-1 1-1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Kobe Shipyard (72) Inventor Masayuki Funazu Kobe, Hyogo Prefecture Hyogo-ku Wadasaki-cho, 1 Chome, Mitsubishi Heavy Industries, Ltd. in the Kobe Shipyard & Machinery Works (72) inventor Takenobu Koichi Kobe, Hyogo Prefecture, Hyogo-ku, Wadasaki-cho, chome No. 1 in the No. 1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard & Machinery Works
Claims (1)
前記燃料電池の上流側に夫々配置された改質器とを有
し、前記改質器と燃料電池とを複数個燃料ガスの流れ方
向に交互に直列に連結し、かつ前記改質器に必要とする
熱量を排ガスにて加熱した空気より供給し、更に前記各
改質器により直後の燃料電池に必要とする必要最小限の
燃料ガスを順次改質することを特徴とする燃料電池発電
装置。1. A plurality of flat plate type solid electrolyte fuel cells,
A reformer disposed on the upstream side of each of the fuel cells, and a plurality of the reformers and the fuel cells are alternately connected in series in the flow direction of the fuel gas, and required for the reformer. The fuel cell power generator is characterized in that the required amount of fuel gas is supplied from the air heated by the exhaust gas, and the required minimum amount of fuel gas required for the fuel cell immediately after is further sequentially reformed by each reformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3229747A JPH0547395A (en) | 1991-08-16 | 1991-08-16 | Fuel cell power generating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3229747A JPH0547395A (en) | 1991-08-16 | 1991-08-16 | Fuel cell power generating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0547395A true JPH0547395A (en) | 1993-02-26 |
Family
ID=16897057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3229747A Withdrawn JPH0547395A (en) | 1991-08-16 | 1991-08-16 | Fuel cell power generating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0547395A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109638A (en) * | 2001-09-27 | 2003-04-11 | Toto Ltd | Sofc fuel recycle system |
WO2003067698A1 (en) * | 2002-02-05 | 2003-08-14 | Tokyo Gas Company Limited | Solid oxide type fuel cell system |
JP2003317785A (en) * | 2002-04-26 | 2003-11-07 | Nissan Motor Co Ltd | Solid electrolyte fuel cell |
US7687172B2 (en) | 2004-12-22 | 2010-03-30 | Honda Motor Co., Ltd. | Fuel cell system |
JP2011129490A (en) * | 2009-12-21 | 2011-06-30 | Mitsubishi Heavy Ind Ltd | Solid oxide fuel cell power generation system |
JP2012104464A (en) * | 2010-11-09 | 2012-05-31 | Inst Nuclear Energy Research Rocaec | Method and apparatus of carbon dioxide energy conversion cycle utilizing solid oxide fuel cell |
JP2012531719A (en) * | 2009-06-30 | 2012-12-10 | フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ | High temperature fuel cell system |
JP2013211107A (en) * | 2012-03-30 | 2013-10-10 | Tokyo Gas Co Ltd | High temperature fuel cell system and operation method thereof |
JP2014229438A (en) * | 2013-05-21 | 2014-12-08 | 株式会社デンソー | Fuel cell device |
WO2017037938A1 (en) * | 2015-09-04 | 2017-03-09 | 日産自動車株式会社 | Fuel cell system and fuel cell control method |
EP3336946A4 (en) * | 2015-08-10 | 2018-09-05 | Nissan Motor Co., Ltd. | Solid oxide fuel cell system |
-
1991
- 1991-08-16 JP JP3229747A patent/JPH0547395A/en not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003109638A (en) * | 2001-09-27 | 2003-04-11 | Toto Ltd | Sofc fuel recycle system |
WO2003067698A1 (en) * | 2002-02-05 | 2003-08-14 | Tokyo Gas Company Limited | Solid oxide type fuel cell system |
US7736774B2 (en) | 2002-02-05 | 2010-06-15 | Tokyo Gas Co., Ltd. | Solid oxide fuel cell system |
JP2003317785A (en) * | 2002-04-26 | 2003-11-07 | Nissan Motor Co Ltd | Solid electrolyte fuel cell |
JP4645876B2 (en) * | 2002-04-26 | 2011-03-09 | 日産自動車株式会社 | Solid oxide fuel cell |
US7687172B2 (en) | 2004-12-22 | 2010-03-30 | Honda Motor Co., Ltd. | Fuel cell system |
JP2012531719A (en) * | 2009-06-30 | 2012-12-10 | フラウンホーファー・ゲゼルシャフト・ツール・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファウ | High temperature fuel cell system |
JP2011129490A (en) * | 2009-12-21 | 2011-06-30 | Mitsubishi Heavy Ind Ltd | Solid oxide fuel cell power generation system |
JP2012104464A (en) * | 2010-11-09 | 2012-05-31 | Inst Nuclear Energy Research Rocaec | Method and apparatus of carbon dioxide energy conversion cycle utilizing solid oxide fuel cell |
JP2013211107A (en) * | 2012-03-30 | 2013-10-10 | Tokyo Gas Co Ltd | High temperature fuel cell system and operation method thereof |
JP2014229438A (en) * | 2013-05-21 | 2014-12-08 | 株式会社デンソー | Fuel cell device |
EP3336946A4 (en) * | 2015-08-10 | 2018-09-05 | Nissan Motor Co., Ltd. | Solid oxide fuel cell system |
WO2017037938A1 (en) * | 2015-09-04 | 2017-03-09 | 日産自動車株式会社 | Fuel cell system and fuel cell control method |
CN107925100A (en) * | 2015-09-04 | 2018-04-17 | 日产自动车株式会社 | Fuel cell system and fuel cell control method |
JPWO2017037938A1 (en) * | 2015-09-04 | 2018-07-19 | 日産自動車株式会社 | Fuel cell system and fuel cell control method |
EP3346531A4 (en) * | 2015-09-04 | 2018-11-14 | Nissan Motor Co., Ltd. | Fuel cell system and fuel cell control method |
US10177394B2 (en) | 2015-09-04 | 2019-01-08 | Nissan Motor Co., Ltd. | Fuel cell system and fuel cell control method |
CN107925100B (en) * | 2015-09-04 | 2019-11-19 | 日产自动车株式会社 | Fuel cell system and fuel cell control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4902586A (en) | Once through molten carbonate fuel cell system | |
US7276306B2 (en) | System for the co-production of electricity and hydrogen | |
JP6397502B2 (en) | Reformer / electrolyzer / refiner (REP) assembly for hydrogen production, system incorporating the assembly, and hydrogen production method | |
JP6527966B2 (en) | High efficiency fuel cell system and method having a carbon dioxide capture assembly | |
US5541014A (en) | Indirect-fired gas turbine dual fuel cell power cycle | |
US6627339B2 (en) | Fuel cell stack integrated with a waste energy recovery system | |
JPH0547395A (en) | Fuel cell power generating device | |
US20120129063A1 (en) | Flow arrangement for fuel cell stacks | |
US6887609B2 (en) | Fuel cell system and method for operating the fuel cell system | |
CA2165085C (en) | High-temperature fuel cell system | |
CN100342576C (en) | Shift membrane burner/fuel cell combination | |
Araki et al. | Cycle analysis of low and high H2 utilization SOFC/gas turbine combined cycle for CO2 recovery | |
CA2242329A1 (en) | Electric power generation system including fuel cells | |
JPH0487262A (en) | Fuel cell power generation system | |
JP3079317B2 (en) | Molten carbonate fuel cell power generator | |
Milewski et al. | Reducing CO2 emissions from a coal fired power plant by using a molten carbonate fuel cell | |
CN107851819B (en) | Fuel cell system | |
Jamsak et al. | Thermodynamic assessment of solid oxide fuel cell system integrated with bioethanol purification unit | |
Russo et al. | Preliminary Investigation of a Multi-MW Solid Oxide Fuel Cell Power Plant to be Installed on Board a Cruise Ship | |
JPH11135140A (en) | Combined power generating facilities recycling anode exhaust gas | |
JPS622432B2 (en) | ||
CN216773297U (en) | Solid oxide fuel cell system without combustor | |
JP2929034B2 (en) | Molten carbonate fuel cell power generator | |
JPH06103994A (en) | Fuel cell power generating system | |
JP2003100333A (en) | Fuel cell power generation equipment and turbine power generation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |