JPH0547380A - Nickel hydroxide electrode for alkaline secondary battery - Google Patents

Nickel hydroxide electrode for alkaline secondary battery

Info

Publication number
JPH0547380A
JPH0547380A JP3291026A JP29102691A JPH0547380A JP H0547380 A JPH0547380 A JP H0547380A JP 3291026 A JP3291026 A JP 3291026A JP 29102691 A JP29102691 A JP 29102691A JP H0547380 A JPH0547380 A JP H0547380A
Authority
JP
Japan
Prior art keywords
electrode
battery
hydrogen gas
nickel hydroxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3291026A
Other languages
Japanese (ja)
Inventor
Haruo Sawa
春夫 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3291026A priority Critical patent/JPH0547380A/en
Publication of JPH0547380A publication Critical patent/JPH0547380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the absorbing speed of the hydrogen gas generated in a battery and increase the battery capacity for the fixed volume of the battery by containing at least one kind of specific manganese additives in a nickel hydroxide electrode. CONSTITUTION:At least one kind of metal manganese, MnO, Mn2O3, MnO2, MnO3, Mn2O7, Mn (OH)3, MnCO3, K2MnO2, KMnO4 is contained as a manganese additive. Nickel hydroxide powder serving as an active material, metal manganese powder serving as an additive, and polytetrafluoroethylene powder are mixed at the weight ratio of 87:10:3, for example, it is filled in a foam nickel plate serving as an electrode substrate, and it is pressurized and molded to form a disk type nickel hydroxide electrode. This electrode has a very high hydrogen gas absorbing speed, when it is used for the positive electrode of an alkaline storage battery, the inner pressure of the battery is reduced, and the battery capacity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ二次電池用水
酸化ニッケル極に関する。
FIELD OF THE INVENTION The present invention relates to a nickel hydroxide electrode for an alkaline secondary battery.

【0002】[0002]

【従来の技術】従来、ニッケル・カドミウム電池、ニッ
ケル・水素電池などのアルカリ二次電池の正極として用
いられる水酸化ニッケル極には、ペースト式、焼結式の
2つの形式があるが、いずれの場合も活物質である水酸
化ニッケルを主体とし、これに導電補助剤としてニッケ
ル或いはコバルトなどから構成されて居る。又その活物
質を保持する電極基体として、ペースト式の場合は、一
般に発泡ニッケルが用いられ、焼結式の場合は、一般に
ニッケル焼結体が用いられている。
2. Description of the Related Art Conventionally, there are two types of nickel hydroxide electrodes used as a positive electrode for alkaline secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries, which are a paste type and a sintering type. Also in the case, nickel hydroxide which is an active material is mainly used, and nickel or cobalt is used as a conductive auxiliary agent. As the electrode substrate holding the active material, foamed nickel is generally used in the case of the paste type, and nickel sintered body is generally used in the case of the sintered type.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、従来の上
記水酸化ニッケル極を正極としたアルカリ二次電池は、
充電時、負極から発生する水素ガスを酸化吸収する速度
が極めて小さい。そのため、密閉型のニッケル・カドミ
ウム電池或いはニッケル水素電池において酸素ガスを水
素ガスに先立って発生させて、これを負極で還元吸収さ
せるために、正極に対する負極の容量をかなり過剰にせ
ざるを得ず、従って又、それだけ電池の体積が増大する
不都合を伴った。しかし乍ら、電池の体積が限られてい
るので、負極を過剰にするにも限度があり、その結果、
水素ガスの吸収が充分に出来なくなり、水素ガスによる
電池の内圧が高くなる傾向をもたらす。逆に、正極の容
量をそれだけ小さくすれば、電池容量が小さくなる不都
合をもたらした。又特に、ニッケル・水素電池では、温
度上昇だけでも水素化物から直接水素ガスを放出するの
で、その脱ガス成分に可燃性の水素ガスが含まれるとい
う問題があった。
However, the conventional alkaline secondary battery using the above nickel hydroxide electrode as a positive electrode has the following problems.
During charging, the rate of oxidizing and absorbing hydrogen gas generated from the negative electrode is extremely low. Therefore, in a sealed nickel-cadmium battery or a nickel-hydrogen battery, oxygen gas is generated prior to hydrogen gas, and in order to reduce and absorb this oxygen in the negative electrode, the capacity of the negative electrode with respect to the positive electrode must be excessively increased. Therefore, it also has a disadvantage that the volume of the battery increases. However, because of the limited volume of the battery, there is a limit to the excess of negative electrode, and as a result,
Hydrogen gas cannot be absorbed sufficiently, and the internal pressure of the battery due to hydrogen gas tends to increase. On the contrary, if the capacity of the positive electrode is made smaller, the battery capacity becomes smaller. Further, in particular, in the nickel-hydrogen battery, since hydrogen gas is directly released from the hydride even if the temperature is increased, there is a problem that flammable hydrogen gas is contained in the degassed component.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従未のア
ルカリ二次電池用水酸化ニッケル極の不都合を解消し、
発生する水素ガスの吸収速度が増大し、従って、正極に
対する過剰容量を小さく出来、更には電池の内圧を低下
させ得るアルカリ二次電池用水酸化ニッケル極に係り、
金属マンガン、MnO、Mn、MnO、MnO
、Mn、Mn(OH)、MnCO、K
nO、KMnOなどのマンガン系添加剤の少なくと
も1種を含有して成る。
DISCLOSURE OF THE INVENTION The present invention solves the above disadvantages of the nickel hydroxide electrode for alkaline secondary batteries,
The absorption rate of the generated hydrogen gas is increased, and therefore, the excess capacity with respect to the positive electrode can be reduced, and further, the nickel hydroxide electrode for an alkaline secondary battery that can reduce the internal pressure of the battery,
Metallic manganese, MnO, Mn 2 O 3 , MnO 2 , MnO
3 , Mn 2 O 7 , Mn (OH) 2 , MnCO 3 , K 2 M
It contains at least one manganese-based additive such as nO 2 and KMnO 4 .

【0005】[0005]

【作用】本発明の作用は明らかでないが、該水酸化ニッ
ケル極に添加された該マンガン系添加剤は、充電により
水素ガス吸収活性の高い酸化マンガン化合物となり、水
素ガスに触れると速かにこれを接触置換して吸収する。
このようにマンガン系添加剤は、一旦水素ガス吸収で還
元状態となっても、再び充電により電気的に酸化され
る。従って、かゝる水素ガス吸収剤の添加された本発明
の水酸化ニッケル極は速かな水素ガス吸収性能を継続し
て発揮する。従って、アルカリ二次電池の正極として使
用することにより、従来に比し水素ガス吸収速度が著し
く大きく、水素ガスによる内圧の上昇の少ない電池をも
たらす。
Although the function of the present invention is not clear, the manganese-based additive added to the nickel hydroxide electrode becomes a manganese oxide compound having a high hydrogen gas absorption activity upon charging, and the manganese oxide compound rapidly reacts when exposed to hydrogen gas. Is contact-displaced and absorbed.
As described above, the manganese-based additive is electrically oxidized by charging again, even if the manganese-based additive is once brought into a reduced state by absorbing hydrogen gas. Therefore, the nickel hydroxide electrode of the present invention, to which such a hydrogen gas absorbent is added, continues to exhibit rapid hydrogen gas absorption performance. Therefore, by using it as the positive electrode of an alkaline secondary battery, a battery having a significantly higher hydrogen gas absorption rate than the conventional one and having a small increase in internal pressure due to hydrogen gas is provided.

【0006】[0006]

【実施例】次に本発明の実施例を詳述する。活物質とし
て水酸化ニッケル粉末と本発明の添加剤として金属マン
ガン粉末と結着剤としてポリテトラフルオロエチレン粉
末とを、重量比で87:10:3の割合で混合した後、
この活物質合剤を電極基体である発泡ニッケル板に充填
し、次で3t/cmで加圧成形して、直径20mmの
円盤型の本発明の水酸化ニッケル極を作製した。(以下
これを本発明電極Aと称する)。更に、本発明の他の実
施例として、前記の金属マンガン粉末の添加量の半分を
ニッケル粉末に置き換えた、即ち92:5:3の配合割
合で混合した活物質合剤を前記と同様にして発泡ニッケ
ル板に充填し、加圧成形して直径20mmの円盤型の本
発明の水酸化ニッケル極を作製した。(以下これを本発
明電極Bと称する)。
EXAMPLES Next, examples of the present invention will be described in detail. After mixing nickel hydroxide powder as an active material, metallic manganese powder as an additive of the present invention, and polytetrafluoroethylene powder as a binder in a weight ratio of 87: 10: 3,
This active material mixture was filled in a foamed nickel plate serving as an electrode substrate and then pressure-molded at 3 t / cm 2 to prepare a disc-shaped nickel hydroxide electrode of the present invention having a diameter of 20 mm. (Hereinafter, this is called the electrode A of the present invention). Further, as another embodiment of the present invention, an active material mixture in which half of the addition amount of the metal manganese powder is replaced with nickel powder, that is, the active material mixture is mixed in a mixing ratio of 92: 5: 3 is the same as above. The foamed nickel plate was filled and pressure-molded to prepare a disk-shaped nickel hydroxide electrode of the present invention having a diameter of 20 mm. (Hereinafter, this is called the electrode B of the present invention).

【0007】比較のため、前記の金属マンガン粉末をニ
ッケル粉末に置き換えた、即ち本発明のマンガン添加剤
を添加しない、水酸化ニッケル、ニッケル粉末、前記結
着剤を87:10:3の配合割合で混合して成る活物質
合剤を同様にして発泡ニッケル板に充填し、加圧成形し
て直径20mmの従来の水酸化ニッケル極を作製した。
(以下これを従来電極Cと称する)。
For comparison, the metal manganese powder was replaced with nickel powder, that is, the manganese additive of the present invention was not added, and nickel hydroxide, nickel powder, and the binder were mixed in a mixing ratio of 87: 10: 3. Similarly, the active material mixture obtained by mixing in (1) was filled in a foamed nickel plate and pressure-molded to prepare a conventional nickel hydroxide electrode having a diameter of 20 mm.
(Hereinafter, this is called conventional electrode C).

【0008】次に、上記に作製した3種類の電極A,
B,Cにつき、下記するガス量測定装置により、次のよ
うに試験し、その夫々の水素ガス吸収速度を測定した。
即ち、図1は、該測定装置を示す。図面で1は内部に3
0wt.%水酸化カリウム電解液2を入れた第1容器、
3は内部に同じ水酸化カリウム電解液2を入れた第2容
器、4は該第1容器1と該第2容器3の夫々の水酸化カ
リウム電解液2を連通する連通管、5はラッパ状に下向
きに開口した下端を該第1容器1内の電解液内に没入さ
せたガス捕集量測定用のガスビュレットを示す。先ず、
被検体である本発明電極Aの水素ガス吸収速度を測定す
るに当たり、該電極Aを、リード線6のL字状に折り曲
げた下端に取り付け、該第1容器1内の電解液2中に該
ガスビュレットの下端の該ラッパ状開口の下面に水平に
配置すると共に、リード線7のL字状に折り曲げた下端
に取り付けた円盤型ニッケル板8を、該被検体である本
発明電極板Aから5mm離れた下位にこれと平行に水平
に配置する。一方、該第2容器3内の該電解液2内にリ
ード線9の下端に取り付けた矩形状ニッケル板10を没
入配置した。先ず、該ニッケル板10を対極として該被
検体である本発明電極Aに、該水酸化ニッケル電極1g
当たり15mAの電流で通電し、該電極Aが完全充電状
態になるまで充電した。完全充電後、次に、対極を該ニ
ッケル板10から対向する該ニッケル板8に代えて、該
本発明電極Aと該ニッケル板8とに通電し、充電を行っ
た。このとき、該ニッケル板8から発生する水素ガスが
全てその上方の該本発明電極Aに触れることゝなる。一
方、該通電に伴い該本発明電極Aから酸素ガスが発生
し、該酸素ガスと該本発明電極で吸収されなかった水素
ガスは該ガスビュレット5内に捕集されるので、そのガ
ス量(モル数)を測定した。この捕集されたガス量を、
該電流及び通電時間(即ち通電量)から計算した水素と
酸素のガス発生の理論量(10−3mol)から差し引
くことにより、該本発明の水酸化ニッケル電極Aによる
吸収された水素ガス量(10−4mol)を求めた。該
被検体として該本発明電極Aに代えて、該本発明電極B
及び該従来電極Cを該リード線6に接続して上記と同様
に試験し、夫々の電極B,Cにより吸収された水素ガス
量を求めた。
Next, the three types of electrodes A,
B and C were tested by the gas amount measuring device described below as follows, and the respective hydrogen gas absorption rates were measured.
That is, FIG. 1 shows the measuring device. 1 in the drawing is 3 inside
0 wt. % Container containing 1% potassium hydroxide electrolyte 2;
3 is a second container in which the same potassium hydroxide electrolytic solution 2 is placed, 4 is a communication pipe for communicating the potassium hydroxide electrolytic solution 2 of each of the first container 1 and the second container 3, and 5 is a trumpet shape 1 shows a gas burette for measuring a gas collection amount, in which a lower end opened downward is immersed in an electrolytic solution in the first container 1. First,
In measuring the hydrogen gas absorption rate of the electrode A of the present invention as a test object, the electrode A was attached to the L-shaped lower end of the lead wire 6, and the electrode A was attached to the electrolytic solution 2 in the first container 1. A disk-shaped nickel plate 8 is arranged horizontally on the lower surface of the trumpet-shaped opening at the lower end of the gas buret and attached to the L-shaped bent lower end of the lead wire 7 from the electrode plate A of the present invention, which is the subject. It is placed horizontally in parallel with this at a distance of 5 mm. On the other hand, the rectangular nickel plate 10 attached to the lower end of the lead wire 9 was immersed in the electrolytic solution 2 in the second container 3. First, using the nickel plate 10 as a counter electrode, the nickel hydroxide electrode 1 g
Current was applied at a current of 15 mA, and the electrode A was charged until it was in a fully charged state. After the complete charging, the counter electrode was replaced with the facing nickel plate 8 from the nickel plate 10, and the electrode A of the present invention and the nickel plate 8 were energized for charging. At this time, all the hydrogen gas generated from the nickel plate 8 comes into contact with the electrode A of the present invention above it. On the other hand, oxygen gas is generated from the electrode A of the present invention with the energization, and the oxygen gas and the hydrogen gas not absorbed by the electrode of the present invention are collected in the gas buret 5, so that the gas amount ( The number of moles) was measured. The amount of gas collected is
It said current and energization time (i.e., energization amount) by subtracting from the theoretical amount of gas generation of calculated hydrogen and oxygen from (10 -3 mol), the amount of hydrogen gas was absorbed by the nickel hydroxide electrode A of the main invention ( 10 −4 mol) was determined. Instead of the electrode A of the present invention as the subject, the electrode B of the present invention is used.
Also, the conventional electrode C was connected to the lead wire 6 and tested in the same manner as above to determine the amount of hydrogen gas absorbed by each of the electrodes B and C.

【0009】その結果を図2に示す,同図は、通電量か
ら計算したガス発生量と夫々の電極により吸収した水素
ガス量の関係を示し、a,b,cは該本発明電極A、該
本発明電極B及び該従来電極Cの夫々の水素ガス吸収速
度特性曲線を示す。これから明らかなように、水酸化ニ
ッケル極は、銅粉末の添加によって水素ガス吸収速度が
著しく早くなることが判った。
The results are shown in FIG. 2, which shows the relationship between the gas generation amount calculated from the energization amount and the hydrogen gas amount absorbed by each electrode, where a, b and c are the electrode A of the present invention, The hydrogen gas absorption rate characteristic curves of the electrode B of the present invention and the conventional electrode C are shown. As is clear from this, it was found that the nickel hydroxide electrode has a significantly increased hydrogen gas absorption rate by the addition of copper powder.

【0010】次に、上記の完全充電状態の本発明電極A
への通電を止め、該ニッケル板8を負極、該ニッケル板
10を正極として上記と同様に通電し、被検体である電
流の流れていない完全充電状態の該本発明電極Aを、そ
の対向する該ニッケル板8から発生する水素ガスに曝し
た。このとき、上記と同様にして、該ガスビュレット5
内に該本発明電極Aで吸収されない水素ガスを捕集し、
そのガス量を測定した。一方、電流と通電時間(通電
量)から計算したガス発生の理論量を求め、これから前
記の捕集した水素ガス量を差し引いて実際に該本発明電
極Aが吸収した水素ガス量を求めた。被検体を該本発明
電極Aから該本発明電極B及び該従来電極Cに代えて、
これら電極についても、夫々上記と同様にして試験し、
同様に吸収された水素ガス量を求めた。
Next, the electrode A of the present invention in the above fully charged state
To the nickel plate 8 as a negative electrode and the nickel plate 10 as a positive electrode in the same manner as described above. It was exposed to hydrogen gas generated from the nickel plate 8. At this time, in the same manner as above, the gas buret 5
To collect hydrogen gas which is not absorbed by the electrode A of the present invention,
The amount of gas was measured. On the other hand, the theoretical amount of gas generation calculated from the current and the energization time (energization amount) was determined, and the amount of hydrogen gas collected was subtracted from this to determine the amount of hydrogen gas actually absorbed by the electrode A of the present invention. Instead of replacing the subject A from the electrode A of the present invention with the electrode B of the present invention and the conventional electrode C,
Each of these electrodes was also tested in the same manner as above,
Similarly, the amount of absorbed hydrogen gas was obtained.

【0011】上記の結果を図3に示す。同図は、上記の
電流及び通電時間(通電量)から計算したガス発生量
と、夫々の電極A、B,Cが実際に吸収した水素ガス量
の関係を示し、a′、b′、c′は、該本発明電極A、
該本発明電極B及び該従来電極Cの夫々の水素ガス吸収
速度特性曲線を示す。これから明らかなように、水酸化
ニッケル極は、マンガン粉末の添加により水素ガス吸収
速度が著しく増大することが判る。
The above results are shown in FIG. This figure shows the relationship between the gas generation amount calculated from the above current and the energization time (energization amount) and the hydrogen gas amount actually absorbed by each of the electrodes A, B, C, and a ', b', c. ′ Is the electrode A of the present invention,
The hydrogen gas absorption rate characteristic curves of the electrode B of the present invention and the conventional electrode C are shown. As is clear from this, the nickel hydroxide electrode has a significantly increased hydrogen gas absorption rate by the addition of manganese powder.

【0012】尚、上記の金属マンガン粉末の添加に代
え、本発明のマンガン系添加剤として、MnO、Mn
、MnO、MnO、Mn、Mn(OH)
、MnCO、KMnO、KMnOなどの酸素
を含むマンガン化合物粉末の1種又は複数種、又は金属
マンガン粉末と該マンガン化合物の少なくとも1種を夫
々水酸化ニッケル活物質に添加して、上記と同様に作製
した夫々の水酸化ニッケル極について、上記の図1の測
定装置を使用し、上記の2つの水素ガス吸収試験を行っ
た所、図2及び図3に示すと同様の傾向を示し、水素ガ
ス吸収速度の促進に著しい効果が見られた。
It should be noted that, instead of the above-mentioned addition of the metallic manganese powder, MnO, Mn 2 can be used as the manganese-based additive of the present invention.
O 3 , MnO 2 , MnO 3 , Mn 2 O 7 , Mn (OH)
2 , MnCO 3 , K 2 MnO 2 , KMnO 4, etc., one or more manganese compound powders containing oxygen, or metal manganese powder and at least one manganese compound are added to the nickel hydroxide active material. When the above-mentioned two hydrogen gas absorption tests were carried out on the nickel hydroxide electrodes manufactured in the same manner as above using the measuring device shown in FIG. 1, the same tendency as shown in FIGS. 2 and 3 was obtained. And a remarkable effect was observed in promoting the hydrogen gas absorption rate.

【0013】次に、上記のようにして作製した本発明の
マンガン系添加剤の少なくとも1種の夫々を、水酸化ニ
ッケル活物質に添加して含有する本発明の水酸化ニッケ
ル極の夫々を正極に用いて夫々のAAサイズの密閉型電
池を作製した。このように作製した密閉電池において、
例えば、ニッケル・水素電池の場合、完全充電時の電池
内圧を従来の1/2〜1/5に低下させることができ
た。又、ニッケル・カドミウム電池の場合、正極に対す
る負極の容量比を1.7〜1.4に下げても、電池内圧
は上昇しなかった。その結果、電池容量を約10%増加
させることができた。
Next, each of the nickel hydroxide electrodes of the present invention containing at least one of the manganese-based additives of the present invention produced as described above added to a nickel hydroxide active material is contained in a positive electrode. AA size sealed batteries were produced by using the above. In the sealed battery produced in this way,
For example, in the case of a nickel-hydrogen battery, the internal pressure of the battery at the time of full charge could be reduced to 1/2 to 1/5 of the conventional one. Further, in the case of the nickel-cadmium battery, the internal pressure of the battery did not rise even if the capacity ratio of the negative electrode to the positive electrode was lowered to 1.7 to 1.4. As a result, the battery capacity could be increased by about 10%.

【0014】又、本発明の上記マンガン系添加剤の少な
くとも1種を、水酸化ニッケル活物質に添加する代り
に、発泡ニッケル板、ニッケル焼結板などの電極基体に
その作製時に添加して得られた夫々の電極基体を用い
て、これに従来のニッケル、コバルトなどの導電剤と結
着剤を水酸化ニッケル活物質に添加して成る従来の活物
質合剤を一体に結着して本発明のペースト式又は焼結式
の水酸化ニッケル極とすることもでき、これを夫々正極
としたアルカリ蓄電池についても、従来の水酸化ニッケ
ル極を正極とした電池に比し、水素ガス吸収速度の向上
効果が見られ、又電池内圧の低下をもたらした。
Further, at least one of the manganese-based additives of the present invention may be added to the electrode substrate such as a foamed nickel plate or a nickel sintered plate at the time of its production, instead of being added to the nickel hydroxide active material. Each of the prepared electrode bases is used, and a conventional active material mixture obtained by adding a conventional conductive agent such as nickel or cobalt and a binder to the nickel hydroxide active material is integrally bound to the It is also possible to use a paste type or sintering type nickel hydroxide electrode of the present invention, and even for alkaline storage batteries using each of these as a positive electrode, compared with a battery using a conventional nickel hydroxide electrode as a positive electrode, The improvement effect was seen and the internal pressure of the battery was lowered.

【0015】上記から明らかなように、本発明の上記添
加剤は、水酸化ニッケル極を構成する活物質側又は電極
基体側のいずれか一方に含有せしめる他、その両方に含
有せしめることができ、これにより、水素ガス吸収特性
の向上を計ることができる。
As is clear from the above, the above-mentioned additive of the present invention can be contained not only in either the active material side or the electrode substrate side constituting the nickel hydroxide electrode, but also in both of them. This makes it possible to improve the hydrogen gas absorption characteristics.

【0016】[0016]

【発明の効果】このように本発明によるときは、マンガ
ン系添加剤の少なくとも1種を含有した水酸化ニッケル
極を構成したので、これをアルカリ蓄電池の正極として
使用することにより、水素ガスの吸収速度を向上せしめ
ることができ、従って、完全充電時の水素ガスの発生を
減少せしめて、密閉電池の内圧の低下をもたらし、従っ
て又、正極に対する負極の過剰容量を小さくでき、電池
容量の増加を可能にする等の効果を奏する。
As described above, according to the present invention, since the nickel hydroxide electrode containing at least one manganese-based additive is constituted, it can be used as a positive electrode of an alkaline storage battery to absorb hydrogen gas. Therefore, it is possible to improve the speed, and thus to reduce the generation of hydrogen gas at the time of full charge, resulting in a decrease in the internal pressure of the sealed battery, and also to reduce the excess capacity of the negative electrode with respect to the positive electrode, which increases the battery capacity. It has the effect of enabling it.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス量測定装置の概略図である。FIG. 1 is a schematic view of a gas amount measuring device.

【図2】通電時の完全充電された被検体電極の水素ガス
吸収量と通電量から計算したガス発生の理論量との関係
を示す各被検体電極の水素ガス吸収速度特性曲線の比較
グラフである。
FIG. 2 is a comparative graph of the hydrogen gas absorption rate characteristic curves of the respective test electrodes, showing the relationship between the hydrogen gas absorption amount of the fully charged test electrode during energization and the theoretical amount of gas generation calculated from the current flow amount. is there.

【図3】非通電時の完全充電された被検体電極の水素ガ
ス吸収量と通電量から計算したガス発生の理論量との関
係を示す各被検体電極の水素ガス吸収速度特性曲線の比
較グラフである。
FIG. 3 is a comparative graph of hydrogen gas absorption rate characteristic curves of respective test electrodes showing a relationship between a hydrogen gas absorption amount of a fully charged test electrode when not energized and a theoretical amount of gas generation calculated from an energization amount. Is.

【符号の説明】[Explanation of symbols]

a,a′ 本発明電極Aの水素ガス吸収速度特性曲線 b,b′ 本発明電極Bの水素ガス吸収速度特性曲線 a, a ′ Hydrogen gas absorption rate characteristic curve of electrode A of the present invention b, b ′ Hydrogen gas absorption rate characteristic curve of electrode B of the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属マンガン、MnO、Mn、M
nO、MnO、Mn、Mn(OH)、Mn
CO、KMnO、KMnOなどのマンガン系添
加剤の少なくとも1種を含有して成るアルカリ二次電池
用水酸化ニッケル極。
1. Metallic manganese, MnO, Mn 2 O 3 , M
nO 2 , MnO 3 , Mn 2 O 7 , Mn (OH) 2 , Mn
A nickel hydroxide electrode for an alkaline secondary battery, which contains at least one manganese-based additive such as CO 3 , K 2 MnO 2 , and KMnO 4 .
JP3291026A 1991-08-19 1991-08-19 Nickel hydroxide electrode for alkaline secondary battery Pending JPH0547380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3291026A JPH0547380A (en) 1991-08-19 1991-08-19 Nickel hydroxide electrode for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3291026A JPH0547380A (en) 1991-08-19 1991-08-19 Nickel hydroxide electrode for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH0547380A true JPH0547380A (en) 1993-02-26

Family

ID=17763493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3291026A Pending JPH0547380A (en) 1991-08-19 1991-08-19 Nickel hydroxide electrode for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH0547380A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633223A1 (en) * 1993-07-09 1995-01-11 H.C. Starck GmbH & Co. KG Manganese(III) containing nickel(II) hydroxide for the preparation of secondary batteries
US5599436A (en) * 1994-11-09 1997-02-04 H. C. Starck Gmbh & Co. Kg Process for the preparation of manganese(III)-containing nickel hydroxide
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
WO2001075993A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
US6904810B2 (en) 2001-11-07 2005-06-14 Oval Corporation Purge type vortex flowmeter
WO2011019711A1 (en) * 2009-08-14 2011-02-17 The Gillette Company Alkaline primary cells with cathodes comprising manganese
CN102543458A (en) * 2012-02-29 2012-07-04 中国科学院长春应用化学研究所 Alkali pseudo-capacitor alloplastic electrode and matching method therefor
CN102881922A (en) * 2012-10-10 2013-01-16 张红兵 Positive electrode foam-type lithium-manganese battery and manufacturing method thereof
JPWO2017099137A1 (en) * 2015-12-07 2018-09-27 国立研究開発法人産業技術総合研究所 Positive electrode active material for potassium ion secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569562A (en) * 1993-07-09 1996-10-29 H.C. Starck, Gmbh & Co. Kg Manganese (III)-containing nickel (II) hydroxide for the production of secondary batteries
EP0633223A1 (en) * 1993-07-09 1995-01-11 H.C. Starck GmbH & Co. KG Manganese(III) containing nickel(II) hydroxide for the preparation of secondary batteries
US5599436A (en) * 1994-11-09 1997-02-04 H. C. Starck Gmbh & Co. Kg Process for the preparation of manganese(III)-containing nickel hydroxide
US6472101B1 (en) 1997-09-30 2002-10-29 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
WO1999017388A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Nickel-hydrogen storage battery
US6803148B2 (en) 2000-04-04 2004-10-12 Matsushita Electric Industrial, Co., Ltd. Nickel positive electrode plate and akaline storage battery
WO2001075993A1 (en) * 2000-04-04 2001-10-11 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
US7364818B2 (en) 2000-04-04 2008-04-29 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode plate and alkaline storage battery
US6904810B2 (en) 2001-11-07 2005-06-14 Oval Corporation Purge type vortex flowmeter
WO2011019711A1 (en) * 2009-08-14 2011-02-17 The Gillette Company Alkaline primary cells with cathodes comprising manganese
CN102543458A (en) * 2012-02-29 2012-07-04 中国科学院长春应用化学研究所 Alkali pseudo-capacitor alloplastic electrode and matching method therefor
CN102881922A (en) * 2012-10-10 2013-01-16 张红兵 Positive electrode foam-type lithium-manganese battery and manufacturing method thereof
JPWO2017099137A1 (en) * 2015-12-07 2018-09-27 国立研究開発法人産業技術総合研究所 Positive electrode active material for potassium ion secondary battery

Similar Documents

Publication Publication Date Title
US5571636A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
US5508121A (en) Nickel hydroxide electrode for use in an alkaline secondary battery
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JPH0528992A (en) Nickel positive pole for alkali storage battery and nickel-hydrogen storage battery using nickel positive pole
US5744259A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-metal hydride storage battery
JP2001338645A (en) Paste type positive electrode for alkaline battery and nickel hydrogen battery
JPH0547380A (en) Nickel hydroxide electrode for alkaline secondary battery
US5131920A (en) Method of manufacturing sealed rechargeable batteries
EP1624508B1 (en) Nickel-hydrogen storage battery
JPH04212269A (en) Alkaline storage battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JPH0547379A (en) Nickel hydroxide electrode for alkaline secondary battery
JPH0745281A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using this nickel electrode
JP2989877B2 (en) Nickel hydride rechargeable battery
US6924062B2 (en) Nickel-metal hydride storage battery
JPH10199520A (en) Unsintered nickel electrode for alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3162595B2 (en) Method of manufacturing alkaline storage battery, nickel positive electrode for alkaline storage battery, and alkaline storage battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JPH03145058A (en) Paste type nickel positive electrode
JP2792913B2 (en) Non-sintered cadmium negative electrode plate for alkaline storage batteries
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2001006679A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH0963580A (en) Nickel positive electrode for alkaline storage battery
JPH0517659B2 (en)