JPH0547259B2 - - Google Patents

Info

Publication number
JPH0547259B2
JPH0547259B2 JP59125351A JP12535184A JPH0547259B2 JP H0547259 B2 JPH0547259 B2 JP H0547259B2 JP 59125351 A JP59125351 A JP 59125351A JP 12535184 A JP12535184 A JP 12535184A JP H0547259 B2 JPH0547259 B2 JP H0547259B2
Authority
JP
Japan
Prior art keywords
parts
aqueous solution
added
viscosity
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125351A
Other languages
Japanese (ja)
Other versions
JPS614524A (en
Inventor
Kyoharu Hasegawa
Makoto Asano
Haruki Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59125351A priority Critical patent/JPS614524A/en
Publication of JPS614524A publication Critical patent/JPS614524A/en
Publication of JPH0547259B2 publication Critical patent/JPH0547259B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳现な説明】 本発明は、アニオン性高分子界面掻性剀に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to anionic polymeric surfactants.

曎に詳现には、埓来にない優れた界面掻性胜力
を有する新芏なアニオン性氎溶性共重合䜓組成物
に関する。
More specifically, the present invention relates to a novel anionic water-soluble copolymer composition having unprecedented surface active ability.

具䜓的には、(A)アクリル酞たたはメタクリル
酞、(B)アクリロニトリルたたはメタクリロニトリ
ルおよび(C)アクリルアミドアルキルスルホン酞た
たはスルホアルキルアクリレヌトの少なくずも
皮以䞊のビニル性モノマヌの倚元共重合䜓よりな
る埓来にない特殊な機胜を有するアニオン性高分
子界面掻性剀に関する。
Specifically, at least three of (A) acrylic acid or methacrylic acid, (B) acrylonitrile or methacrylonitrile, and (C) acrylamide alkyl sulfonic acid or sulfoalkyl acrylate.
The present invention relates to an anionic polymeric surfactant that is composed of a multicomponent copolymer of more than one type of vinyl monomer and has a special function that has never been seen before.

界面掻性剀は乳化、分散、溶解、消泡などの各
皮の甚途に、倚皮倚様に応甚され、産業䞊、非垞
に有甚な手段ずしお甚いられおいる。
Surfactants are used in a wide variety of applications such as emulsification, dispersion, dissolution, and antifoaming, and are used as extremely useful means in industry.

このような界面掻性剀ずしおは倚くの成曞に蚘
茉されおいるように、アニオン系、カチオン系、
ノニオン系に倧別され、埓来、数倚くの化合物た
たは組成物が提案されおおり、単独たたは混合し
お甚いられおいる。
As described in many books, such surfactants include anionic, cationic,
It is broadly classified into nonionic compounds, and a large number of compounds or compositions have been proposed in the past, and they are used alone or in mixtures.

これらのなかで、近幎、高分子界面掻性剀ず称
せられる各皮のオリゎマヌないしはポリマヌ系の
界面掻性剀がその特城ある性胜のために泚目さ
れ、埓来の界面掻性剀では困難ずされおいた分
散、導電性付䞎などの目的に甚いられるようにな
぀た。
Among these, in recent years, various oligomer or polymer surfactants called polymeric surfactants have attracted attention due to their unique performance, and they have improved dispersion and conductivity, which were difficult to achieve with conventional surfactants. It came to be used for purposes such as imparting sex.

このような高分子界面掻性剀は、近幎たすたす
高床化する特殊甚途ぞの応甚が怜蚎されるように
な぀た。
In recent years, the application of such polymeric surfactants to increasingly sophisticated special uses has come to be considered.

このような特殊な高分子界面掻性剀の具䜓的甚
途ずしおは、In−Situ重合法によるアミノアルデ
ヒド暹脂膜によるマむクロカプセル圢成甚の系倉
性剀ずしおの甚途があげられる。
A specific application of such a special polymeric surfactant is as a system modifier for forming microcapsules using an aminoaldehyde resin film by in-situ polymerization.

マむクロカプセル化技術の工業的な応甚は感圧
耇写玙分野にあり、近幎マむクロカプセルがこの
分野で倧量に䜿甚されおいる。
The industrial application of microencapsulation technology is in the field of pressure-sensitive copying paper, and in recent years microcapsules have been used in large quantities in this field.

感圧耇写玙甚のマむクロカプセルの補造方法は
叀くから、れラチンずアラビアゎムたたはカルボ
キシメチルセルロヌスCMCずを甚いお、色
玠前駆䜓を溶解した高沞点溶剀のミクロン単䜍の
埮小油滎を物理化孊的に被芆する、いわゆるコン
プレツクスコアセルベヌシペン法が甚いられおい
る。しかしながら、この方法によれば、(1)20を
越える濃床を有するマむクロカプセルスラリヌを
埗るこずができず、感圧耇写玙に塗工する堎合に
倚量の氎分を蒞発させなければならないため、䜜
業速床および、゚ネルギヌコスト面で改善の芁求
が非垞に倧きいこず、(1)マむクロカプセル補造時
の容積効率が小さく、たた茞送コストが嵩むこ
ず、(3)カプセル膜材が倩然物であるため、品質面
および䟡栌面での倉動が倧きいこず、(4)腐敗、凝
集の傟向を有するため、長期保存に耐えられない
こずなどの基本的な問題点を有する。
The manufacturing method of microcapsules for pressure-sensitive copying paper has been around for a long time, using gelatin and gum arabic or carboxymethylcellulose (CMC) to physicochemically generate micron-sized oil droplets in a high-boiling solvent in which a dye precursor is dissolved. The so-called complex coacervation method is used. However, according to this method, (1) it is not possible to obtain a microcapsule slurry with a concentration exceeding 20%, and a large amount of water must be evaporated when coating pressure-sensitive copying paper; There is a great need for improvements in terms of speed and energy costs; (1) the volumetric efficiency during microcapsule production is low and transportation costs are high; and (3) quality is poor because the capsule membrane material is a natural product. It has basic problems such as large fluctuations in surface and price, and (4) it cannot withstand long-term storage because it has a tendency to rot and agglomerate.

そのため、近幎、In−Situ重合法によるアミノ
プラスト重瞮合物膜を甚いお疎氎性材料を被芆す
るマむクロカプセル化法が甚いられはじめた。こ
れらは、特開昭51−9079号公報、同じく、53−
84881号公報などで知られるようにアニオン性の
高分子界面掻性剀の存圚䞋に、疎氎性高沞点溶剀
を埮小油滎にたで乳化し、その堎で尿玠ホルムア
ルデヒド暹脂たたはメラミンアルデヒド暹脂の重
瞮合を行なわせおアミノアルデヒド暹脂の被膜
で、疎氎性物質を被芆する方法である。
Therefore, in recent years, a microencapsulation method has begun to be used in which a hydrophobic material is coated with an aminoplast polycondensate film produced by an in-situ polymerization method. These are published in Japanese Unexamined Patent Application Publication No. 51-9079 and 53-9079.
As known from Publication No. 84881, a hydrophobic high-boiling solvent is emulsified into minute oil droplets in the presence of an anionic polymeric surfactant, and polycondensation of urea formaldehyde resin or melamine aldehyde resin is carried out on the spot. In this method, a hydrophobic substance is coated with a film of aminoaldehyde resin.

この方法によれば、コンプレツクスコアセルベ
ヌシペン法に比范しお高固型分のマむクロカプセ
ルスラリヌが埗られ、か぀膜のち密生にすぐれ、
か぀腐敗する傟向がないなど、埓来にないすぐれ
た特城を有する。
According to this method, compared to the complex coacervation method, a microcapsule slurry with a high solid content can be obtained, and the membrane has excellent density.
It also has excellent features that have never existed before, such as not having a tendency to rot.

このようなIn−Situ重合法マむクロカプセルの
補造に甚いられる。
This in-situ polymerization method is used to produce microcapsules.

アニオン性高分子界面掻性剀以䞋、系倉性剀
ず称するは次の様な性胜が芁求される。すなわ
ち、 (1) 疎氎性液䜓をで乳化する胜力、安定し
た乳化系を圢成でき、か぀この乳化系が䜎粘床
であるこず、 (2) 酞性条件䞋で、圢成されるアミノアルデヒド
暹脂を遞択的に疎氎性物質の囲りにのみか぀ち
密に掚積させる胜力を有するこず、 (3) アミノアルデヒド暹脂で被芆された疎氎性物
質を氎䞭で高濃床か぀䜎粘床に分散しうるこ
ず、等である。
Anionic polymer surfactants (hereinafter referred to as system modifiers) are required to have the following performance. That is, (1) the ability to emulsify a hydrophobic liquid O/W, to form a stable emulsion system, and this emulsion system has a low viscosity; (2) the aminoaldehyde resin formed under acidic conditions; (3) The hydrophobic substance coated with aminoaldehyde resin can be dispersed in water at high concentration and low viscosity. etc.

しかしながら、実際に䞊蚘のような性胜を完党
に満足するものは知られおいない。
However, nothing is known that actually fully satisfies the above performance.

䟋えば、このようなIn−Situ重合法マむクロカ
プセルの補造における系倉性剀ずしお提案されお
いるアニオン性高分子ずしおは、䟋えば、ポリア
クリル酞、゚チレン無氎マレむン酞共重合䜓、酢
ビ無氎マレむン酞共重合䜓、スチレン無氎マレむ
ン酞共重合䜓、ポリスチレンスルホン酞、カルボ
キシ倉性ポリビニルアルコヌル、スルホン酞倉性
ポリビニルアルコヌルなどの各皮の氎溶性ア
ニオン性高分子たたはそれらの塩などが知られお
おり、䞀郚が実際に䜿甚されおいるが、これらを
甚いお、50wt以䞊の固型分を有するIn−Situ
重合法マむクロカプセルは未だ工業的に補造され
おいない。
For example, anionic polymers that have been proposed as system modifiers in the production of such in-situ polymerized microcapsules include polyacrylic acid, ethylene maleic anhydride copolymer, and vinyl acetate maleic anhydride copolymer. Various (water-soluble) anionic polymers such as polymer, styrene maleic anhydride copolymer, polystyrene sulfonic acid, carboxy-modified polyvinyl alcohol, and sulfonic acid-modified polyvinyl alcohol, or their salts are known, and some are actually used, but these can be used to produce in-situ products with a solid content of 50wt% or more.
Polymerized microcapsules have not yet been produced industrially.

本発明者らは、䞊蚘のような問題点をふたえ、
アニオン性高分子界面掻性剀に぀いお各皮怜蚎し
た結果、䞋蚘の新芏な倚元共重合䜓該共重合䜓
が、特殊な機胜をあわせそなえ、In−Situ重合法
による、アミノ−アルデヒド暹脂壁膜による疎氎
性物質のマむクロカプセル化甚に著しくすぐれた
䜜甚を有するこずを芋出し、本発明に到達した。
In view of the above problems, the inventors of the present invention
As a result of various studies on anionic polymeric surfactants, we found that the following new multi-component copolymer has special functions, and has a hydrophobic property due to the amino-aldehyde resin wall formed by in-situ polymerization. It has been discovered that the present invention has an extremely excellent effect on microencapsulation of substances, and the present invention has been achieved.

すなわち、本発明の新芏アニオン性高分子界面
掻性剀剀は(A)アクリル酞およびたたはメタクリ
ル酞、(B)アクリロニトリルおよびたたはメタク
リロニトリル、(C)アクリルアミドアルキルスルホ
ン酞およびたたはスルホアルキルアクリレヌト
の少なくずも(A)、(B)、(C)から皮以䞊で合蚈皮
以䞊のビニル性モノマヌの倚元共重合䜓たたはそ
の塩よりなるアニオン性高分子界面掻性剀であ
る。
That is, the novel anionic polymer surfactant of the present invention is (A) acrylic acid and/or methacrylic acid, (B) acrylonitrile and/or methacrylonitrile, (C) acrylamide alkyl sulfonic acid and/or sulfoalkyl acrylate. This is an anionic polymeric surfactant made of a multi-component copolymer of at least one vinyl monomer or a salt thereof consisting of at least one vinyl monomer selected from (A), (B), and (C).

本発明の新芏な倚元共重合䜓およびその塩は、
前蚘の䞉皮の成分から遞ばれる成分以䞊のビニ
ル性モノマヌを共重合させるこずにより補造され
る。
The novel multicomponent copolymer and its salt of the present invention are
It is produced by copolymerizing three or more vinyl monomers selected from the above three components.

すなわち、(a)アクリル酞およびたたはメタク
リル酞、(b)アクリロニトリルおよびたたはメタ
クリロニトリルならびに(c)アクリルアミドアルキ
ルスルホン酞およびたたはスルホアルキルアク
リレヌトの皮の成分からそれぞれ遞ばれた成分
からなる倚元性共重合䜓である。
That is, it consists of components each selected from three components: (a) acrylic acid and/or methacrylic acid, (b) acrylonitrile and/or methacrylonitrile, and (c) acrylamide alkyl sulfonic acid and/or sulfoalkyl acrylate. It is a multidimensional copolymer.

原料の入手の容易性、共重合性、特殊界面掻性
剀ずしおの効果などから、奜たしくは(A)アクリル
酞、(B)アクリロニトリル、(C)アクリルアミドアル
キルスルホン酞の䞉成分を必須モノマヌ成分ずす
る倚元共重合䜓である。
From the viewpoint of easy availability of raw materials, copolymerizability, effect as a special surfactant, etc., the three components (A) acrylic acid, (B) acrylonitrile, and (C) acrylamide alkyl sulfonic acid are preferably used as essential monomer components. It is a multicomponent copolymer.

䞊蚘のアクリルアミドアルキルスルホン酞は䞀
般匏 は䜎玚アルキレン基で瀺すで衚わされる
化合物であ぀お、具䜓的には、アクリルアミドメ
タンスルホン酞、アクリルアミド゚タンスルホン
酞、アクリルアミドプロパンスルホン酞、−ア
クリルアミド−−メチルプロパンスルホン酞、
−アクリルアミド−−ブタンスルホン酞など
があげられる。
The above acrylamide alkyl sulfonic acid has the general formula () (R is a lower alkylene group), specifically, acrylamide methanesulfonic acid, acrylamide ethanesulfonic acid, acrylamide propanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid,
Examples include 2-acrylamido-n-butanesulfonic acid.

たたスルホアルキルアクリレヌトは䞀般匏
 R′は䜎玚アルキレン基を瀺すで衚わされ
る化合物であ぀お具䜓的にはスルホメチルアクリ
レヌト、スルポチルアクリレヌト、スルホプロ
ピルアクリレヌト、スルホブチルアクリレヌトな
どがあげられる。
In addition, sulfoalkyl acrylate has the general formula () (R' represents a lower alkylene group), and specific examples include sulfomethyl acrylate, sulfoethyl acrylate, sulfopropyl acrylate, and sulfobutyl acrylate.

たた、必芁に応じお、前蚘皮の成分の倖にア
クリル酞、たたはメタアクリル酞のヒドロキシ゚
チル゚ステル、ヒドロキシプロピル゚ステル、䜎
玚アルキル゚ステル、アクリルアミド、メタアク
リルアミド、メチロヌルアクリルアミド、−ア
ルキル眮換アクリルアミドなどを加えおもよい。
If necessary, in addition to the above three components, hydroxyethyl ester, hydroxypropyl ester, lower alkyl ester, acrylamide, methacrylamide, methylolacrylamide, N-alkyl-substituted acrylamide, etc. of acrylic acid or methacrylic acid may be added. May be added.

前蚘皮の成分の組成は(A)成分20〜70モル、
(B)成分〜60モル、(C)成分〜30モルが奜た
しい。
The composition of the above three components is (A) component 20 to 70 mol%;
Component (B) is preferably 5 to 60 mol%, and component (C) is preferably 1 to 30 mol%.

重合方法ずしおは、むオン重合、ラゞカル重
合、熱重合、攟射線重合などが挙げられるが、奜
たしくはラゞカル共重合であり、䞀般的には前述
の䞉皮以䞊のビニル性モノマヌを氎䞭に均䞀溶解
させた系でのラゞカル重合法が倚甚される。
Polymerization methods include ionic polymerization, radical polymerization, thermal polymerization, radiation polymerization, etc., but radical copolymerization is preferred, and generally a system in which three or more of the above-mentioned vinyl monomers are uniformly dissolved in water is used. Radical polymerization methods are often used.

重合甚觊媒ずしおは、各皮の有機過酞化物䟋
えば過酞化ベンゟむル、有機ハむドロ過酞化物、
脂肪族アゟビスニトリル類䟋えばアゟビスむ゜
ブチロニトリル、氎溶性過酞塩䟋えば過硫酞
塩などのラゞカル重合開始剀が挙げられるが、
本発明の高分子界面掻性剀は比范的䜎分子量氎
溶液粘床の䜎いものが奜たしいため、最も奜た
しく甚いられる觊媒は氎溶性過酞類過硫酞アン
モニりム、過硫酞カリりムず氎溶性還元剀䟋
えば、亜硫酞塩ずの組合せ䜿甚による酞化還元
ラゞカル圢成觊媒である。これらの酞化還元ラゞ
カル圢成觊媒は䞀般的には氎溶液ずしお反応系に
添加される。觊媒の添加量は氎溶性過酞類、氎溶
性還元剀ずもに、モノマヌ成分100重量郚あたり
0.01〜10郚添加される。
Examples of polymerization catalysts include various organic peroxides (e.g. benzoyl peroxide), organic hydroperoxides,
Examples include radical polymerization initiators such as aliphatic azobisnitriles (e.g. azobisisobutyronitrile), water-soluble persalts (e.g. persulfates), etc.
Since the polymeric surfactant of the present invention preferably has a relatively low molecular weight (low viscosity of aqueous solution), the most preferably used catalysts are water-soluble peracids (ammonium persulfate, potassium persulfate) and water-soluble reducing agents (e.g., It is a redox radical-forming catalyst for use in combination with sulfites). These redox radical-forming catalysts are generally added to the reaction system as an aqueous solution. The amount of catalyst added is per 100 parts by weight of monomer components for both water-soluble peracids and water-soluble reducing agent.
Added from 0.01 to 10 parts.

埗られる重合䜓の分子量制埡のために、連鎖移
動剀ずしお公知の各皮化合物、䟋えばアルキルメ
ルカプタン類などを少量反応系に加えお反応させ
おもよい。
In order to control the molecular weight of the resulting polymer, a small amount of various compounds known as chain transfer agents, such as alkyl mercaptans, may be added to the reaction system for reaction.

氎溶液䞭に斌けるビニル性モノマヌの重合に際
しおは、酞性基を有するモノマヌ類はフリヌの酞
型でもよく、䞀郚たたは党郚が塩の圢で重合に䟛
せられおもよい。塩型で䜿甚する堎合には、アル
カリ金属塩、アルカリ土類金属塩、アンモニりム
塩、䜎玚アミン塩、ヒドロキアルキシルアミン塩
などの圢で甚いられる。
When polymerizing a vinyl monomer in an aqueous solution, the monomers having an acidic group may be in the free acid form, or part or all may be subjected to the polymerization in the form of a salt. When used in the form of a salt, it is used in the form of an alkali metal salt, an alkaline earth metal salt, an ammonium salt, a lower amine salt, a hydroxyalkylamine salt, or the like.

本発明の高分子界面掻性剀を氎系ラゞカル重合
法により補造するに際しおは、觊媒類の添加埌、
急激な重合熱発生による系の断熱的枩床䞊昇が生
起し、比范的短い時間で重合反応は終了する。䞀
般的には系の沞ずうを避けるため各々のモノマヌ
の重合熱を考慮しお〜30wt氎溶液ずしお重
合反応が行なわれる。
When producing the polymer surfactant of the present invention by an aqueous radical polymerization method, after adding catalysts,
The rapid generation of polymerization heat causes an adiabatic temperature rise in the system, and the polymerization reaction is completed in a relatively short time. Generally, in order to avoid boiling of the system, the polymerization reaction is carried out as a 5 to 30 wt % aqueous solution, taking into consideration the polymerization heat of each monomer.

本発明の高分子界面掻性剀は皮の原料成分の
䜿甚比率を䞊蚘範囲内に遞定するこずにより広い
PH範囲にわたり氎溶性であるが、20wtの䞍揮
発分を有する氎溶液の粘床〜100000cps25℃、
PH4.0の条件䞋、型粘床蚈を甚いお枬定のも
のが䞀般的であり、奜たしい高分子界面掻性剀ず
しお10〜10000cpsのものが䜿甚される。
The polymer surfactant of the present invention can be used in a wide variety of ways by selecting the ratio of the three raw materials within the above range.
The viscosity of an aqueous solution with 20 wt% non-volatile content, which is soluble over the PH range, is 5-100000 cps (at 25°C,
(measured using a B-type viscometer under the condition of PH4.0) is common, and a polymer surfactant with a yield of 10 to 10,000 cps is used as a preferred polymeric surfactant.

前述のように本発明の高分子界面掻性剀は䞀般
的に、モノマヌ類の重合の段階から氎溶液ずしお
取扱われるため、高分子界面掻性剀ずしお甚いら
れる堎合に、あらためお氎ぞの溶解操䜜が䞍芁で
あるため非垞に取扱いやすい。必芁に応じお、也
燥粉䜓ずしお取扱うこずももちろん可胜である。
As mentioned above, the polymeric surfactant of the present invention is generally handled as an aqueous solution from the stage of polymerization of monomers, so when used as a polymeric surfactant, no additional dissolution operation in water is required. Therefore, it is very easy to handle. Of course, it is also possible to handle it as a dry powder if necessary.

本発明の高分子界面掻性剀は、前述のIn−Situ
重合法アミノアルデヒド暹脂膜尿玠ホルムアル
デヒド暹脂膜、メラミンホルムアルデヒド暹脂
膜マむクロカプセル補造甚の系倉性剀ずしお、
公知の各皮の氎溶性アニオン性高分子に比范し
お、極めおすぐれた機胜を瀺す。具䜓的には、 (1) 疎氎性液䜓を高濃床か぀、䜎粘床で、
型゚マルゞペンずするこずができる。盞逆転傟
向もなく、か぀、このようにしお埗た゚
マルゞペンは、乳化安定性にきわめおすぐれ、
゚マルゞペン粒子の合䞀による粒子生長傟向は
ない。
The polymer surfactant of the present invention can be used in the above-mentioned In-Situ
Polymerized aminoaldehyde resin film (urea formaldehyde resin film, melamine formaldehyde resin film) as a system modifier for microcapsule production.
It exhibits extremely superior functionality compared to various known water-soluble anionic polymers. Specifically, (1) O/W hydrophobic liquid with high concentration and low viscosity.
It can be a type emulsion. There is no tendency for phase reversal, and the O/W emulsion thus obtained has excellent emulsion stability.
There is no tendency for particle growth due to coalescence of emulsion particles.

(2) マむクロカプセルの圢成時に、疎氎性物質の
衚面に、緻密にアミノアルデヒド暹脂膜を圢成
させるこずができる。
(2) When forming microcapsules, a dense aminoaldehyde resin film can be formed on the surface of a hydrophobic substance.

(3) 圢成されたアミノアルデヒド暹脂膜で被芆さ
れた疎氎性材料のマむクロカプセルを、60wt
を越える超高床にか぀䜎粘床で安定に分散さ
せるこずができる。
(3) The formed microcapsules of hydrophobic material coated with an aminoaldehyde resin film were
It can be stably dispersed to an ultra-high degree exceeding 10% and with a low viscosity.

(4) 出来䞊぀たマむクロカプセルスラリヌの粘床
のPH䟝存性が小さくアルカリ性ぞ移行しおも増
粘傟向はない。
(4) The viscosity of the finished microcapsule slurry has a small dependence on pH, and there is no tendency to increase the viscosity even when the slurry becomes alkaline.

など、すぐれた超高濃床、䜎粘床マむクロカプセ
ルスラリヌを䞎えるこずができる。
It can provide excellent ultra-high concentration, low viscosity microcapsule slurry.

以䞋、本発明を実斜䟋および比范䟋により具䜓
的に説明する。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実斜䟋  −アクリルアミド−−メチルプロパンスル
ホン酞日本ルブリゟヌル瀟補「AMPS−」
107郚重量郚を瀺す。以䞋同じをむオン亀換
æ°Ž1413郚に溶解したのち10苛性゜ヌダ氎溶液で
PHを7.0に調節した。98アクリル酞229郚および
アクリロニトリル83郚を添加しお均䞀氎溶液を埗
た。
Example 1 2-acrylamido-2-methylpropanesulfonic acid (manufactured by Nippon Lubrizol; “AMPS-R”)
After dissolving 107 parts (parts by weight; the same applies hereinafter) in 1413 parts of ion-exchanged water, it was dissolved in a 10% caustic soda aqueous solution.
The pH was adjusted to 7.0. 229 parts of 98% acrylic acid and 83 parts of acrylonitrile were added to obtain a homogeneous aqueous solution.

原料のモル組成は、−アクリルアミド−
−メチルプロパンスルホン酞10mol、アクリル
酾60mol、アクリロニトリル30mol 系を40℃迄加枩したのち、ゆ぀くりした撹拌䞋
に過硫酞アンモニりムの10氎溶液112.5郚を加
え、぀づいお亜硫酞氎玠ナトリりムの10氎溶液
20郚を加えたずころ発熱を䌎な぀お重合がはじた
り、系は30分で85℃迄䞊昇し発熱が停止した。さ
らにこの枩床に30分保持したのち冷华し、぀づい
お、20NaOH氎溶液を加えおPHを4.0に調節し
お、反応を終えた。
(The molar composition of the raw material is 2-acrylamide-2
- Methylpropanesulfonic acid 10 mol%, acrylic acid 60 mol%, acrylonitrile 30 mol%) After warming the system to 40°C, 112.5 parts of a 10% aqueous solution of ammonium persulfate was added with gentle stirring, followed by addition of sodium bisulfite. 10% aqueous solution
When 20 parts were added, polymerization started with heat generation, the temperature of the system rose to 85°C in 30 minutes, and the heat generation stopped. After maintaining this temperature for an additional 30 minutes, it was cooled, and then a 20% NaOH aqueous solution was added to adjust the pH to 4.0 to complete the reaction.

該共重合䜓氎溶液は20wt固型分に斌いお
190cpsの粘床型粘床蚈、25℃を瀺した。
The copolymer aqueous solution has a solid content of 20wt%.
It showed a viscosity of 190 cps (B-type viscometer, 25°C).

実斜䟋  スルホプロピルアクリレヌトナトリりム塩50
氎溶液倧阪有機品64.8郚を玔粋284.7郚に溶
解させた。぀いで98アクリル酞29.15郚および
アクリロニトリル18.55郚を加え撹拌䞋に均䞀氎
溶液ずした。系を30℃にゆ぀くりした撹拌䞋に保
枩しながら、過硫酞アンモニりムの20氎溶液16
郚を加え、曎に、亜硫酞氎玠ナトリりム20氎溶
液郚を添加したずころ急激な発熱を䌎な぀お重
合がはじたり、系は15分で72℃迄昇枩し発熱が停
止した。さらにこの枩床に時間保持したのち冷
华しお淡黄色透明の共重合䜓20氎溶液を埗た。
溶液のPHは1.9であ぀た。
Example 2 Sulfopropyl acrylate sodium salt 50%
64.8 parts of an aqueous solution (Osaka Organic Products) was dissolved in 284.7 parts of pure water. Next, 29.15 parts of 98% acrylic acid and 18.55 parts of acrylonitrile were added to form a homogeneous aqueous solution with stirring. While keeping the system warm at 30°C with gentle stirring, add a 20% aqueous solution of ammonium persulfate16.
When 4 parts of a 20% aqueous solution of sodium bisulfite were added, polymerization started with rapid heat generation, and the temperature of the system rose to 72°C in 15 minutes, and the heat generation stopped. This temperature was further maintained for 1 hour and then cooled to obtain a 20% aqueous solution of a pale yellow transparent copolymer.
The pH of the solution was 1.9.

該氎溶液を20NaOHを加えおPHを4.0に調節
したものは25℃で720cps型粘床蚈䜿甚であ
぀た。
The pH of the aqueous solution adjusted to 4.0 by adding 20% NaOH was 720 cps at 25°C (using a B-type viscometer).

本䟋の共重合は、スルホプロピルアクリレヌト
15モル、アクリル酞55モル、アクリロニトリ
ル35モルのモノマヌ組成を有する。
In this example, the copolymerization is performed using sulfopropyl acrylate.
It has a monomer composition of 15 mol%, acrylic acid 55 mol%, and acrylonitrile 35 mol%.

参考䟋  実斜䟋で埗た、アクリル酞−アクリロニトリ
ル−−アクリルアミド−−メチル−プロパン
スルホン酞の共重合䜓の20氎溶液、30郚を氎で
垌釈しお92.4郚ずした氎溶液PH4.0のなかに、
芯物質ずしおクリスタルバむオレツトラクトン
2.8重量およびベンゟむルロむコメチレンブル
ヌ0.8重量を溶解したプニルキシリル゚タン
日本石油化孊「ハむゟヌルSAS−296」130郚
を加え、ホモミキサヌ特殊機化補9000rpmの
条件で分間乳化させお平均粒子埄3.8Όの
型の安定な゚マルゞペンを埗た。぀づいお撹拌䞋
に、メチル化メチロヌルメラミン暹脂
「Resimene714」モンサント補 80の䞍揮発分
を有する24.4郚が加えられ、぀づいお系が60℃
に加枩されお時間瞮合させたのち、冷华し、マ
むクロカプセル化を終えた。該マむクロカプセル
スラリヌは63wtずいう高濃床でありながら、
430cpsの䜎い粘床であ぀た。残存ホルムアルデヒ
ド陀去のために、28アンモニア氎を加えおPHを
8.0ずしたずころホルムアルデヒド臭は消倱し、
凝集のた぀たくない粘床210cpsの良質のマむクロ
カプセルスラリヌが埗られた。
Reference Example 1 An aqueous solution (PH4 .0),
Crystal violet lactone as core material
Add 130 parts of phenylxylylethane (Nippon Petrochemical "Hisol SAS-296") in which 2.8% by weight and 0.8% by weight of benzoyl leucomethylene blue are dissolved, and emulsify for 5 minutes at 9000 rpm using a homomixer (manufactured by Tokushu Kika). O/W with an average particle size of 3.8Ό
A mold-stable emulsion was obtained. Subsequently, with stirring, 24.4 parts of methylated methylolmelamine resin ("Resimene 714" manufactured by Monsanto...with 80% non-volatile content) was added, and the system was then heated to 60°C.
After condensing for 2 hours, the mixture was cooled to complete microencapsulation. Although the microcapsule slurry has a high concentration of 63wt%,
It had a low viscosity of 430 cps. To remove residual formaldehyde, add 28% ammonia water to adjust the pH.
When it was set to 8.0, the formaldehyde odor disappeared.
A high-quality microcapsule slurry with a viscosity of 210 cps without agglomeration was obtained.

該マむクロカプセルスラリヌはPH−12の広い
PH範囲にわた぀お粘床倉化がほずんどなく、皮々
の条件䞋での塗工に察しおも良奜な察応性を有す
る。本䟋のマむクロカプセルは埓来考えられなか
぀た高濃床に斌いお䜎粘床を瀺すため、高濃床コ
ヌテむングカラヌの調節が可胜ずなり、コヌテむ
ングの高速化、グラビア、フレキ゜などの印刷方
匏による塗工に容易に察応できる。
The microcapsule slurry has a pH range of 2-12.
There is almost no viscosity change over the pH range, and it has good adaptability to coating under various conditions. The microcapsules in this example exhibit low viscosity at high concentrations, which was previously unimaginable, making it possible to adjust high-concentration coating colors, speeding up coating, and facilitating coating using printing methods such as gravure and flexography. I can handle it.

参考䟋  実斜䟋で埗た、アクリル酞−アクリロニトリ
ル−スルホプロピルアクリレヌト共重合䜓の20
氎溶液25郚を氎で垌釈しお78.3PH4.0ずしたの
ち、䞍揮発分80のメチル化メチロヌルメラミン
暹脂䞉井東圧「ナヌラミン−6300」を25郚
加え、混合溶液ずした。曎に参考䟋ず同じ芯物
質100郚を加えお乳化した平均粒子埄が3.5Όずな
぀たずころで加枩し55℃の枩氎槜䞭で時間撹拌
しお瞮合を終、冷华しおマむクロカプセル化を終
えた。
Reference Example 2 20% of the acrylic acid-acrylonitrile-sulfopropyl acrylate copolymer obtained in Example 2
After diluting 25 parts of the aqueous solution with water to a pH of 78.3 (PH4.0), 25 parts of methylated methylol melamine resin (Mitsui Toatsu "Euramine p-6300") with a non-volatile content of 80% was added to form a mixed solution. Furthermore, 100 parts of the same core substance as in Reference Example 1 was added and emulsified. When the average particle size reached 3.5Ό, the mixture was heated and stirred for 3 hours in a hot water bath at 55°C to complete condensation, and then cooled to form microcapsules. finished.

本䟋のマむクロカプセルスラリヌは、60.0wt
の固型分を有し、25℃で20cpsの粘床を有しおい
た。
The microcapsule slurry in this example is 60.0wt%
It had a viscosity of 20 cps at 25°C.

比范䟋  ゚チレン無氎マレンむ酞モンサント「EMA
−31」50郚を氎450郚に加熱溶解しお10氎溶液
ずした。
Comparative example 1 Ethylene maleic anhydride (Monsanto “EMA”
-31'') was heated and dissolved in 450 parts of water to obtain a 10% aqueous solution.

該氎溶液100郚および氎200を混合し、10苛性
゜ヌダ氎溶液でPHを4.0に調節した。
100 parts of this aqueous solution and 200 parts of water were mixed, and the pH was adjusted to 4.0 with a 10% aqueous sodium hydroxide solution.

このなかに参考䟋ず同じ芯物質200郚をホモ
ミキサヌで乳化したずころ10分埌に平均粒子埄
4.2Όの安定な型゚マルゞペンが圢成され
た。぀づいお撹拌䞋にメチル化メチロヌルメラミ
ン暹脂Resimene71432.5郚が加えられ55℃に
加枩しお時間瞮合させたのち冷华しおマむクロ
カプセル化を終えた。
In this, 200 parts of the same core material as in Reference Example 1 was emulsified using a homomixer, and after 10 minutes, the average particle size was
A stable O/W emulsion of 4.2Ό was formed. Subsequently, 32.5 parts of methylated methylolmelamine resin (Resimene 714) was added while stirring, heated to 55°C, condensed for 3 hours, and then cooled to complete microencapsulation.

本䟋のマむクロカプセル液は、44.3wtの固型
分濃床を有するがメラミンホルムアルデヒド初期
瞮合物の瞮合による壁膜圢成が進行するに぀れお
系の粘床が著しく䞊昇し、膜圢成埌冷华しお埗た
マむクロカプセルスラリヌは凝集傟向はないが、
6000cps以䞊の高い粘床を瀺し、ほずんど流動性
を倱な぀た。
The microcapsule liquid of this example has a solid content concentration of 44.3 wt%, but the viscosity of the system increases significantly as the wall film formation due to condensation of the melamine formaldehyde initial condensate progresses, and the viscosity of the system increases significantly after the film formation. Although microcapsule slurry has no tendency to agglomerate,
It showed a high viscosity of over 6000 cps and almost lost its fluidity.

比范䟋  出来あがりマむクロカプセルスラリヌの固型分
を35wtになるように調節した以倖は比范䟋
ず同様にしおマむクロカプセル化を終えた。本䟋
のマむクロカプセルスラリヌは、冷华埌PH4.8で
180cpsの粘床を瀺した。残存ホルマンリを陀去す
るために28アンモニア氎を加えおPHを8.0に調
節したずころホルムアルデヒド臭は完党に消倱し
たが、カプセルスラリヌは増粘しお420cpsの粘床
ずなり、粘床PH䟝存性が倧きいこずが認めら
れ、コヌテむング䜜業時のPH管理に充分泚意が必
芁なものであ぀た。
Comparative Example 2 Comparative Example 1 except that the solid content of the finished microcapsule slurry was adjusted to 35 wt%
Microencapsulation was completed in the same manner as above. The microcapsule slurry in this example has a pH of 4.8 after cooling.
It showed a viscosity of 180 cps. When the pH was adjusted to 8.0 by adding 28% aqueous ammonia to remove residual formaldehyde, the formaldehyde odor completely disappeared, but the capsule slurry thickened to a viscosity of 420 cps, indicating a large viscosity/PH dependence. was observed, and it was necessary to pay sufficient attention to pH control during coating work.

比范䟋  スチレンスルホン酞ナトリりム東掋曹達「ス
ピノマヌSS」8.4郚を氎161.3郚に溶解したのち98
アクリル酞29.9郚およびヒドロキシ゚チルメタ
アクリレヌトHEMA6.5郚を加え撹拌しお均
䞀氎溶液ずしお40℃に保枩した。過硫酞アンモニ
りムの10氎溶液12.9郚および亜硫酞氎玠ナトリ
りム塩10氎溶液4.0郚を加えお、ラゞカル重合
を開始したずころ30分で内枩が65℃迄昇枩した。
Comparative Example 3 Sodium styrene sulfonate (Toyo Soda "Spinomer SS" 8.4 parts dissolved in 161.3 parts of water, then 98%
% acrylic acid and 6.5 parts of hydroxyethyl methacrylate (HEMA) were added and stirred to form a homogeneous aqueous solution and kept at 40°C. When 12.9 parts of a 10% aqueous solution of ammonium persulfate and 4.0 parts of a 10% aqueous solution of sodium bisulfite salt were added to start radical polymerization, the internal temperature rose to 65°C in 30 minutes.

曎に70℃に30分保枩しお重合を終え、固型分20
のアニオン性氎溶性高分子氎溶液を埗た。この
もの粘床は25℃、PH4.0で4800cpsであ぀た。
The polymerization was further kept at 70℃ for 30 minutes, and the solid content was 20
% anionic water-soluble polymer aqueous solution was obtained. The viscosity of this product was 4800 cps at 25°C and pH 4.0.

このアニオン性氎溶性高分子をアクリル酞−ア
クリロニトリル−−アクリルアミド−−メチ
ルプロパンスルホン酞共重合䜓にかえお甚いた以
倖は参考䟋ず同様にしおマむクロカプセル化を
行な぀た。
Microencapsulation was carried out in the same manner as in Reference Example 1 except that this anionic water-soluble polymer was used instead of acrylic acid-acrylonitrile-2-acrylamido-2-methylpropanesulfonic acid copolymer.

ホモミキサヌで20分間撹拌乳化しお、型
の゚マルゞペンを埗た。乳化安定性はやや䞍足
で、そのたた攟眮するず油滎の合䞀化により油滎
サむズが倧きくなる傟向を有しおいたので匷いせ
ん断力を継続しお䞎える必芁があ぀た。メラミン
ホルムアルデヒド初期瞮合物Resimene714を
添加し膜圢成を開始したずころ、10分埌に党䜓が
著しく増粘しおゲル化しおした぀た。
The mixture was stirred and emulsified using a homomixer for 20 minutes to obtain an O/W type emulsion. The emulsion stability was somewhat insufficient, and if left as is, the oil droplets tended to coalesce and the size of the oil droplets increased, so it was necessary to continuously apply strong shearing force. When melamine-formaldehyde initial condensate (Resimene 714) was added to start film formation, the viscosity of the entire product increased significantly and gelled after 10 minutes.

比范䟋  −アクリルアミド−−メチル−プロパンス
ルホン酞40郚を氎160郚に撹拌溶解したのち20
苛性゜ヌダ氎溶液でPHを5.0に調補し、過硫酞カ
リりムの10氎溶液3.7郚および10亜硫酞氎玠
ナトリりム氎溶液0.8郚を加えお断熱条件䞋で重
合させお25℃に斌ける粘床430cpsのポリ−−
アクリルアミド−−メチルプロパンスルホン
酞のナトリりム塩の20wt氎溶液(D)を埗た。
Comparative Example 4 40 parts of 2-acrylamido-2-methyl-propanesulfonic acid was stirred and dissolved in 160 parts of water, and then 20%
The pH was adjusted to 5.0 with an aqueous solution of caustic soda, 3.7 parts of a 10% aqueous solution of potassium persulfate and 0.8 parts of a 10% aqueous solution of sodium hydrogen sulfite were added, and the mixture was polymerized under adiabatic conditions to form a poly(2. −
A 20 wt % aqueous solution (D) of the sodium salt of acrylamide-2-methylpropanesulfonic acid (acrylamido-2-methylpropanesulfonic acid) was obtained.

(4‐1) この氎溶液(D)を甚いおマむクロカプセル
化を60℃の恒枩氎槜䞭で実斜した。氎溶液(D)25
郚、氎85郚を撹拌混合し、酢酞におPHを4.0に
調敎した。該系に、参考䟋ず同じ芯物質100
郚を加えホモミキサヌで20分間乳化分散させ
た。本䟋の型゚マルゞペンは乳化安定性
が悪く、匷いせん断力を有する撹拌を停止する
ずただちに油滎の合䞀化がおきるためたえず匷
いせん断力を䞎えおおく必芁があり、か぀乳化
液滎のサむズコントロヌルは非垞に難しか぀
た。
(4-1) Using this aqueous solution (D), microencapsulation was carried out in a constant temperature water bath at 60°C. Aqueous solution (D)25
1 part and 85 parts of water were stirred and mixed, and the pH was adjusted to 4.0 with acetic acid. In this system, 100% of the same core material as in Reference Example 1 was added.
of the mixture was added and emulsified and dispersed for 20 minutes using a homomixer. The O/W type emulsion of this example has poor emulsification stability, and as soon as stirring, which has a strong shear force, is stopped, the oil droplets coalesce, so it is necessary to constantly apply a strong shear force, and the emulsified droplets control of the size was very difficult.

匷撹拌䞋に、メチル化メチロヌルメラミン
Resimene71425郚を加えたずころ系が急激
に増粘し分埌に党䜓が凝集ゲル化しおした぀
た。
When 25 parts of methylated methylol melamine (Resimene 714) was added to the mixture under strong stirring, the system rapidly thickened and the entire system coagulated into a gel after 5 minutes.

(4‐2) 䞀方、䞊蚘ず同䞀組成であるが匷撹拌䞋
にメチル化メチロヌルメラミン
Resimene714を系のゲル化がおきないよう
に時間を芁しお慎重に滎䞋したのち、曎に
時間55℃で反応を行ない、マむクロカプセル化
を終えた。オむルに察する乳化安定性が悪いた
め出来あが぀たマむクロカプセルには粗倧粒子
および凝集粒子が倚数認められふるいを通しお
過しなければ感圧耇写玙甚には䞍郜合であ぀
た。なお平均粒子系は7.4Όであり、50wt固
型分濃床を有し420cpsの粘床を瀺した。
(4-2) On the other hand, methylated methylolmelamine (Resimene714), which has the same composition as above, was carefully added dropwise under strong stirring over a period of 2 hours to prevent gelation of the system.
The reaction was carried out at 55°C for an hour to complete the microencapsulation. Due to the poor emulsion stability against oil, the resulting microcapsules contained many coarse particles and aggregated particles, and were inconvenient for use in pressure-sensitive copying paper unless they were passed through a sieve. The average particle size was 7.4Ό, the solid content was 50wt%, and the viscosity was 420cps.

実斜䟋  アクリルアミド−−メチルプロパンスルホ
ン酞43.2郚を氎564郚に溶解したのち、10
NaOHで、PHを7.5ずした。該氎溶液䞭に98ア
クリル酞76郚およびアクリルロニトリル44郚を加
え、撹拌するず均䞀な氎溶液ずな぀た。該氎溶液
を45℃に保枩したのち10過硫酞アンモニりム、
46.8郚および10亜硫酞氎玠ナトリりム10.4郚を
添加したずころ発熱を䌎な぀お重合反応が生起
し、30分で内枩が90℃迄䞊昇した。曎に10亜硫
酞氎玠ナトリりム氎溶液4.0郚を添加しお、時
間反応させたのち冷华しお、重合䜓氎溶液を埗
た。本䟋の共重合䜓は20wt、PH4.0に斌いお
240cpsの粘床を有しおいた。
Example 3 After dissolving 43.2 parts of 2-acrylamido-2-methylpropanesulfonic acid in 564 parts of water, 10%
The pH was adjusted to 7.5 with NaOH. 76 parts of 98% acrylic acid and 44 parts of acrylonitrile were added to the aqueous solution and stirred to become a homogeneous aqueous solution. After keeping the aqueous solution at 45℃, 10% ammonium persulfate,
When 46.8 parts and 10.4 parts of 10% sodium bisulfite were added, a polymerization reaction occurred with exothermic heat, and the internal temperature rose to 90°C in 30 minutes. Furthermore, 4.0 parts of a 10% sodium bisulfite aqueous solution was added, and the mixture was reacted for 1 hour and then cooled to obtain a polymer aqueous solution. The copolymer in this example was 20wt% at PH4.0.
It had a viscosity of 240 cps.

参考䟋  実斜䟋の共重合䜓氎溶液を甚いお次のように
マむクロカプセルを補造した20wt固型分の共
重合䜓氎溶液20郚を氎で垌釈しお80郚ずしたの
ち、メチル化メチロヌルメラミン䜏友化孊 ス
ミレツツレゞン618、80の固型分を有する
20郚を加えた。
Reference Example 3 Microcapsules were prepared as follows using the copolymer aqueous solution of Example 3. After diluting 20 parts of the copolymer aqueous solution with a solid content of 20 wt% with water to 80 parts, methylated methylol was added. Melamine (Sumitomo Chemical Sumiretsu Resin #618, with 80% solids content)
Added 20 copies.

宀枩で30分間撹拌したのち、−ゞ゚チルアミ
ノ−−メチル−−プニルアミノフルオラン
5.0wt、クリスタルバむオレツトラクトン0.4wt
を溶解したゞむ゜プルナフタレン呉矜化孊
「KMC−113」100郚を加えホモミキサヌで分
間乳化しお平均粒子埄3.7Όの安定な゚マル
ゞペンを埗た。ゆ぀くり撹拌を行ないながら系を
65℃迄加枩し時間反応を行な぀た。曎に少量の
20酢酞を添加しおPHを4.3ずしたのち曎に時
間65℃に保存しお、マむクロカプセル化を終え
た。
After stirring at room temperature for 30 minutes, 3-diethylamino-6-methyl-7-phenylaminofluorane
5.0wt%, Crystal Violet Lactone 0.4wt
100 parts of diisopurnaphthalene (Kureha Chemical Co., Ltd., "KMC-113") in which 10% was dissolved was added and emulsified for 5 minutes using a homomixer to obtain a stable O/W emulsion with an average particle size of 3.7 .mu.m. Gently stir the system while stirring.
The mixture was heated to 65°C and the reaction was carried out for 2 hours. even smaller amount
After adjusting the pH to 4.3 by adding 20% acetic acid, the mixture was further stored at 65°C for 1 hour to complete microencapsulation.

該マむクロカプセルスラリヌを28アンモニア
氎でPH8.5ずしおホルマリンを陀去した。埗られ
たマむクロカプセルは平均粒子埄3.7Όの分垃幅の
狭い球状のマむクロカプセルであり、固型分
60wtに斌ける粘床は95cpsず著しく䜎粘床であ
぀た。
The microcapsule slurry was adjusted to pH 8.5 with 28% aqueous ammonia to remove formalin. The obtained microcapsules are spherical microcapsules with an average particle size of 3.7 ÎŒm and a narrow distribution width, and the solid content is
The viscosity at 60 wt% was extremely low at 95 cps.

このマむクロカプセルスラリヌを甚いお、䞋蚘
組成の45wt氎性塗料を䜜成したずころ粘床は
35cpsであり、゚アナむフ−コヌタヌで50m2
の䞊質玙䞊にm2の也燥塗垃量でのコヌテむ
ングが可胜であ぀た。
Using this microcapsule slurry, we created a 45wt% water-based paint with the following composition, and the viscosity was
35cps and 50g/ m2 with air knife coater
It was possible to coat on high quality paper with a dry coverage of 6 g/m 2 .

参考䟋  実斜䟋で埗た、共重合氎溶液25郚を氎で垌釈
しお128.7ずしたのち20酢酞氎溶液でPHを3.4
ずした。曎に尿玠郚レゟルシン0.5郚を添加溶
解し、このなかに参考䟋で甚いた同じ芯物質
100郚を加え、ホモミキサヌで20分間乳化したず
ころ、4Όの平均粒子埄を有する安定な型
゚マルゞペンが埗られ。぀づいお撹拌䞋に37ホ
ルマリン14郚を加えお、55℃で時間瞮合を行な
いマむクロカプセル化を終えた。該マむクロカプ
セルスラリヌは52wtの固型分を有し、180cps
25℃の粘床を有し、黒色発色甚感圧耇写玙甚
の有甚であ぀た。
Reference Example 4 25 parts of the aqueous copolymer solution obtained in Example 3 was diluted with water to make 128.7 g, and then the pH was adjusted to 3.4 with a 20% acetic acid aqueous solution.
And so. Furthermore, 5 parts of urea and 0.5 parts of resorcin were added and dissolved, and the same core material used in Reference Example 3 was added and dissolved therein.
When 100 parts were added and emulsified for 20 minutes using a homomixer, a stable O/W type emulsion with an average particle size of 4Ό was obtained. Subsequently, 14 parts of 37% formalin was added while stirring, and condensation was carried out at 55°C for 5 hours to complete microencapsulation. The microcapsule slurry has a solids content of 52wt% and 180cps
It had a viscosity of (25°C) and was useful for pressure-sensitive copying paper for black coloring.

Claims (1)

【特蚱請求の範囲】[Claims]  (a)アクリル酞およびたたはメタクリル酞20
〜70モル、(b)アクリロニトリルおよびたたは
メタクリロニトリル20〜60モル、ならびに(c)ア
クリルアミドアルキルスルホン酞およびたたは
スルホアルキルアクリレヌト〜30モルの構造
単䜍および組成で、か぀、20氎溶液のPH4.0、
25℃における粘床が〜100000cpsの倚元共重合
たたはその塩からなるin−situ重合法によるアミ
ノアルデヒド暹脂膜を圢成させおなるマむクロカ
プセル補造に甚いるアニオン系高分子界面掻性
剀。
1 (a) Acrylic acid and/or methacrylic acid20
(b) 20 to 60 mol% of acrylonitrile and/or methacrylonitrile, and (c) 1 to 30 mol% of acrylamide alkyl sulfonic acid and/or sulfoalkyl acrylate, and % aqueous solution PH4.0,
An anionic polymeric surfactant used in the production of microcapsules formed by forming an aminoaldehyde resin film by in-situ polymerization of multicomponent copolymerization or a salt thereof having a viscosity of 5 to 100,000 cps at 25°C.
JP59125351A 1984-06-20 1984-06-20 Anionic high molecular surface active agent Granted JPS614524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125351A JPS614524A (en) 1984-06-20 1984-06-20 Anionic high molecular surface active agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125351A JPS614524A (en) 1984-06-20 1984-06-20 Anionic high molecular surface active agent

Publications (2)

Publication Number Publication Date
JPS614524A JPS614524A (en) 1986-01-10
JPH0547259B2 true JPH0547259B2 (en) 1993-07-16

Family

ID=14907972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125351A Granted JPS614524A (en) 1984-06-20 1984-06-20 Anionic high molecular surface active agent

Country Status (1)

Country Link
JP (1) JPS614524A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872885A (en) * 1986-02-27 1989-10-10 Kawasaki Jukogyo Kagushiki Kaisha Dispersant for aqueous slurry of carbonaceous solid and aqueous carbonaceous solid slurry composition incorporating said dispersant therein
JPH0715486Y2 (en) * 1991-05-17 1995-04-12 フランスベッド株匏䌚瀟 Mattress equipment
CN109195731B (en) * 2016-05-16 2021-07-06 Dic株匏䌚瀟 Aqueous dispersion of metal nanoparticles
CN116804153B (en) * 2023-08-24 2023-11-21 䞊海柯珑枅掁技术有限公叞 Acrylamide surfactant composition and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160062A (en) * 1979-05-01 1980-12-12 Japan Exlan Co Ltd Dispersant for dye
JPS5692903A (en) * 1979-11-29 1981-07-28 Uniroyal Inc Aciddstable surfactant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160062A (en) * 1979-05-01 1980-12-12 Japan Exlan Co Ltd Dispersant for dye
JPS5692903A (en) * 1979-11-29 1981-07-28 Uniroyal Inc Aciddstable surfactant

Also Published As

Publication number Publication date
JPS614524A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
KR880002539B1 (en) Process for producing microcapsules and microcapsule slurry
US4450123A (en) Process for producing microcapsules
US5362565A (en) Production method of microcapsules
US4746467A (en) Process for producing microcapsules
JP2502146B2 (en) Microcapsule manufacturing method
JP2634836B2 (en) Manufacturing method of microcapsules
JPH0547259B2 (en)
JPH0551339B2 (en)
JPH028774B2 (en)
JPS60238140A (en) Preparation of microcapsule
JPS6111138A (en) Preparation of microcapsule
KR20010000621A (en) method for preparing microcapsules
JPH0553538B2 (en)
JPH0453584B2 (en)
JP2722444B2 (en) Method for producing microcapsules
JPH10139817A (en) Production of microcapsule
JPH03238038A (en) Preparation of microcapsule
JPH0459932B2 (en)
JPS63123438A (en) Preparation of microcapsule
JP2865311B2 (en) Emulsifier for microcapsule, microcapsule using the emulsifier, method for producing the same, and carbonless pressure-sensitive copying paper using the microcapsule
JPH10139820A (en) Production of microcapsule
JP2003103159A (en) Fine capsule
JP2006167655A (en) Microcapsule
JPH02187387A (en) Emulsifier for microcapsule, microcapsule using same emulsifier and manufacture thereof, and no-carbon pressure-sensitive paper using same microcapsule

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term