JPH0547248B2 - - Google Patents

Info

Publication number
JPH0547248B2
JPH0547248B2 JP59242480A JP24248084A JPH0547248B2 JP H0547248 B2 JPH0547248 B2 JP H0547248B2 JP 59242480 A JP59242480 A JP 59242480A JP 24248084 A JP24248084 A JP 24248084A JP H0547248 B2 JPH0547248 B2 JP H0547248B2
Authority
JP
Japan
Prior art keywords
regeneration
air
tower
dehumidifying
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242480A
Other languages
Japanese (ja)
Other versions
JPS61120619A (en
Inventor
Atsushi Takahashi
Aritaka Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP59242480A priority Critical patent/JPS61120619A/en
Publication of JPS61120619A publication Critical patent/JPS61120619A/en
Publication of JPH0547248B2 publication Critical patent/JPH0547248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only

Description

【発明の詳細な説明】 本発明は、省エネルギー運転が安定してできる
ようにした湿式除湿装置の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling a wet dehumidifier that enables stable energy-saving operation.

従来より、空気の除湿を工業的に行う場合に湿
式除湿液機が多く使用されるが、これは、被処理
空気を除湿液と接触させて除湿空気を得るための
除湿塔と、除湿塔で被処理空気と接触して水分量
が高くなつた除湿液を熱の存在下で空気の流れと
接触させることによつてこれを再生する再生塔と
から通常は構成されている。この場合に、再生塔
における除湿液の再生の程度を適切に制御するこ
とが必要となるが、従来の装置では、再生用熱源
の供給量だけを制御因子としていた。そして、そ
の制御を行うには、除湿液の濃度を指示値として
いた。
Traditionally, wet dehumidifying liquid machines have been often used when dehumidifying air industrially, but these machines consist of a dehumidifying tower that brings the air to be treated into contact with a dehumidifying liquid to obtain dehumidified air, and a dehumidifying tower that produces dehumidified air. It usually consists of a regeneration tower that regenerates the dehumidifying liquid, which has been enriched in moisture by contacting the air to be treated, by contacting it with a stream of air in the presence of heat. In this case, it is necessary to appropriately control the degree of regeneration of the dehumidifying liquid in the regeneration tower, but in conventional devices, the only control factor is the amount of supply of the regeneration heat source. In order to perform this control, the concentration of the dehumidifying liquid was used as an instruction value.

しかし、除湿液の濃度を指示値として再生用熱
源の供給量を制御する方式では、制御の遅れが大
きく、従つて除湿塔での除湿機能にバラツキが生
じたり、外気条件の変動に直ちに追従できなかつ
たりしていた。特に、低負荷時においては、ハン
チングを生じて過大の加熱用熱源が必要なる場合
が度々発生していた。例えば、制御のやりすぎに
よつて、再生塔に熱の供給を停止した場合などで
は再生塔が冷却されるので、定常状態に戻す場合
には、この再生塔を再び加熱するために過大の熱
を必要とすることになる。
However, with the method of controlling the supply amount of the regeneration heat source using the concentration of the dehumidifying liquid as the indicated value, there is a large delay in control, resulting in variations in the dehumidifying function of the dehumidifying tower and the inability to immediately follow changes in outside air conditions. I was hanging out. In particular, when the load is low, hunting often occurs and an excessively large heating heat source is required. For example, if the supply of heat to the regeneration tower is stopped due to excessive control, the regeneration tower will cool down, and in order to return to a steady state, excessive heat will be required to heat the regeneration tower again. You will need it.

本発明は、このような問題を解決すると共に制
御を安定化しつつ且つ省エネルギー運転ができる
除湿装置の提供を目的としたものである。
An object of the present invention is to provide a dehumidifying device that can solve these problems, stabilize control, and operate in an energy-saving manner.

この目的のために、被処理空気を除湿液と接触
させて除湿空気を得るための除湿塔と、除湿塔で
被処理空気と接触して水分量が高くなつた除湿液
を熱の存在下で空気の流れと接触させることによ
つてこれを再生する再生塔と、からなる湿式除湿
装置において、本発明では、再生塔に送気する送
風機として風量可変送風機を使用すると共に再生
用の熱の供給量を調節する手段を設け、除湿塔で
除湿される水分量を連続的に検知しながらこの水
分量に応じて前記の風量可変送風機並びに熱供給
手段を制御するようにしたものである。この制御
の要旨は、除湿塔で気液接触する前後の空気の湿
度並びに送気される空気量の検出値から除湿塔で
除湿された水分量を演算し、この除湿水分量値を
用いて再生塔での再生に必要な風量を演算し、こ
の再生風量の演算値を用いて前記風量可変送風機
を操作することにより再生送風量を制御する点
と、該再生風量の演算値と再生塔の出口空気温度
に基いて該熱供給手段を操作することにより再生
に必設な熱量を制御する点にある。
For this purpose, a dehumidifying tower is used to obtain dehumidified air by bringing the air to be treated into contact with a dehumidifying liquid, and a dehumidifying liquid, which has come into contact with the air to be treated in the dehumidifying tower and has a high moisture content, is brought into contact with the dehumidifying liquid in the presence of heat. In a wet dehumidification device comprising a regeneration tower that regenerates air by bringing it into contact with an air flow, the present invention uses a variable air volume blower as a blower for blowing air to the regeneration tower, and also supplies heat for regeneration. A means for adjusting the amount of water is provided, and while the amount of water dehumidified by the dehumidification tower is continuously detected, the variable air volume blower and the heat supply means are controlled according to the amount of water. The gist of this control is to calculate the amount of moisture dehumidified in the dehumidification tower based on the humidity of the air before and after the gas-liquid contact in the dehumidification tower, as well as the detected value of the amount of air being sent, and to use this dehumidified moisture amount value for regeneration. The air volume required for regeneration in the tower is calculated, and the regeneration air volume is controlled by operating the variable air volume blower using the calculated value of the regeneration air volume, and the calculated value of the regeneration air volume and the outlet of the regeneration tower. The point is that the amount of heat required for regeneration is controlled by operating the heat supply means based on the air temperature.

図面に従つて具体的に説明すると、第1図は本
発明装置の一実施例を示すもので、1は除湿塔、
2は再生塔である。
To explain in detail according to the drawings, FIG. 1 shows an embodiment of the apparatus of the present invention, in which 1 is a dehumidification tower;
2 is a regeneration tower.

除湿塔1には、除湿側送風機3によつて外気取
入口4から塔内が外気が導入され、他方、散液装
置5から除湿液が噴霧され、両者が充填物層6で
気液接触される。この気液接触によつて除湿され
た空気は、除湿空気を必要とするプラントなどの
負荷7に送気される。気液接触後の除湿液(これ
は水分の含浸によつて希釈されているので、以後
希釈除湿液と呼ぶ)は、除湿側タンク8に入る。
除湿タンク8からは除湿側ポンプ9によつて、除
湿塔1と再生塔2に液が循環されるが、除湿塔1
の散液装置5に行く管路には、冷水と熱交換する
ための熱交換器10が設けてあり、ここで所定の
除湿空気温度まで除湿空気を冷却してから除湿塔
1に入る。
Outside air is introduced into the dehumidifying tower 1 from an outside air intake port 4 by a dehumidifying side blower 3, and on the other hand, a dehumidifying liquid is sprayed from a liquid dispersion device 5, and both are brought into gas-liquid contact in a packed layer 6. Ru. The air dehumidified by this gas-liquid contact is sent to a load 7 such as a plant that requires dehumidified air. After the gas-liquid contact, the dehumidifying liquid (hereinafter referred to as diluted dehumidifying liquid because it has been diluted by moisture impregnation) enters the dehumidifying side tank 8.
The liquid is circulated from the dehumidification tank 8 to the dehumidification tower 1 and the regeneration tower 2 by the dehumidification side pump 9.
A heat exchanger 10 for exchanging heat with cold water is provided in the pipe leading to the liquid dispersion device 5, and the dehumidified air is cooled to a predetermined dehumidified air temperature before entering the dehumidifying tower 1.

他方、再生塔1には、再生側送風機12によつ
て外気が塔内に送気されるが、この再生塔1の散
液装置13には前記の希釈除湿液が除湿側タンク
8から供給され、ここで充填物層14に噴霧され
て外気と気液接触する。そのさい、本実施例で
は、再生用の熱は散液装置13に入る前の希釈除
湿液に付与される。すなわち、水蒸気を熱源とす
る熱交換器15を通過することによつて希釈除湿
液に熱が付与される。この加熱によつて液中の水
分が外気に放出されて液の再生が行なわれるが、
この再生された液(再生済液)は再生側タンク1
6に入り、再生側ポンプ17によつて除湿側タン
ク8に戻されるが、そのさい、その保有熱を再生
前の希釈除湿液に付与するための熱交換器18を
通過して戻される。
On the other hand, outside air is fed into the regeneration tower 1 by the regeneration side blower 12, but the diluted dehumidifying liquid is supplied from the dehumidification side tank 8 to the liquid dispersion device 13 of the regeneration tower 1. , where it is sprayed onto the filling layer 14 and comes into gas-liquid contact with the outside air. At this time, in this embodiment, heat for regeneration is applied to the diluted dehumidifying liquid before entering the liquid spraying device 13. That is, heat is applied to the diluted dehumidifying liquid by passing through the heat exchanger 15 that uses water vapor as a heat source. Due to this heating, the moisture in the liquid is released to the outside air and the liquid is regenerated.
This regenerated liquid (regenerated liquid) is stored in the regeneration side tank 1.
6 and is returned to the dehumidifying tank 8 by the regenerating pump 17, passing through a heat exchanger 18 for imparting the retained heat to the diluted dehumidifying liquid before regeneration.

本発明装置においては、かような再生式の連続
湿式除湿装置において、再生側送風機12として
風量可変の送風機を使用する。例えば送風機電動
機の回転数制御または送風機の翼ピツチ角制御な
どによつて、送風量を制御するものである。最も
好ましくは、インバータユニツト20によつてモ
ータの回転数を制御する。そして、再生用熱源の
熱供給量を制御する手段を設ける。第1図の例で
は、これは、熱交換器15に供給する水蒸気の量
を制御する制御弁21であり、これが水蒸気管路
22に介装してある。
In the apparatus of the present invention, a variable air volume blower is used as the regeneration side blower 12 in such a regeneration type continuous wet dehumidification apparatus. For example, the amount of air blown is controlled by controlling the rotational speed of the blower motor or controlling the pitch angle of the blower blades. Most preferably, the rotation speed of the motor is controlled by an inverter unit 20. A means for controlling the amount of heat supplied from the regeneration heat source is provided. In the example of FIG. 1, this is a control valve 21 that controls the amount of steam supplied to the heat exchanger 15, and is interposed in a steam line 22.

そして、除湿塔1において連続的に除湿される
水分量を連続的に検知する。この除湿水分量の検
知は、除湿塔1への外気送風量を測定する風量計
23、除湿塔1において気液接触する前の空気の
露点温度を検出する露点温度計24、および除湿
体1において気液接触した後の露点温度を検出す
る露点温度計25、のそれぞれの測定値によつて
行われる。より具体的には、これらの測定器から
の検出信号a,b,cは、コンピユータ27に入
力され、ここで演算される。また、このコンピユ
ータ27には、再生塔1において気液接触したあ
との排気の温度を検出する温度検出器26の検出
信号dも入力される。
Then, the amount of water that is continuously dehumidified in the dehumidification tower 1 is continuously detected. The amount of dehumidified moisture is detected by an air flow meter 23 that measures the amount of outside air blown to the dehumidifying tower 1, a dew point thermometer 24 that detects the dew point temperature of the air before it comes into contact with gas and liquid in the dehumidifying tower 1, and a dehumidifying body 1. This is performed based on the respective measurement values of the dew point thermometer 25 that detects the dew point temperature after the gas-liquid contact. More specifically, detection signals a, b, and c from these measuring instruments are input to the computer 27 and calculated there. Further, a detection signal d from a temperature detector 26 that detects the temperature of the exhaust gas after the gas-liquid contact in the regeneration tower 1 is also input to the computer 27 .

コンピユータ27は、除湿された水分量を演算
しこの演算された水分量から、その再生に必要な
再生送風量を演算する。そして、再生側送風機1
2の回転数を制御するインバータユニツト20に
制御信号Bを出力し、再生塔1の送風量をフイー
ドフオワードで制御する。これによつて、再生済
液の濃度を一定に維持すると同時に、再生塔1の
出口温度検出器26の入力信号dから、コンピユ
ータ27は前記の再生送風量に見合う再生熱源量
を演算し、制御弁21に制御信号Bを出力して再
生に必要な熱量(水蒸気量)をフイードバツクで
制御する。これによつて、再生送風機の省動力運
転、除湿負荷に見合うだけの再生熱交換器の省エ
ネルギー運転が実施されると同時に、除湿液の濃
度変動を補償し、装置全体の安定運転が実施され
る。
The computer 27 calculates the amount of dehumidified moisture, and from this calculated amount of moisture, calculates the amount of regeneration air necessary for the regeneration. Then, the reproduction side blower 1
A control signal B is output to an inverter unit 20 that controls the rotational speed of the regeneration tower 1, and the air flow rate of the regeneration tower 1 is controlled by feed forward. As a result, the concentration of the recycled liquid is maintained constant, and at the same time, the computer 27 calculates the amount of regenerated heat source corresponding to the amount of regenerated air blown from the input signal d of the outlet temperature detector 26 of the regeneration tower 1, and controls the amount. A control signal B is output to the valve 21 to control the amount of heat (amount of water vapor) required for regeneration by feedback. This enables power-saving operation of the regenerative blower and energy-saving operation of the regenerative heat exchanger commensurate with the dehumidifying load, while at the same time compensating for fluctuations in the concentration of the dehumidifying liquid and ensuring stable operation of the entire device. .

第2図は、再生塔1の内部に熱交換器28を設
けてこの熱交換器28に再生用の熱源(水蒸気)
を供給するようにし、この熱交換器28の部分で
気液接触させるようにした再生塔1を使用し、且
つ再生塔1に入る前の空気と再生塔1から出る排
気とを熱交換する熱交換器29を設けた以外は、
前記の第1図の実施例と実質的に同じ装置を示し
ている。この第2図の実施例では、廃熱の回収が
第1図のものよりも一層できる点で有利である。
本例でも制御に関しては第1図と同様に実施でき
る。すなわち熱交換器28に水蒸気を供給する管
路30に制御弁21が設けておき、第1図の場合
と同様に、これの制御によつて、再生に必要な熱
量をフイードバツクで制御することができる。
In FIG. 2, a heat exchanger 28 is provided inside the regeneration tower 1, and a heat source (steam) for regeneration is supplied to the heat exchanger 28.
The regeneration tower 1 is supplied with gas and liquid is brought into contact at the heat exchanger 28, and the heat is exchanged between the air before entering the regeneration tower 1 and the exhaust gas exiting from the regeneration tower 1. Except for installing the exchanger 29,
1 shows a device substantially the same as the embodiment of FIG. 1 described above. The embodiment of FIG. 2 is advantageous in that it allows for greater recovery of waste heat than the embodiment of FIG.
In this example, control can be performed in the same manner as in FIG. 1. That is, a control valve 21 is provided in the pipe line 30 that supplies steam to the heat exchanger 28, and as in the case of FIG. 1, by controlling this valve, the amount of heat required for regeneration can be controlled by feedback. can.

以下に、本発明装置の制御システムの演算内容
について説明する。なお、制御フローの例を第3
図a〜kに示した。
Below, the calculation contents of the control system of the device of the present invention will be explained. In addition, an example of the control flow is shown in the third
Shown in Figures a to k.

(1) 制御は、除湿側送風機、除湿側ポンプ、再生
側ポンプ、再生側送風機、冷水弁、蒸気弁の順
で起動をかける。
(1) Control starts the dehumidifying side blower, dehumidifying side pump, regeneration side pump, regeneration side blower, cold water valve, and steam valve in this order.

(2) 除湿塔への送風量および除湿塔入口と除湿塔
出口の各露点温度を測定し、温度は絶対温度に
換算したあと、次式で除湿塔の除湿水分量ΔW
を演算する。
(2) After measuring the amount of air blown to the dehumidifying tower and the dew point temperatures at the dehumidifying tower inlet and dehumidifying tower outlet, converting the temperature to absolute temperature, calculate the dehumidifying water content ΔW of the dehumidifying tower using the following formula.
Calculate.

ΔW=Qs×(X1−X2) 但し、Qs;送風量(Kg′/hr) X1;入口湿度(Kg/Kg′) X2;出口湿度(Kg/Kg′) (3) 再生塔に分配された除湿液を除湿塔で除湿し
た水分量だけ濃縮した後、希釈除湿液と再生済
液を混合しても、除湿側タンクの除湿液濃度は
一定に保たれる。再生塔で再生された再生済液
の液濃度は、 yE=CLo/(Lo−ΔW) 但し、Lo;再生液量(Kg/hr) C;除湿液目標濃度 の式で演算され、再生空気の温度tEと液濃度を
関数として、再生塔排気空気の絶対温度が演算
される。再生塔入口空気湿分はX1で示される
ので再生送風機の風量は次式で示される。
ΔW=Qs×(X 1 −X 2 ) However, Qs: Air flow rate (Kg′/hr) X 1 : Inlet humidity (Kg/Kg′) X 2 : Outlet humidity (Kg/Kg′) (3) Regeneration tower After the dehumidifying liquid distributed in the dehumidifying tower is concentrated by the amount of water dehumidified in the dehumidifying tower, the concentration of the dehumidifying liquid in the dehumidifying side tank is kept constant even if the diluted dehumidifying liquid and the recycled liquid are mixed. The liquid concentration of the regenerated liquid regenerated in the regeneration tower is calculated by the formula of y E = CLo/(Lo - ΔW), where Lo: Regenerated liquid amount (Kg/hr) C: Dehumidifying liquid target concentration, and the regenerated air The absolute temperature of the regeneration tower exhaust air is calculated as a function of the temperature tE and the liquid concentration. Since the air moisture at the inlet of the regeneration tower is represented by X 1 , the air volume of the regeneration blower is represented by the following equation.

QE=ΔW/(Xe−X1) Xe←ψ(tE、yE) 但し、Xe;再生塔排気湿分(Kg/Kg′) X1;再生塔入口空気湿分(Kg/Kg′) ΔW;除湿水分量(Kg/hr) (4) 除湿塔出口空気温度を測定して、冷水弁の開
度を演算し、冷水の流量をフイードバツクで制
御し、除湿塔出口空気温度を一定に保つ。
Q E = ΔW/(Xe−X 1 ) Xe←ψ(t E , y E ) However, Xe: Regeneration tower exhaust moisture (Kg/Kg′) X 1 : Regeneration tower inlet air moisture (Kg/Kg′ ) ΔW: Dehumidifying water content (Kg/hr) (4) Measure the dehumidifying tower outlet air temperature, calculate the opening of the chilled water valve, control the chilled water flow rate by feedback, and keep the dehumidifying tower outlet air temperature constant. keep.

(5) 再生塔排気温度を測定して、蒸気弁の開度を
演算し、蒸気流量をフイードバツクで制御し、
再生塔出口空気温度を一定に保つ。
(5) Measure the regeneration tower exhaust temperature, calculate the opening of the steam valve, control the steam flow rate by feedback,
Keep the regeneration tower outlet air temperature constant.

以上のように、本発明によると、除湿塔におい
て除湿される水分量を連続的に検知し、この水分
量から、必要な再生送風量をコンピユータ(マイ
コン)で演算、再生側送風機の回転数を制御する
ことによつて送風量をフイードフオワードで制御
し、これによつて除湿液の濃度を一定に維持する
と同時に再生塔の出口排気温度から再生送風量に
見合う再生熱量をフイードバツクで制御するよう
にして除湿液の濃度変化を補償するように湿式除
湿装置を構成したもので、低負荷時の再生送風量
の低減と、再生熱源の低減の両方の面で、省エネ
ルギー運転ができ且つその運転も安定して行うこ
とができ、記述の目的が効果的に達成されたもの
である。
As described above, according to the present invention, the amount of water dehumidified in the dehumidification tower is continuously detected, the computer (microcomputer) calculates the required amount of regeneration air from this amount of water, and the rotation speed of the regeneration side blower is determined. By controlling the amount of air blown, the concentration of the dehumidifying liquid is maintained constant, and at the same time, the amount of regenerated heat commensurate with the amount of regenerated air blown is controlled by feedback from the exhaust gas temperature at the outlet of the regeneration tower. The wet dehumidifier is configured to compensate for changes in the concentration of the dehumidifying liquid in this way, and can save energy in terms of both reducing the amount of regenerated air blown at low loads and reducing the source of regenerated heat. This can also be done stably, and the purpose of the description has been effectively achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の湿式除湿装置の一実施例を示
す機器配置系統図、第2図は本発明の湿式除湿装
置の他の実施例を示す機器配置系統図、第3図a
〜kは本発明装置の制御フローの一例を示す図で
ある。 1……除湿塔、2……再生塔、3……除湿側送
風機、8……除湿側タンク、12……再生側送風
機、15,28……再生熱源供給用熱交換器、2
0……インバータユニツト、21……水蒸気供給
量制御弁、23……風量計、24,25……露点
温度計、26……温度検出計、27……コンピユ
ータ、28……冷水供給量制御弁。
FIG. 1 is an equipment layout system diagram showing one embodiment of the wet dehumidification device of the present invention, FIG. 2 is an equipment layout system diagram showing another embodiment of the wet dehumidification device of the invention, and FIG. 3a
~k is a diagram showing an example of the control flow of the device of the present invention. DESCRIPTION OF SYMBOLS 1...Dehumidification tower, 2...Regeneration tower, 3...Dehumidification side blower, 8...Dehumidification side tank, 12...Regeneration side blower, 15, 28...Regeneration heat source supply heat exchanger, 2
0...Inverter unit, 21...Steam supply amount control valve, 23...Air flow meter, 24, 25...Dew point thermometer, 26...Temperature detection meter, 27...Computer, 28...Cold water supply amount control valve .

Claims (1)

【特許請求の範囲】 1 被処理空気を除湿液と接触させて除湿空気を
得るための除湿塔と、除湿塔で被処理空気と接触
して水分量が高くなつた除湿液を熱の存在下で空
気の流れと接触させることによつてこれを再生す
る再生塔と、からなる湿式除湿装置において、 再生塔に送気する送風機として風量可変送風機
を使用すると共に再生用の熱の供給量を調節する
手段を設けたうえ、 除湿塔で気液接触する前後の空気の湿度並びに
送気される空気量の検出値から除湿塔で除湿され
る水分量を演算し、この除湿水分量値を用いて再
生塔での再生に必要な風量を演算し、この再生風
量の演算値を用いて前記風量可変送風機を操作す
ることにより再生送風量を制御し、同時に、 該再生風量の演算値と再生塔の出口空気温度に
基いて該熱供給手段を操作することにより再生に
必要な熱量を制御すること、 を特徴とする湿式除湿装置の制御方法。
[Claims] 1. A dehumidifying tower for obtaining dehumidified air by bringing the air to be treated into contact with a dehumidifying liquid, and a dehumidifying liquid whose moisture content has increased due to contact with the air to be treated in the dehumidifying tower in the presence of heat. In a wet dehumidification device that consists of a regeneration tower that regenerates air by contacting it with a flow of air, a variable air volume blower is used as a blower to send air to the regeneration tower, and the amount of heat supplied for regeneration is adjusted. In addition, the amount of moisture to be dehumidified in the dehumidification tower is calculated from the detected value of the humidity of the air before and after the gas-liquid contact in the dehumidification tower and the amount of air being sent, and this dehumidified moisture amount value is used to calculate the amount of moisture to be dehumidified. Calculate the air volume required for regeneration in the regeneration tower, use the calculated value of the regeneration air volume to control the regeneration air volume by operating the variable air volume blower, and at the same time, combine the calculated value of the regeneration air volume with the regeneration tower. A method for controlling a wet dehumidifier, comprising: controlling the amount of heat required for regeneration by operating the heat supply means based on the outlet air temperature.
JP59242480A 1984-11-19 1984-11-19 Wet type dehumidification apparatus Granted JPS61120619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242480A JPS61120619A (en) 1984-11-19 1984-11-19 Wet type dehumidification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242480A JPS61120619A (en) 1984-11-19 1984-11-19 Wet type dehumidification apparatus

Publications (2)

Publication Number Publication Date
JPS61120619A JPS61120619A (en) 1986-06-07
JPH0547248B2 true JPH0547248B2 (en) 1993-07-16

Family

ID=17089709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242480A Granted JPS61120619A (en) 1984-11-19 1984-11-19 Wet type dehumidification apparatus

Country Status (1)

Country Link
JP (1) JPS61120619A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL134196A (en) * 2000-01-24 2003-06-24 Agam Energy Systems Ltd System for dehumidification of air in an enclosure
US20090211276A1 (en) * 2005-03-25 2009-08-27 Dan Forkosh System and method for managing water content in a fluid
JP5366459B2 (en) * 2008-07-04 2013-12-11 ダイナエアー株式会社 Humidity control equipment for vehicles
JP5227840B2 (en) * 2009-02-26 2013-07-03 ダイナエアー株式会社 Humidity control device
JP5089672B2 (en) * 2009-10-27 2012-12-05 ダイナエアー株式会社 Dehumidifier
JP7137054B2 (en) * 2018-07-05 2022-09-14 ダイキン工業株式会社 Humidity control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54457A (en) * 1977-06-03 1979-01-05 Takasago Thermal Eng Co Lts Dehumidifying-liquid regenerating system for wet-type dehumidifier
JPS59136119A (en) * 1983-01-26 1984-08-04 Daido Plant Kogyo Kk Apparatus for dehumidifying gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116726U (en) * 1981-01-08 1982-07-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54457A (en) * 1977-06-03 1979-01-05 Takasago Thermal Eng Co Lts Dehumidifying-liquid regenerating system for wet-type dehumidifier
JPS59136119A (en) * 1983-01-26 1984-08-04 Daido Plant Kogyo Kk Apparatus for dehumidifying gas

Also Published As

Publication number Publication date
JPS61120619A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
CN102441320B (en) Dehumidification device and control method thereof
US8372180B2 (en) Process for controlling the moisture content of a supply gas for use in drying a product
AU4899201A (en) A method for heat and humidity exchange between two air streams and apparatus therefor
US4552303A (en) Air-conditioning system
JPH0547248B2 (en)
JPH10227483A (en) Air conditioner
JP3135017B2 (en) Operating method of air conditioner
JP6094569B2 (en) Environmental test equipment
JP2003262376A (en) Air conditioning system
JP6222340B2 (en) Control method for environmental test equipment
JP3272562B2 (en) Predictive control device and control method for wet flue gas desulfurization plant
CN108187445B (en) Flue gas purification method and device comprising flue gas temperature control
JP2936914B2 (en) Moisture control method for humidified coal in coal humidifier
JP2881113B2 (en) Dehumidifier on-off type environmental device
JPS5939680B2 (en) Cooling tower control method
AU2022268395B2 (en) Method and system for drying salts, in particular hydrated salt
JP3118177B2 (en) Dehumidifier on-off type environmental device
JP2006162131A (en) Dry type dehumidifier
JPH0791835A (en) Dryer
JPH06344536A (en) Dryer controlling method for gravure printer
US20230071566A1 (en) Process Gas Treatment Device and Method for Treating Process Gas
JPH03137918A (en) Supply amount control apparatus of oxidizing air for wet waste desulfurization equipment
JPS6339613A (en) Absorbing liquid circulation flow rate controller for wet-type exhaust gas desulfurizer
AU2023274116A1 (en) Method and system for drying salts, in particular hydrated salt
JP5642982B2 (en) Drying equipment