JPH0547062B2 - - Google Patents
Info
- Publication number
- JPH0547062B2 JPH0547062B2 JP61289435A JP28943586A JPH0547062B2 JP H0547062 B2 JPH0547062 B2 JP H0547062B2 JP 61289435 A JP61289435 A JP 61289435A JP 28943586 A JP28943586 A JP 28943586A JP H0547062 B2 JPH0547062 B2 JP H0547062B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- light
- liquid
- laser beam
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims description 68
- 238000001514 detection method Methods 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 31
- 230000001066 destructive effect Effects 0.000 claims description 15
- 238000000149 argon plasma sintering Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 8
- 230000008016 vaporization Effects 0.000 claims description 7
- 239000013618 particulate matter Substances 0.000 claims description 4
- 239000011859 microparticle Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000009834 vaporization Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 8
- 229910021642 ultra pure water Inorganic materials 0.000 description 7
- 239000012498 ultrapure water Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 2
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光散乱式液中微粒子検出装置に係り、
特に、光散乱断面積が小さく散乱光強度が弱い微
小粒子の検出及び計数に好適な光散乱式液中微粒
子検出装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a light scattering type in-liquid particle detection device,
In particular, the present invention relates to a light scattering type in-liquid particle detection device suitable for detecting and counting microparticles with a small light scattering cross section and weak scattered light intensity.
従来の光散乱式液中微粒子カウンタは、特開昭
50−11290号あるいは第46回応用物理学会学術講
演会講演予稿集第38頁(1985年)などに記載のよ
うに、液体試料にレーザ光などの光を照射し、液
体中の粒子状物質(以下粒子という)からの散乱
光を検出して液体中の粒子を計数していた。
The conventional light scattering liquid particle counter was developed by
As described in No. 50-11290 or the 46th Japan Society of Applied Physics Conference Proceedings, page 38 (1985), a liquid sample is irradiated with light such as a laser beam, and particulate matter ( The particles in the liquid were counted by detecting the scattered light from the particles (hereinafter referred to as particles).
粒子からの散乱光の強度は粒子の大きさに依存
し、特に粒径が光の波長よりも小さくなると散乱
光強度も減少する。そのため、迷光や液体のレー
リ散乱光がバツクグラウンドとなり、微小な粒子
からの散乱光がバツクグラウンドに埋れるため検
出困難となる。
The intensity of scattered light from particles depends on the size of the particles, and in particular, when the particle size becomes smaller than the wavelength of light, the intensity of scattered light also decreases. Therefore, stray light and Rayleigh scattered light from the liquid become the background, and the scattered light from minute particles is buried in the background, making detection difficult.
従来技術では、迷光等を減少させ、バツクグラ
ウンドを下げることにより検出限界の粒径を小さ
くする工夫はされていたが、粒子からの散乱光の
強度を増加させるような配慮はされておらず、検
出限界の粒径は液体のリーザ散乱光により物理的
に決まり、0.1〜0.3μm以下の粒子の計数は困難
であつた。 In conventional technology, efforts have been made to reduce the particle size at the detection limit by reducing stray light and lowering the background, but no consideration has been given to increasing the intensity of scattered light from particles. The detection limit particle size is physically determined by the laser scattering light of the liquid, and it has been difficult to count particles smaller than 0.1 to 0.3 μm.
本発明の目的は、粒子による散乱光の強度を増
大させ、光散乱方式液中微粒子検出装置を増感す
ることにより、検出限界の粒径を小さくすること
にある。 An object of the present invention is to reduce the detection limit particle size by increasing the intensity of light scattered by particles and sensitizing a light scattering type in-liquid particle detection device.
上記目的は、液中に粒子または粒子の周囲の液
体を気化またはプラズマ化させるに足る光を入射
して微粒子を気化またはプラズマ化させ、あるい
は粒子周辺の液体を気化またはプラズマ化させる
ことにより、散乱体の体積を増加させ、散乱光強
度を増大させることにより達成される。
The above purpose is to scatter light by injecting enough light into the liquid to vaporize or plasmaize the particles or the liquid surrounding the particles, vaporize or plasmaize the fine particles, or vaporize or plasmaize the liquid around the particles. This is achieved by increasing the body volume and increasing the scattered light intensity.
本発明の原理を第1図により説明する。 The principle of the present invention will be explained with reference to FIG.
第1図のように、検出用レーザ光1と液中の粒
子3を破壊・気化あるいはプラズマ化するための
レーザ光2(以下破壊用レーザ光という)とを液
中に照射する。破壊用レーザ光2が無くても、粒
子3により検出用レーザ光1の一部は散乱される
が、しかし、粒子3が十分小さい場合、粒子3に
よる散乱光は、液のレーリ散乱光に埋れ、検出困
難となる。しかるに破壊用レーザ光2を粒子に照
射すると、破壊用レーザ光2のパワーに応じて粒
子は気化またはプラズマ化し、場合によつては粒
子周辺の液体をも気化またはプラズマ化する。そ
のため、粒子の存在した場所に気泡4が発生す
る。この気泡の体積は粒子の体積よりも大きくな
る。即ち、検出用レーザ光1の散乱体の体積が大
きくなるため、それによる散乱光の強度も増加
し、液体のレーリ散乱光から区別して測定できる
ようになる。したがつて、粒子自身の光散乱では
検出できない微小粒子であつてもそれを気化また
はプラズマ化することにより、検出可能となる。
発生した気泡の数は、検出用レーザ光を横ぎる粒
子の数に対応するため、発生させた気泡からの散
乱光5を計数することにより、粒子を計数するこ
とが可能となる。粒子ががプラズマ化している場
合には、散乱光を検出しなくても、プラズマ発光
を検出することにより、同様の効果を得ることが
できる。このように、破壊用レーザ光を用いるこ
とにより光散乱式の液中微粒子検出装置の感度を
向上することができ、検出限界粒径を小さくする
ことが可能となる。 As shown in FIG. 1, a detection laser beam 1 and a laser beam 2 (hereinafter referred to as a destructive laser beam) for destroying, vaporizing, or turning particles 3 in the liquid into plasma are irradiated into the liquid. Even if there is no destructive laser beam 2, part of the detection laser beam 1 will be scattered by the particles 3, but if the particles 3 are small enough, the scattered light by the particles 3 will be buried in the Rayleigh scattered light of the liquid. , making detection difficult. However, when the particles are irradiated with the destructive laser beam 2, the particles are vaporized or turned into plasma depending on the power of the destructive laser beam 2, and in some cases, the liquid around the particles is also vaporized or turned into plasma. Therefore, bubbles 4 are generated at the locations where the particles were present. The volume of this bubble becomes larger than the volume of the particle. That is, since the volume of the scatterer of the detection laser beam 1 becomes larger, the intensity of the scattered light thereby also increases, and it becomes possible to distinguish it from the Rayleigh scattered light of the liquid and measure it. Therefore, even minute particles that cannot be detected by light scattering of the particles themselves can be detected by vaporizing or turning them into plasma.
Since the number of generated bubbles corresponds to the number of particles that cross the detection laser beam, particles can be counted by counting the scattered light 5 from the generated bubbles. If the particles have turned into plasma, the same effect can be obtained by detecting plasma emission without detecting scattered light. In this way, by using the destructive laser beam, the sensitivity of the light scattering type in-liquid particle detection device can be improved, and the detection limit particle size can be reduced.
以上の説明では、検出用レーザ光と破壊用レー
ザ光とを別のものにしたが、これらは同一のレー
ザ光であつてもよい。 In the above description, the detection laser beam and the destructive laser beam are different, but they may be the same laser beam.
以下、本発明の一実施例を第2図ないし第5図
を用いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 5.
本実施例は破壊用レーザと検出用レーザを別々
のものとした例である。破壊用レーザ7には、
YAG(イツトリウム−アルミニウム−ガーネツ
ト)レーザを用い、破壊用レーザ光2としては第
2高調波532nmの発振線を用いた。破壊用レーザ
光の強度は1.5mJ/パルス、パルス巾は8nsであ
る。一方、検出用レーザ8にはヘリウム−ネオン
レーザを用い、検出用レーザ光11は波長
632.8nm、出力1mWとした。破壊用レーザ光2
と検出用レーザ光1はハーフミラー10により、
同軸の二光束12a及び12bに分岐される。分
岐された一方の光束12aは光学系9を通り、内
部に被検液が流れているセル11に入射し、セル
11を通過した後、ビームストツパ20で吸収さ
れる。光束12aは光学系9によりセル11内で
約10μm程度に収束する。光束12aは破壊用レ
ーザ光と検出用レーザ光が重なり合つたものであ
り、セル11内で光路に粒子が存在すると、粒子
を気化あるいはプラズマ化し、検出用レーザ光の
散乱光5が発生する。散乱光5は散乱光検出用の
光検出器16により検出され、検出信号はプリア
ンプ17により増巾されてデータ処理装置18に
入力される。データ処理装置18では、散乱光が
発生した回数を記録するとともに、散乱光強度も
記録する。これらのデータを統合し、散乱光の強
度分布を求める。散乱光強度が粒径に依存するこ
とから、あらかじめ粒径と散乱光強度の校正曲線
をデータ処理装置18に入力しておき校正曲線と
測定した散乱光の強度分布から、粒度分布曲線を
算出する。粒度分布曲線などデータ処理結果は表
示装置19に表示される。 This embodiment is an example in which the destructive laser and the detection laser are separate. The destructive laser 7 has
A YAG (yttrium-aluminum-garnet) laser was used, and as the destructive laser beam 2, an oscillation line with a second harmonic of 532 nm was used. The intensity of the destructive laser beam is 1.5 mJ/pulse, and the pulse width is 8 ns. On the other hand, a helium-neon laser is used as the detection laser 8, and the detection laser beam 11 has a wavelength of
632.8nm, output 1mW. Destructive laser beam 2
The detection laser beam 1 is transmitted by a half mirror 10,
It is split into two coaxial beams 12a and 12b. One of the branched light beams 12a passes through the optical system 9 and enters the cell 11 in which the test liquid flows.After passing through the cell 11, it is absorbed by the beam stopper 20. The light beam 12a is converged to about 10 μm within the cell 11 by the optical system 9. The light beam 12a is a combination of a destructive laser beam and a detection laser beam, and if particles are present in the optical path within the cell 11, the particles are vaporized or turned into plasma, and scattered light 5 of the detection laser beam is generated. The scattered light 5 is detected by a photodetector 16 for detecting scattered light, and the detection signal is amplified by a preamplifier 17 and input to a data processing device 18 . The data processing device 18 records the number of times the scattered light has occurred, and also records the intensity of the scattered light. These data are integrated to determine the intensity distribution of scattered light. Since the scattered light intensity depends on the particle size, a calibration curve of particle size and scattered light intensity is input into the data processing device 18 in advance, and a particle size distribution curve is calculated from the calibration curve and the measured scattered light intensity distribution. . Data processing results such as particle size distribution curves are displayed on the display device 19.
ハーフミラー10により分岐されたもう一方の
光束12bはプリズム13により、再び破壊用レ
ーザ光2と検出用レーザ光1に分離され、それぞ
れ光検出器14に入射する。光検出器14からの
信号はプリアンプ15により増巾され、データ処
理装置18に入力される。これにより、破壊用レ
ーザ光2と検出用レーザ光1のパワーをモニタ
し、散乱光強度を補正する。 The other beam 12b branched by the half mirror 10 is separated again by the prism 13 into the destructive laser beam 2 and the detection laser beam 1, and each of them enters the photodetector 14. The signal from the photodetector 14 is amplified by a preamplifier 15 and input to a data processing device 18 . Thereby, the powers of the destructive laser beam 2 and the detection laser beam 1 are monitored, and the scattered light intensity is corrected.
本実施例は超純水の検査に応用した例であり、
超純水ライン22に試料注入装置21を結合し、
超純水は試料導入路23を経てセル11に導入さ
れる。セル11を通過した超純水は、試料排出路
24を経て排出される。測定は、試料をフロー状
態としたまま連続して行なわれる。 This example is an example applied to testing ultrapure water.
Connecting the sample injection device 21 to the ultrapure water line 22,
Ultrapure water is introduced into the cell 11 via the sample introduction path 23. The ultrapure water that has passed through the cell 11 is discharged through the sample discharge path 24. Measurements are performed continuously while the sample is in a flow state.
第3図に、本実施例に用いたセル11の構造を
示す。 FIG. 3 shows the structure of the cell 11 used in this example.
試料は試料流入管30よりセル内に導入され、
試料流路28を通過した後、試料排出管29より
排出される。光学窓26から破壊用レーザ光及び
検出用レーザ光を入射し、散乱光は光学窓27か
ら測定する。 The sample is introduced into the cell from the sample inflow tube 30,
After passing through the sample channel 28, it is discharged from the sample discharge tube 29. Destruction laser light and detection laser light are incident through the optical window 26, and scattered light is measured through the optical window 27.
まず、試料注入装置21より、超純水に0.085μ
mのポリスチレンラテツクス粒子を添加したもの
を試料液とし、カウント数の変化を測定した。添
加する粒子数の割合を1、2、3、4、5と変化
させた場合のカウント数を第4図に示した。添加
粒子数とカウント数との関係は直線となり、本実
施例により0.085μmの粒子でも検出できることが
示された。これは従来の光散乱式液中粒子カウン
タの検出粒径限界0.2〜0.5μmに比べて大巾に向
上している。 First, from the sample injection device 21, add 0.085μ to ultrapure water.
A sample solution was prepared by adding polystyrene latex particles of m, and the change in count number was measured. Figure 4 shows the counts when the ratio of the number of added particles was changed from 1, 2, 3, 4, and 5. The relationship between the number of added particles and the number of counts was a straight line, and this example showed that even particles of 0.085 μm could be detected. This is a significant improvement over the detection particle size limit of 0.2 to 0.5 μm for conventional light scattering liquid particle counters.
次に、本装置により、超純水中の粒子をモニタ
し、粒度分布を求めた例を第5図に示す。この例
では粒度分布の中心が0.1μmにあることを示して
いる。このように本発明により、0.3μm以下の小
粒径の領域でも粒度分布を測定することができ
る。 Next, FIG. 5 shows an example in which particles in ultrapure water were monitored and the particle size distribution was determined using this apparatus. This example shows that the center of the particle size distribution is at 0.1 μm. As described above, according to the present invention, the particle size distribution can be measured even in the region of small particle diameters of 0.3 μm or less.
なお、粒子がプラズマ化していればこのプラズ
マ発光を分光し、スペクトルを測定することによ
り粒子の成分を同定することもできる。プラズマ
発光の分光には第2図の実施例において、散乱光
検出用の光検出器16の前に、分光器を挿入し、
分光した結果の光強度を測定し得る光検出器を設
ければよい。このプラズマ発光のスペクトルを時
間分解することにより、粒子の成分をさらに詳細
に同定することもできる。 Note that if the particles have turned into plasma, the components of the particles can also be identified by spectrally dissecting this plasma emission and measuring the spectrum. For spectroscopy of plasma emission, in the embodiment shown in FIG. 2, a spectrometer is inserted in front of the photodetector 16 for detecting scattered light,
A photodetector capable of measuring the light intensity as a result of spectroscopy may be provided. By time-resolving the spectrum of this plasma emission, the components of the particles can be identified in more detail.
〔発明の効果〕
本発明によれば、液体中の粒子を気化あるいは
プラズマ化して、発生した気泡からの散乱光を測
定するため以下の効果がある。[Effects of the Invention] According to the present invention, since particles in a liquid are vaporized or turned into plasma and scattered light from generated bubbles is measured, the following effects can be obtained.
(1) 従来の光散乱方式では検出困難であつた0.2
〜0.5μm以下の微粒子でも容易に検出すること
ができる。(1) 0.2, which was difficult to detect with conventional light scattering methods.
Even fine particles of ~0.5 μm or less can be easily detected.
(2) 従来の光散乱方式では測定検出困難であつた
0.2〜0.5μm以下の微粒子粒度分布を容易に測
定することができる。(2) It was difficult to measure and detect using conventional light scattering methods.
The particle size distribution of fine particles of 0.2 to 0.5 μm or less can be easily measured.
(3) 従来技術では微粒子との弁別不可能な既存の
気泡に不感であり、微粒子の検出感度が向上す
る。(3) Conventional technology is insensitive to existing air bubbles that cannot be distinguished from fine particles, improving the detection sensitivity of fine particles.
(4) 粒子を検出ごとに気化又は微細化することに
より、液体中の大粒径の粒子数を低減し、液体
を清浄化し、粒子の検出精度を向上する。(4) By vaporizing or atomizing particles each time they are detected, the number of large particles in the liquid is reduced, the liquid is purified, and particle detection accuracy is improved.
第1図は本発明の原理説明図、第2図は本発明
の一実施例の構成図、第3図は該実施例に用いた
セルの構造を示す斜視図、第4図は本実施例によ
り0.085μmのポリスチレン粒子をカウントした結
果を示すグラフ、第5図は同じく粒度分布を測定
した結果を示すグラフである。
符号の説明 1…検出用レーザ光、2…粒子の
破壊・気化あるいはプラズマ化用レーザ光、3…
粒子、4…気泡、5…気泡からの散乱光、6…散
乱光の検出器、7…破壊用レーザ、8…検出用レ
ーザ、9…光学系、10…ハーフミラー、11…
セル、12a,12b…分岐光、13…プリズ
ム、14…光検出器(モニタ用)、15…プリア
ンプ(モニタ用)、16…散乱光検出用光検出器、
17…プリアンプ、18…データ処理装置、19
…表示装置、20…ビームストツパ、21…試料
注入装置、22…超純水ライン、23…試料導入
路、24…試料排出路、25…散乱光、26…光
学窓(入射用)、27…光学窓(散乱光検出用)、
28…試料流路、29…試料排出管、30…試料
流入管。
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a configuration diagram of an embodiment of the invention, Fig. 3 is a perspective view showing the structure of a cell used in the embodiment, and Fig. 4 is a diagram of the present embodiment. FIG. 5 is a graph showing the results of counting polystyrene particles of 0.085 μm, and FIG. 5 is a graph showing the results of measuring the particle size distribution. Explanation of symbols 1... Laser light for detection, 2... Laser light for destroying/vaporizing particles or turning into plasma, 3...
Particle, 4... Bubbles, 5... Scattered light from bubbles, 6... Detector of scattered light, 7... Laser for destruction, 8... Laser for detection, 9... Optical system, 10... Half mirror, 11...
Cell, 12a, 12b... Branched light, 13... Prism, 14... Photodetector (for monitoring), 15... Preamplifier (for monitoring), 16... Photodetector for detecting scattered light,
17...Preamplifier, 18...Data processing device, 19
...Display device, 20... Beam stopper, 21... Sample injection device, 22... Ultrapure water line, 23... Sample introduction path, 24... Sample discharge path, 25... Scattered light, 26... Optical window (for incidence), 27... Optical window (for scattered light detection),
28...Sample channel, 29...Sample discharge tube, 30...Sample inflow tube.
Claims (1)
段、試料液中の粒子状物質から散乱された光を検
出するための光検出器、検出器からの信号を処理
する信号処理装置から成る液中微粒子検出装置に
おいて、前記試料液中の前記検出用レーザ光が照
射する部位に破壊用レーザ光を照射し、該試料液
中の粒子状物質を気化またはプラズマ化させ、あ
るいは該粒子状物質の周囲の液体を気化またはプ
ラズマ化させる手段を備え、該気化またはプラズ
マ化により発生した気泡からの散乱光を光検出器
で検出するように構成したことを特徴とする光散
乱式液中微粒子検出装置。 2 散乱を発生させるための光と、上記粒子ある
いは該粒子の周囲の液体を気化またはプラズマ化
させるため光が同一である特許請求の範囲第1項
の光散乱式液中微粒子検出装置。[Scope of Claims] 1. Light irradiation means for irradiating a sample liquid with a detection laser beam, a photodetector for detecting light scattered from particulate matter in the sample liquid, and processing a signal from the detector. In an in-liquid particulate detection device comprising a signal processing device, a portion of the sample liquid that is irradiated with the detection laser beam is irradiated with a destructive laser beam, and particulate matter in the sample liquid is vaporized or turned into plasma; Alternatively, light scattering is characterized in that it is equipped with a means for vaporizing or turning into plasma the liquid surrounding the particulate matter, and is configured to detect scattered light from bubbles generated by the vaporization or turning into plasma with a photodetector. Type liquid particle detection device. 2. The light scattering type in-liquid microparticle detection device according to claim 1, wherein the light for causing scattering is the same as the light for vaporizing or turning the particles or the liquid surrounding the particles into plasma.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61289435A JPS63142234A (en) | 1986-12-04 | 1986-12-04 | Light scattering type apparatus for detecting fine particle in liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61289435A JPS63142234A (en) | 1986-12-04 | 1986-12-04 | Light scattering type apparatus for detecting fine particle in liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63142234A JPS63142234A (en) | 1988-06-14 |
JPH0547062B2 true JPH0547062B2 (en) | 1993-07-15 |
Family
ID=17743212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61289435A Granted JPS63142234A (en) | 1986-12-04 | 1986-12-04 | Light scattering type apparatus for detecting fine particle in liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63142234A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658659A (en) * | 1979-10-18 | 1981-05-21 | Nippon Steel Corp | Measuring method of grain size of steel material using pulse laser light |
JPS58109875A (en) * | 1981-12-24 | 1983-06-30 | Yukio Tokumitsu | Air bubble detecting method using laser light |
-
1986
- 1986-12-04 JP JP61289435A patent/JPS63142234A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5658659A (en) * | 1979-10-18 | 1981-05-21 | Nippon Steel Corp | Measuring method of grain size of steel material using pulse laser light |
JPS58109875A (en) * | 1981-12-24 | 1983-06-30 | Yukio Tokumitsu | Air bubble detecting method using laser light |
Also Published As
Publication number | Publication date |
---|---|
JPS63142234A (en) | 1988-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3624835A (en) | Microparticle analyzer employing a spherical detector array | |
JPH05508934A (en) | laser radar equipment | |
Moulin et al. | Photon-photon elastic scattering in the visible domain | |
WO1993003384A1 (en) | Laser radar device | |
JPH0894517A (en) | Concentration measuring method and device for absorption component of scattering absorption body | |
KR890016374A (en) | Method and device for analyzing particulate matter and application system of the device | |
US20230087059A1 (en) | Optical isolator stabilized laser optical particle detector systems and methods | |
US3920336A (en) | System for intensification of weak absorption and collection of weak light emission | |
JPH0670611B2 (en) | Fluid inspection device | |
David et al. | Polarization-resolved exact light backscattering by an ensemble of particles in air | |
JPH0479570B2 (en) | ||
RU2370752C1 (en) | Device for measuring distribution of size and concentration of nanoparticles in liquids and gases | |
JPH0547062B2 (en) | ||
US6522405B2 (en) | Method and apparatus for monitoring sub-micron particles | |
US5122752A (en) | Method of and apparatus for analyzing granular materials | |
Atutov et al. | Light-induced diffusive pulling (pushing) of lithium atoms into a laser beam. Measurement of diffusion coefficients of lithium in 2P and 2S states in noble gases | |
Rose et al. | Combustion diagnostics by photo-deflection spectroscopy | |
JPH0226054Y2 (en) | ||
Schweiger | Raman scattering on moving microparticles: calculation and measurement of the first and second moments | |
JPH1078444A (en) | Method and apparatus for measuring | |
Martin et al. | A real-time delay monitor for flow-system cell sorters. | |
SU692353A1 (en) | Photoelectric device for measuring dimensions and concentration of aerosol particles | |
JPS61144548A (en) | Fine particle counting device | |
SU1728742A1 (en) | Optical method for testing volume content of particles in solution | |
JPH0227235A (en) | Apparatus for measuring fine particle in liquid |