JPH054692Y2 - - Google Patents

Info

Publication number
JPH054692Y2
JPH054692Y2 JP1986087756U JP8775686U JPH054692Y2 JP H054692 Y2 JPH054692 Y2 JP H054692Y2 JP 1986087756 U JP1986087756 U JP 1986087756U JP 8775686 U JP8775686 U JP 8775686U JP H054692 Y2 JPH054692 Y2 JP H054692Y2
Authority
JP
Japan
Prior art keywords
electrode
battery
electrodes
laminated
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986087756U
Other languages
Japanese (ja)
Other versions
JPS62200251U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986087756U priority Critical patent/JPH054692Y2/ja
Publication of JPS62200251U publication Critical patent/JPS62200251U/ja
Application granted granted Critical
Publication of JPH054692Y2 publication Critical patent/JPH054692Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Hybrid Cells (AREA)

Description

【考案の詳細な説明】 A 産業上の利用分野 この考案は、電力貯蔵用電池のうち亜鉛−臭素
電池に関し、とくに、この電池を用いた電気自動
車用電池に関するものである。
[Detailed Description of the Invention] A. Field of Industrial Application This invention relates to a zinc-bromine battery among power storage batteries, and particularly relates to an electric vehicle battery using this battery.

B 考案の概要 この考案は、電解液循環型の高電圧用亜鉛−臭
素電池に関するもので、積層セルを複数個機械的
に並列に配置すると共に、積層セルの一方側の端
部の電極を共通電極として一体的に形成し、他方
側の端部の電極を夫々端子付き電極として、同一
端部側に配置することにより、電気自動車などへ
適用する場合の端子配置を同一方向にすることを
可能とするとともに、所定電力に対して大幅にコ
ンパクトな高電圧用バイポーラ積層亜鉛−臭素電
池を提供するものである。
B. Overview of the invention This invention relates to a high-voltage zinc-bromine battery with electrolyte circulation, in which multiple stacked cells are mechanically arranged in parallel, and the electrodes at one end of the stacked cells are shared. By integrally forming the electrodes and placing the electrodes at the other end as electrodes with terminals on the same end, it is possible to arrange the terminals in the same direction when applied to electric vehicles, etc. In addition, the present invention provides a high-voltage bipolar stacked zinc-bromine battery that is significantly more compact for a given power.

C 従来の技術 近年、電気自動車用電池の開発が各国で盛んに
行われている。社会への電気自動車の普及はいか
に性能が良く、安価でコンパクトな電池が開発さ
れるかにかかつている。各種新型電池の中で、亜
鉛−臭素電池は上記の要求を満足するものとして
注目されている。しかしながら本電池は、従来の
鉛電池の構成と異なり、バイポーラ積層方式を用
いて電圧を高める必要がある。従つて電気自動車
用モータ(直流モータ)の稼動を行わせる電源と
して使用する場合は、DC100VやDC200Vが必要
である。亜鉛−臭素電池でこの様な高電圧を得る
ためには、上述のバイポーラ方式で積層すること
になる。
C. Prior Art In recent years, the development of batteries for electric vehicles has been actively carried out in various countries. The spread of electric vehicles in society depends on the development of high-performance, inexpensive, and compact batteries. Among various new types of batteries, zinc-bromine batteries are attracting attention as they meet the above requirements. However, unlike the configuration of conventional lead-acid batteries, this battery requires the use of a bipolar stacking method to increase the voltage. Therefore, when used as a power source for operating an electric vehicle motor (DC motor), 100V DC or 200V DC is required. In order to obtain such a high voltage with a zinc-bromine battery, the above-mentioned bipolar method is used to stack the batteries.

第6図は従来のバイポーラ方式での電極の積層
方法の斜視説明図である。図において、1は中間
電極(板)、2はセパレータとして用いる隔膜、
3及び3aは端子付電極、4及び4aは絶縁物で
なる端板、5は積層セルスタツクを押圧して組立
るための締付通しボルト、6及び7は電解液の流
出入力である。
FIG. 6 is a perspective view illustrating a conventional bipolar method for stacking electrodes. In the figure, 1 is an intermediate electrode (plate), 2 is a diaphragm used as a separator,
3 and 3a are electrodes with terminals, 4 and 4a are end plates made of insulators, 5 is a tightening bolt for pressing and assembling the laminated cell stack, and 6 and 7 are electrolyte outflow inputs.

第5図は第6図に示したバイポーラ積層方式に
よる電解液循環形の亜鉛−臭素電池の模式説明図
である。図において、第6図に示した以外の部品
番号では、8は負極用電解液タンク、9は正極用
電解タンク、10は負極電解液循環流路、11は
正極電解液循環流路であり、12及び13は電解
液循環用のポンプである。この電池の動作及び構
成はすでに衆知であるので説明は省略する。
FIG. 5 is a schematic explanatory diagram of the zinc-bromine battery of electrolyte circulation type using the bipolar stacking method shown in FIG. 6. In the figure, the part numbers other than those shown in FIG. 6 are: 8 is a negative electrode electrolyte tank, 9 is a positive electrode electrolyte tank, 10 is a negative electrode electrolyte circulation flow path, 11 is a positive electrode electrolyte circulation flow path, 12 and 13 are pumps for electrolyte circulation. Since the operation and structure of this battery are already well known, the explanation thereof will be omitted.

D 考案が解決しようとする問題点 上記のような従来の電極積層方法では、例えば
DC200Vを得る場合、1セル当たりの電圧を1.6V
とすると125セルの積層が必要になる。このよう
な多数のセルを積層する事は積層工数がかかり、
且つ安定した信頼性の高い電池を組立てることは
さほど簡単ではなく品質管理上にも問題がある。
しかも第5図及び第6図で分かるように、正極端
子と負極端子が各々両側に分離されるため、電気
自動車に設置する場合の端子配置が極めて不都合
であり、取扱いの点からも問題がある。
D Problems to be solved by the invention In the conventional electrode lamination method as described above, for example,
When obtaining DC200V, the voltage per cell is 1.6V
This would require a stack of 125 cells. Laminating such a large number of cells requires a lot of lamination man-hours,
Furthermore, it is not so easy to assemble a stable and highly reliable battery, and there are also problems in terms of quality control.
Furthermore, as can be seen in Figures 5 and 6, the positive and negative terminals are separated on both sides, which makes the terminal arrangement extremely inconvenient when installed in an electric vehicle, and there are also problems in terms of handling. .

E 問題点を解決するための手段 この考案は上記の問題点を解決するためになさ
れたもので、複数個の電極板及び隔膜板を交互に
配置して所定数の単セルで構成する積層セルと、
該積層セルの端部に設けた正極及び負極の端子付
き電極板とを有する電解液循環型バイポーラ積層
亜鉛−臭素電池において、前記積層セルを複数個
機械的に並列に配置すると共に、該積層セルの一
方側の端部の電極を共通電極として一体的に形成
し、他方側の端部の電極を夫々端子付き電極とし
て、同一端部側に配置した高電圧用亜鉛−臭素電
池を得るものである。
E. Means for solving the problem This invention was made to solve the above problem, and is a laminated cell consisting of a predetermined number of single cells by alternately arranging a plurality of electrode plates and diaphragm plates. and,
In the electrolyte circulation type bipolar laminated zinc-bromine battery having an electrode plate with a positive electrode and a negative electrode terminal provided at the end of the laminated cell, a plurality of the laminated cells are mechanically arranged in parallel, and the laminated cell A high-voltage zinc-bromine battery is obtained in which the electrodes at one end of the battery are integrally formed as a common electrode, and the electrodes at the other end are respectively provided with terminals, and are arranged on the same end side. be.

F 作用 この考案においては、積層セルを複数個機械的
に並列に配置すると共に、該積層セルの一方側の
端部の電極を共通電極として一体的に形成し、他
方側の端部の電極を夫々端子付き電極としている
ので、従来異方向に取出していた端子付電極を同
一方向に配置することが可能となり、電池全体を
コンパクトに組立てることができるとともに、端
子の配置構成を実用上著しく簡素化せしめ、設計
配置の自由度を大きくすることができる。
F Effect In this invention, a plurality of laminated cells are mechanically arranged in parallel, and the electrode at one end of the laminated cell is integrally formed as a common electrode, and the electrode at the other end is formed integrally. Since each electrode has a terminal, it is now possible to arrange the electrodes with terminals in the same direction, whereas conventionally they were taken out in different directions.This allows the entire battery to be assembled compactly, and the arrangement of the terminals is significantly simplified in practical terms. As a result, the degree of freedom in design and layout can be increased.

G 考案の実施例 第1図は本考案による一実施例を示す高電圧用
亜鉛−臭素電池の電極積層構成の模式説明図であ
る。図において、1〜3,3aは第5図と同一で
あり、14は端板電極である。端板電極14に
+、−で示した2つの相隣る電極面を単セルとし
て使用することができるので、図のように、端板
電極(共通電極)面で折り返し積層することが可
能であり、電池の負極端子付電極3及び正極端子
付電極3aを同一方向に配置させ、全体としてコ
ンパクトな電池が構成される。なお、放電電流
は、負極(極)3から積層セルを通り、端板電
極14で折り返して正極(極)3aの方へ流れ
る。
G. Embodiment of the invention FIG. 1 is a schematic explanatory diagram of an electrode lamination structure of a high-voltage zinc-bromine battery showing an embodiment of the invention. In the figure, 1 to 3, 3a are the same as in FIG. 5, and 14 is an end plate electrode. Since the two adjacent electrode surfaces indicated by + and - on the end plate electrode 14 can be used as a single cell, it is possible to fold and stack the end plate electrode (common electrode) surface as shown in the figure. In this case, the electrode 3 with a negative terminal and the electrode 3a with a positive terminal of the battery are arranged in the same direction, and a compact battery is constructed as a whole. Note that the discharge current passes through the laminated cell from the negative electrode (electrode) 3, turns around at the end plate electrode 14, and flows toward the positive electrode (electrode) 3a.

第1図に示した積層方法を採用したことによ
り、前記の125セル分の積層長を半分の63セル分
の積層長ですませることができ、しかも電圧は
DC200Vが得られる。また、電池の正極及び負極
が同じ側に取出せるので、電気自動車に搭載する
場合にも端子処理がきわめて簡単である。
By adopting the stacking method shown in Figure 1, the stacking length of 125 cells can be reduced to half the stacking length of 63 cells, and the voltage is
DC200V can be obtained. Furthermore, since the positive and negative electrodes of the battery can be taken out on the same side, terminal processing is extremely simple when mounting the battery in an electric vehicle.

また、第2図には第1図の方式を拡張して、第
1図の積層構成を端板電極を中心に左右対称に配
置する方式の積層構成を示した。図において、1
4aは端板電極14の表裏に4個の電極面を設け
たセンタ電極(共通電極)である。図のように、
このセンタ電極14aを用いて、スタツクを2分
割し(各32セル)、両スタツクを直列及び並列の
いずれに対しても外部接続により電池構成が可能
となるものである。
Further, FIG. 2 shows a laminated structure in which the laminated structure shown in FIG. 1 is arranged symmetrically with respect to the end plate electrodes, which is an extension of the method shown in FIG. 1. In the figure, 1
4a is a center electrode (common electrode) provided with four electrode surfaces on the front and back sides of the end plate electrode 14. As shown,
Using this center electrode 14a, the stack can be divided into two (32 cells each), and both stacks can be connected externally in either series or parallel to form a battery configuration.

第3図は、一例として第1図に示した積層方法
による電池の充・放電特性を示すグラフである。
図において、横軸は充・放電時間、縦軸は電池の
正・負極すなわち端子間の電圧を示した。6時間
充電したのち、直ちに6時間放電を行つた。この
場合、前述のように外観上は63セル積層である
が、放電時にDC200Vが維持され、しかも安定し
た放電電圧が得られ、良好の結果を示した。
FIG. 3 is a graph showing, as an example, the charge/discharge characteristics of a battery obtained by the lamination method shown in FIG. 1.
In the figure, the horizontal axis shows the charging/discharging time, and the vertical axis shows the voltage between the positive and negative electrodes of the battery, that is, the voltage between the terminals. After charging for 6 hours, the battery was immediately discharged for 6 hours. In this case, although the external appearance was 63 cells stacked as described above, DC 200V was maintained during discharge, and a stable discharge voltage was obtained, showing good results.

第4図は上記センタ電極14aの電極の正面図
を示した。図において、破線で示した部分の内側
はCP(カーボンプラスチツク)電極であり、16
は下部注入口(4個)を示す電解液のマニホール
ドである。図において、例えばA面を負極とした
場合はその裏側は反対側スタツクの正極面であ
り、B面を正極とするときはその裏面は負極面と
して用いられる。各電極面とも、この場合の電極
実効面積は400cm2である。なお、端板電極14と
して用いる場合は、第4図の片面だけのA,B面
のみを電極面として使用する。
FIG. 4 shows a front view of the center electrode 14a. In the figure, inside the part indicated by the broken line is a CP (carbon plastic) electrode, which is 16
is an electrolyte manifold showing the lower injection ports (four). In the figure, for example, when side A is used as a negative electrode, its back side is the positive electrode side of the opposite stack, and when side B is used as a positive electrode, its back side is used as the negative electrode side. The effective area of each electrode surface in this case is 400 cm 2 . When used as the end plate electrode 14, only one surface A and B in FIG. 4 are used as electrode surfaces.

H 考案の効果 この考案は以上説明したとおり、亜鉛−臭素電
池の電極の積層を並列的に行うことによつて、電
池端子が同じ側に取出せるので、実用面での端子
処理が従来電池より著しく簡易化された。
H. Effects of the invention As explained above, this invention allows the electrodes of zinc-bromine batteries to be stacked in parallel so that the battery terminals can be taken out on the same side, making terminal processing easier in practical terms than for conventional batteries. Significantly simplified.

また、上記実施例に示したいずれのスタツク形
式に用いる中間電極、端板電極及びセンタ電極に
おいても、電極製造は同時に行うことができ、製
造工数も約1/2になる利点を有する。
Further, in the intermediate electrode, end plate electrode, and center electrode used in any of the stack types shown in the above embodiments, the electrodes can be manufactured simultaneously, which has the advantage of reducing the number of manufacturing steps to about 1/2.

さらに、この積層方式の採用により、本電池で
高電圧直流を得る場合においても、電池全体がコ
ンパクトになり、とくに、積層長さが約1/2とな
ることによつて、実用上の設計配置の自由度が大
きくなつたという効果がある。
Furthermore, by adopting this stacking method, even when obtaining high voltage direct current with this battery, the entire battery becomes compact, and in particular, the stacking length is reduced to approximately 1/2, making it easier to use for practical design layout. This has the effect of increasing the degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す端板電極を用
いた電極の積層方法による亜鉛−臭素電池の電池
電極の配置説明図、第2図は本考案の他の実施例
を示すセンタ電極を用いた電極積層方法による亜
鉛−臭素電池の電極配置説明図、第3図は第1図
の方式による電池の充・放電特性図、第4図は上
記センタ電極の正面概略図、第5図は従来のバイ
ポーラ積層による高電圧用亜鉛−臭素電池の構成
説明図、第6図は従来方式のバイポーラ積層方法
における電極配置を示す斜視説明図である。
Fig. 1 is an explanatory diagram of the arrangement of battery electrodes in a zinc-bromine battery using an electrode stacking method using end plate electrodes, showing one embodiment of the present invention, and Fig. 2 is a center electrode showing another embodiment of the present invention. 3 is a diagram showing the charging/discharging characteristics of a battery using the method shown in FIG. 1, FIG. 4 is a schematic front view of the center electrode, and FIG. 6 is an explanatory diagram of the configuration of a high-voltage zinc-bromine battery using conventional bipolar lamination, and FIG. 6 is a perspective explanatory diagram showing the electrode arrangement in the conventional bipolar lamination method.

Claims (1)

【実用新案登録請求の範囲】 (1) 複数個の電極板及び隔膜板を交互に配置して
所定数の単セルで構成する積層セルと、該積層
セルの端部に設けた正極及び負極の端子付き電
極板とを有する電解液循環型バイポーラ積層亜
鉛−臭素電池において、 前記積層セルを複数個機械的に並列に配置す
ると共に、該積層セルの一方側の端部の電極を
共通電極として一体的に形成し、他方側の端部
の電極を夫々端子付き電極として、同一端部側
に配置したことを特徴とする高電圧用亜鉛−臭
素電池。 (2) 前記一方側の端部の電極が、該電極を介して
隣接する他の複数個機械的に並列に配置された
積層セルの一方の端部の電極と共通であること
を特徴とする実用新案登録請求の範囲第1項に
記載の高電圧用亜鉛−臭素電池。
[Claims for Utility Model Registration] (1) A laminated cell composed of a predetermined number of single cells by alternately arranging a plurality of electrode plates and diaphragm plates, and a positive electrode and a negative electrode provided at the ends of the laminated cell. In an electrolyte circulation type bipolar laminated zinc-bromine battery having an electrode plate with a terminal, a plurality of the laminated cells are mechanically arranged in parallel, and an electrode at one end of the laminated cells is integrated as a common electrode. 1. A high-voltage zinc-bromine battery, characterized in that the electrodes at the other end are electrodes with terminals and are arranged at the same end. (2) The electrode at the one end is common to the electrode at one end of a plurality of other stacked cells mechanically arranged in parallel with each other through the electrode. A high-voltage zinc-bromine battery according to claim 1 of the utility model registration claim.
JP1986087756U 1986-06-11 1986-06-11 Expired - Lifetime JPH054692Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986087756U JPH054692Y2 (en) 1986-06-11 1986-06-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986087756U JPH054692Y2 (en) 1986-06-11 1986-06-11

Publications (2)

Publication Number Publication Date
JPS62200251U JPS62200251U (en) 1987-12-19
JPH054692Y2 true JPH054692Y2 (en) 1993-02-05

Family

ID=30945251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986087756U Expired - Lifetime JPH054692Y2 (en) 1986-06-11 1986-06-11

Country Status (1)

Country Link
JP (1) JPH054692Y2 (en)

Also Published As

Publication number Publication date
JPS62200251U (en) 1987-12-19

Similar Documents

Publication Publication Date Title
TWI277231B (en) Secondary battery pack having configuration of alternative orientation
US5114807A (en) Lightweight bipolar storage battery
US8263249B2 (en) Foldable battery cartridge and middle or large-sized battery module
JP3596537B2 (en) Connection structure of thin battery and assembled battery
EP3381078B1 (en) Cross-woven electrode assembly
KR19990054989A (en) Bipolar battery
US11322809B2 (en) Cell module that stores electrical energy, battery and housing
KR102657580B1 (en) Battery module having a transformable serial-parallel connection structure and Method for assembling the same
US20240106055A1 (en) Structural Battery for Electric Vehicle
KR100316403B1 (en) Lithium polymer battery for electric vehicle or hybrid electric vehicle
JPH054692Y2 (en)
JPH0660905A (en) Collected fuel cell
JPH01195673A (en) Cell
CA2270746A1 (en) The improved combining structure between the battery electrode plates and the battery case
JPH05198296A (en) Sealed lead acid battery
JPH09231993A (en) Cylinder battery
EP0264862B1 (en) Plate assembly for a lead-acid battery
JPH0227670A (en) Fuel cell
JP3574514B2 (en) Redox flow type secondary battery system
CN220963432U (en) Battery cell
JPH0449753B2 (en)
CN215070082U (en) Battery core with laminated structure and high-voltage lithium battery
CN219739238U (en) Battery pack
KR102213375B1 (en) Electrode-current collector assembly and redox flow battery including the same
JPS6331486Y2 (en)