JPH0546206A - Learning control system - Google Patents

Learning control system

Info

Publication number
JPH0546206A
JPH0546206A JP3223437A JP22343791A JPH0546206A JP H0546206 A JPH0546206 A JP H0546206A JP 3223437 A JP3223437 A JP 3223437A JP 22343791 A JP22343791 A JP 22343791A JP H0546206 A JPH0546206 A JP H0546206A
Authority
JP
Japan
Prior art keywords
trial
time
equation
control input
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3223437A
Other languages
Japanese (ja)
Other versions
JP3039814B2 (en
Inventor
Yuji Nakamura
裕司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP3223437A priority Critical patent/JP3039814B2/en
Publication of JPH0546206A publication Critical patent/JPH0546206A/en
Application granted granted Critical
Publication of JP3039814B2 publication Critical patent/JP3039814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To perform the high precise follow-up action by correcting a control input so that the weighted squares sum of the predicted value of a future deviation can be minimum and considering the future correction quantity then. CONSTITUTION:A trial is repeated so as to follow the output of a control object to a target command to repeat the same pattern, and a control input uk(i) at time (i) for the k-th trial is given by an expression I. In the expression I, sigmak(i) is a correction quantity from a previous control input uk-1, sigmap(i) is a correction quantity inputted until reaching the present time, eL(i) is a follow-up deviation at the previous trail, wh1 is the information concerning the dynamic characteristic of the controlled variable and a constant decided by the weighted matrix multiplied to the predicted value of the future follow-up deviation, HF and HP are the constant decided by the information concerning the dynamic characteristic of the controlled variable and W is the weighted matrix multiplied to the predicted value of the future follow-up deviation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繰り返し動作をする工
作機械、ロボット等の制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system for machine tools, robots and the like that repeatedly operate.

【0002】[0002]

【従来の技術】繰り返し目標値に対する学習制御系の設
計法としては、本出願人が特開平1-237701号公報におい
て、提案した方式がある。この方式は、同じ目標値に対
する動作を繰り返し、過去の偏差および制御対象の動特
性に関する情報をもとに未来の偏差を予測し、その予測
値の重み付き2乗和を評価関数として、その評価関数が
最小となるように制御入力を補正していくというもの
で、最終的には目標値と出力が一致するため、高精度な
追従動作が実現される。
2. Description of the Related Art As a method of designing a learning control system for a repetitive target value, there is a method proposed by the present applicant in Japanese Patent Laid-Open No. 1-237701. This method repeats the operation for the same target value, predicts the future deviation based on the information about the past deviation and the dynamic characteristics of the controlled object, and evaluates the weighted sum of squares of the predicted value as an evaluation function. The control input is corrected so that the function becomes the minimum. Finally, the target value and the output match, so that highly accurate follow-up operation is realized.

【0003】[0003]

【発明が解決しようとする課題】上述の方式では、現在
時刻以降の補正量は現在時刻の値から変化しないと仮定
した上で、未来の偏差を予測し現在の補正量を決定して
いた。しかし、補正量は実際には変化するため、偏差の
予測値がずれてしまい、精度が悪化するうという問題が
あった。そこで本発明は、偏差の予測をより正確に行え
る制御方式を提供することを目的とする。
In the above-mentioned method, it is assumed that the correction amount after the present time does not change from the value at the present time, and the future deviation is predicted to determine the present correction amount. However, since the correction amount actually changes, there is a problem that the predicted value of the deviation deviates and the accuracy deteriorates. Therefore, it is an object of the present invention to provide a control method capable of more accurately predicting deviation.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決するた
め、本願請求項1、2、3記載の発明では、現在時刻以
降の補正量の変化も考慮した上で未来の偏差を予測して
おり、それぞれ次のような特徴を持つ。本願の請求項1
記載の発明では、同じパターンを繰り返す目標指令に制
御対象の出力を追従させるよう試行を繰り返し、k回目
の試行の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i) σk (i) = wh1F T W[ eL (i)-HP σp (i)] ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 σP (i):現在時刻に至るまでに入力してきた補正量 eL (i):前回の試行における追従偏差 wh1: 制御対象の動特性に関する情報と、未来の追従偏
差の予測値に掛ける重み行列によって決定される定数 HF,p : 制御対象の動特性に関する情報によって決定
される定数 W: 未来の追従偏差の予測値にかける重み行列 である。 で与えることを特徴としている。本願の請求項2記載の
発明では、同じパターンを繰り返す目標指令に制御対象
の出力を追従させるよう試行を繰り返し、k回目の試行
の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i)
In order to solve the above problems, in the inventions according to claims 1, 2, and 3, the future deviation is predicted in consideration of the change in the correction amount after the current time. And each has the following features. Claim 1 of the present application
In the described invention, the trial is repeated so that the output of the controlled object follows the target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is given by the following equation u k (i) = u k-1 (i) + σ k (i) σ k (i) = w h1 H F T W [e L (i) -HP P σ p (i)] where σ k (i): previous Correction amount from control input u k-1 (i) σ P (i): Correction amount that has been input until the current time e L (i): Tracking deviation in the previous trial wh1 : Dynamic characteristic of control target And a constant HF , H p determined by a weight matrix for multiplying the predicted value of the future tracking deviation, a constant W determined by information about the dynamic characteristics of the controlled object W: a weight applied to the predicted value of the future tracking deviation Is the matrix. It is characterized by giving in. In the invention according to claim 2 of the present application, the trial is repeated so that the output of the controlled object follows the target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is expressed by the following equation u k (i) = u k-1 (i) + σ k (i)

【0005】[0005]

【数4】 [Equation 4]

【0006】ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 ek (i):k 回目の試行の時刻iにおける追従偏差 pm ,fn : 制御対象のステップ応答のサンプル値と、
未来の追従偏差の予測値に掛ける重み行列によって決定
される定数 である。 で与えることを特徴としている。本願の請求項3記載の
発明では、同じパターンを繰り返す目標指令に制御対象
の出力を追従させるよう試行を繰り返し、k回目の試行
の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i)
[0006] However, σ k (i): the previous correction amount e k from the control input u k-1 (i) of (i): tracking error at time i of the k-th trial p m, f n: the control object A sample value of the step response of
It is a constant determined by the weight matrix that is used to multiply the predicted value of future tracking deviation. It is characterized by giving in. In the invention according to claim 3 of the present application, the trial is repeated so that the output of the controlled object follows the target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is expressed by the following equation u k (i) = u k-1 (i) + σ k (i)

【0007】[0007]

【数5】 [Equation 5]

【0008】ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 ek (i):k回目の試行の時刻iにおける追従偏差 ΔH n : 制御対象のステップ応答のサンプル値の差分値 である。 で与えることを特徴としている。Where σ k (i): correction amount from the previous control input u k-1 (i) e k (i): tracking deviation at time i of the k-th trial ΔH n : step response of the controlled object It is the difference value of the sample value of. It is characterized by giving in.

【0009】[0009]

【作用】上記手段により、未来の追従偏差の予測がより
精確になり学習性能が向上する。
By the above means, the prediction of the future tracking deviation becomes more accurate and the learning performance is improved.

【0010】[0010]

【実施例】本発明は目標指令が一定周期で連続的に繰り
返す場合にも適用可能であるが、制御入力を決定する際
に偏差の現在値を利用しないため、各試行を間欠的に行
い、各試行間に次の1試行分の制御入力をオフライン的
にまとめて算出することも可能である。ここでは、後者
の場合について本発明の具体的実施例を図を用いて説明
する。図1は本願請求項1記載の発明の実施例である。
図中1は同じパターンを間欠的に発生する指令発生器で
あり、1試行分の目標指令値の系列{r(j) } (j=i0,i
0+1,…,in ) を発生する。ここで、i0と in は、試行の
開始時刻と終了時刻である。2は減算器であり、今回の
試行時の偏差の系列{ek (j) } (j=i0,i0+1,…,in )
を出力する。3は、定数行列wh1、HF 、HP 、Wを記
憶するメモリ、4は、今回試行時の補正量σk (j)(j=
i0,i0+1,…,in ) を記憶するメモリ、5は、前回の試行
時の偏差ek-1 (j)(j=i0,i0+1,…,in ) を記憶するメモ
リであり、今回の試行の際には、減算器2の出力値すな
わち偏差のek (j)(j=i0,i0+1,…,in ) が記憶される。
6は演算器であり、 σk (i) = wh1F T W[ eL (i)-HP σP (i)] (1a) なる演算によって、時刻iにおける補正量σk (i) を算
出し、さらに、 uk (i) = uk-1 (i) + σk (i) により、今回の試行時の制御入力uk (j) (j=i0,i0+1,
…,in ) を求め出力する。
The present invention is applicable to the case where the target command is continuously repeated at a constant cycle, but since the current value of the deviation is not used when determining the control input, each trial is performed intermittently. It is also possible to collectively calculate the control inputs for the next one trial offline between each trial. Here, the latter case will be described using a specific embodiment of the present invention with reference to the drawings. FIG. 1 shows an embodiment of the invention described in claim 1 of the present application.
In the figure, 1 is a command generator that intermittently generates the same pattern, and is a series of target command values for one trial {r (j)} (j = i 0 , i
0 +1, ..., i n ) is generated. Here, i 0 and i n are the start time and end time of the trial. Reference numeral 2 denotes a subtracter, which is a series of deviations at the time of this trial {e k (j)} (j = i 0 , i 0 +1, ..., i n )
Is output. 3, the constant matrix w h1, H F, H P , a memory for storing W, 4, the correction amount at the time of this trial σ k (j) (j =
i 0 , i 0 +1, ..., i n ) is a memory for storing the deviation e k-1 (j) (j = i 0 , i 0 +1, ..., i n ) from the previous trial. Is a memory for storing the output value of the subtracter 2, that is, the deviation e k (j) (j = i 0 , i 0 +1, ..., i n ) is stored in this trial.
6 is a calculator, σ k (i) = w h1 H F T W [e L (i) -H P σ P (i)] by (1a) becomes operational, the correction amount at time i σ k (i ), And further, by using u k (i) = u k-1 (i) + σ k (i), the control input u k (j) (j = i 0 , i 0 +1) at the time of this trial is calculated. ,
…, I n ), and output.

【0011】7は、1試行分の制御入力を記憶するメモ
リで、前回の試行時には前回の試行時の入力uk-1 (j)
(j=i0,i0+1,…,in ) が記憶されており、前回の試行が
終了した後に、演算器6によって算出される今回の試行
時の入力uk (j)(j=i0,i0+1,…,in ) が記憶され、今回
の試行の際に出力される。8、9はサンプリング周期T
で閉じるサンプラであり、10はホールド回路である。
11は入力がu(t) で出力がy(t) の制御対象である。
図2は本願請求項2記載の発明の実施例である。図中2
3は、定数p1 、p2 、・・・ 、pM 、f1 、f2 、・・・
、fN-1 を記憶するメモリ、26は演算器であり、
Reference numeral 7 is a memory for storing the control input for one trial. At the previous trial, the input u k-1 (j) at the previous trial
(j = i 0 , i 0 +1, ..., i n ) is stored, and the input u k (j) (j) of the present trial calculated by the computing unit 6 after the previous trial is finished. = i 0 , i 0 +1, ..., i n ) is stored and output at the time of this trial. 8 and 9 are sampling periods T
And 10 is a hold circuit.
Reference numeral 11 is a control target whose input is u (t) and whose output is y (t).
FIG. 2 shows an embodiment of the invention described in claim 2 of the present application. 2 in the figure
3 is a constant p 1 , p 2 , ..., P M , f 1 , f 2 ,.
, F N-1 is a memory for storing, and 26 is a computing unit,

【0012】[0012]

【数6】 [Equation 6]

【0010】なる演算によって、時刻iにおける補正量
σk (i) を算出し、さらに、 uk (i) = uk-1(i) +σk (i) により、今回の試行時の制御入力uk (j) (j=i0,i0+1,
, i n ) を求め出力する。図3は本願請求項3記載の
発明の実施例である。図中33は、制御対象のステップ
応答のサンプリング値の差分値Δ Hd , Δ Hd+1,…, Δ
HN を記憶するメモリ、37は演算器であり、
[0010] By comprising computing, calculates the correction amount σ k (i) at time i, further by u k (i) = u k -1 (i) + σ k (i), the control at the time of this trial Input u k (j) (j = i 0 , i 0 +1,
..., to obtain and output i n). FIG. 3 is an embodiment of the invention described in claim 3 of the present application. In the figure, 33 is the difference value ΔH d , ΔH d + 1 , ..., Δ of the sampling values of the step response of the controlled object.
A memory for storing H N , 37 is a computing unit,

【0013】[0013]

【数7】 [Equation 7]

【0014】なる演算によって、時刻iにおける補正量
σk (i) を算出し、さらに、 uk (i) = uk-1 (i) + σk (i) により、今回の試行時の制御入力uk (j) (j=i0,i0+1,
, i n ) を求め出力する。(1a)〜(1c)式の導出を行
う。制御対象11はインパルス応答モデルにより、
[0014] By comprising computing, calculates the correction amount σ k (i) at time i, further by u k (i) = u k -1 (i) + σ k (i), the control at the time of this trial Input u k (j) (j = i 0 , i 0 +1,
..., to obtain and output i n). Formulas (1a) to (1c) are derived. The controlled object 11 is based on the impulse response model.

【0015】[0015]

【数8】 [Equation 8]

【0016】と表すことができる。ここでΔ Hn は、前
もって測定された制御対象11の単位ステップ応答のサ
ンプル値{ H1 ,H2, …,HN }(図4)の差分値である
(Δ Hn = Hn - Hn-1 )。Nは応答が十分に整定する
ように、すなわち、Δ Hn ≒0(n>N) となるように選ぶ
ものとし、ΔH0=0 である。さらに、実際の出力y(i)
と(2) 式のモデル出力
It can be expressed as Here, Δ H n is a difference value of sample values {H 1 , H 2 , ..., H N } (FIG. 4) of the unit step response of the controlled object 11 measured in advance (Δ H n = H n- H n-1 ). It is assumed that N is selected so that the response is sufficiently settled, that is, ΔH n ≈0 (n> N), and ΔH 0 = 0. Furthermore, the actual output y (i)
And model output of equation (2)

【0017】[0017]

【数9】 [Equation 9]

【0018】との差、すなわち、推定誤差をd(i) とす
る。
The difference from the above, that is, the estimation error is d (i).

【0019】[0019]

【数10】 [Equation 10]

【0020】いまk回目の試行の、時刻iにおける制御
入力uk (i) を、次式で与えるものとする。 uk (i) = uk-1 (i) + σk (i) (4) ただし、kは試行回数を表わし、σk (i) は前回の制御
入力uk-1 (i) からの補正量である。ここで、未来の追
従偏差の予測値ek * を以下の手順で求める。k回目の
試行の時刻iにおいて、出力yk (i) は、次式で表すこ
とができる。
The control input u k (i) at the time i of the k-th trial is given by the following equation. u k (i) = u k-1 (i) + σ k (i) (4) where k represents the number of trials and σ k (i) is the value from the previous control input u k-1 (i). This is the correction amount. Here, the predicted value e k * of the future tracking deviation is obtained by the following procedure. At the time i of the k-th trial, the output y k (i) can be expressed by the following equation.

【0021】[0021]

【数11】 [Equation 11]

【0022】さらに k-1回目の試行の時刻iにおいて
は、
Further, at time i of the k−1th trial,

【0023】[0023]

【数12】 [Equation 12]

【0024】となる。(5) 式から(6) 式を引くことによ
り、次式を得る。
It becomes The following equation is obtained by subtracting equation (6) from equation (5).

【0025】[0025]

【数13】 [Equation 13]

【0026】である。ここでδk (i) は、出力yk (i)
の、前回試行時の同じ時刻の出力yk- 1 (i) からの変化
分である。さらに、時刻 i+mの出力変化分δk (i+m)は
次式で表される。
[0026] Where δ k (i) is the output y k (i)
Of the output y k- 1 (i) at the same time at the previous trial. Further, the output variation δ k (i + m) at time i + m can be expressed by the following equation.

【0027】[0027]

【数14】 [Equation 14]

【0028】いま、時刻iにおいてMステップ先までの
出力変化分の予測値δk * (i+m) (m=1,2, …,M) を求め
る際に、(2) 式のモデルによる推定誤差は不変、すなわ
ち、dk (i+m) =dk-1(i+m) であると仮定すると、予
測値δk * (i+m) は、(10)式より、
At the time i, when the predicted value δ k * (i + m) (m = 1,2, ..., M) of the output change up to M steps ahead is obtained, the model of the equation (2) is used. Assuming that the estimation error is invariant, that is, d k (i + m) = d k-1 (i + m), the predicted value δ k * (i + m) is

【0029】[0029]

【数15】 [Equation 15]

【0030】となる。δk (i) の定義により、時刻 i+m
における追従偏差ek (i+m) は次式で表される。 ek (i+m) = ek-1(i+m) -δk (i+m) (12) したがって, その予測値ek * (i+m) は次式で与えられ
る。 ek * (i+m) = ek-1(i+m) -δk * (i+m) (13) (11)、(13)式より、偏差の予測値ek * (i+m) は結局
次式で与えられる。
It becomes By the definition of δ k (i), the time i + m
The following deviation e k (i + m) at is expressed by the following equation. e k (i + m) = e k-1 (i + m) -δ k (i + m) (12) Therefore, the predicted value e k * (i + m) is given by the following equation. e k * (i + m) = e k-1 (i + m) -δ k * (i + m) (13) From equations (11) and (13), the predicted value of deviation e k * (i + m) is finally given by the following equation.

【0031】[0031]

【数16】 [Equation 16]

【0032】 書き直すと、 e* (i) = eL (i) - HP σP (i) - HF σF (i) (15) ただし、 e* (i) = [ ek * (i+1),ek * (i+2),…, ek * (i+M) ]T L (i) = [ ek-1(i+1), ek-1(i+2), …, ek-1(i+M) ]T σP (i) = [ σk (i-1),σk (i-2),……, σk (i-N+1) ]T σF (i) = [ σk (i),σk (i+1),…, σk (i+M-1) ]T [0032] rewritten and, e * (i) = e L (i) - H P σ P (i) - H F σ F (i) (15) However, e * (i) = [ e k * (i +1), e k * (i + 2), ..., e k * (i + M)] T e L (i) = [e k-1 (i + 1), e k-1 (i + 2) ),…, Ek-1 (i + M)] T σ P (i) = [σ k (i-1), σ k (i-2), ……, σ k (i-N + 1) ] T σ F (i) = [σ k (i), σ k (i + 1),…, σ k (i + M-1)] T

【0033】[0033]

【数17】 [Equation 17]

【0034】となる。上式より未来の追従偏差の予測値
* (i) は、前回の試行における追従偏差eL (i) 、現
在に至るまでに入力してきた補正量σP (i) 、これから
決定すべき現在時刻以降の補正量σF (i) によって予測
されている。いま、Mステップ未来までの追従偏差の予
測値e* (i) をより小さくするための指標として、次の
評価関数J J = e* (i) T We* (i) = [eL (i)-HP σP (i)-HF σF (i)]T ×W[ eL (i)-HP σP (i) - HF σF (i)] (16)
It becomes From the above equation, the predicted value e * (i) of the future tracking deviation is the tracking deviation e L (i) in the previous trial, the correction amount σ P (i) that has been input up to the present, and the present that should be determined from now. It is predicted by the correction amount σ F (i) after time. Now, as an index in order to further reduce the predicted value e * (i) of the tracking error of up to M-step future, following the evaluation function J J = e * (i) T We * (i) = [e L (i ) -H P σ P (i) -H F σ F (i)] T × W [e L (i) -H P σ P (i)-HF F σ F (i)] (16)

【0035】[0035]

【数18】 [Equation 18]

【0036】を考え、この評価関数Jが最小となるよう
にσF (i) を決定する。ここで wm は、mステップ未来
の追従偏差の予測値ek * (i+m) にかける重み係数であ
り、図5に一例を示す。ただし,wm >0 (m=1,2,…,M) と
する。評価関数(16)を最小にするσF (i) は、重み付き
最小2乗推定により、次式で与えられる。 σF (i) = [ HF T WHF ]-1F T W[ eL (i)-HP σP (i)] (17) したがって、現在決定すべきσk (i) は、次式で与えら
れる。 σk (i) = wh1F T W[ eL (i)-HP σP (i)] (18) ただし、wh1は、行列[ HF T WHF ]-1の1行目であ
り、wh1F T Wは、ステップ応答データ{ Hn }を測
定し、重み行列Wを適当に与えることにより、学習を行
う前にあらかじめ算出できる。したがって、時刻iにお
ける補正量σk (i) z (1a)式に従って決定される。本願
の請求項2記載の発明では、未来の補正量σk (i+2) 以
降は、すべてσk (i+1) と等しいと仮定すると、(15)式
は、 e* (i) = eL (i) - HP σP (i) - HF2σF2(i) (19) σF2(i) = [ σk (i),σk (i+1) ]T
Considering the above, σ F (i) is determined so that this evaluation function J is minimized. Here, w m is a weighting coefficient to be applied to the predicted value e k * (i + m) of the follow-up deviation of m steps in the future, and an example is shown in FIG. However, w m > 0 (m = 1,2,…, M). Σ F (i) that minimizes the evaluation function (16) is given by the following equation by weighted least squares estimation. σ F (i) = [H F T W H F ] -1 H F T W [e L (i) -H P σ P (i)] (17) Therefore, σ k (i) to be currently determined is It is given by the following formula. σ k (i) = w h1 H F T W [e L (i) -H P σ P (i)] (18) where w h1 is the first row of the matrix [H F T W H F ] -1 And w h1 H F T W can be calculated in advance before learning by measuring the step response data {H n } and giving the weight matrix W appropriately. Therefore, the correction amount at time i is determined according to the equation σ k (i) z (1a). In the invention according to claim 2 of the present application, assuming that after the future correction amount σ k (i + 2) is all equal to σ k (i + 1), the equation (15) becomes e * (i) = e L (i)-HP P σ P (i)-HF F2 σ F2 (i) (19) σ F2 (i) = [σ k (i), σ k (i + 1)] T

【0037】[0037]

【数19】 [Formula 19]

【0038】となる。ここで、(16)式の評価関数Jは、 J =e* (i) T We* (i) = [eL (i)-HP σP (i)-HF2σF2(i)]T ×W[ eL (i)-HP σP (i)-HF2σF2 (i)] (20) となる。この評価関数(20)を最小にするσF2(i) は、同
様に重み付き最小2乗推定により、次式で与えられる。 σF2(i) = [ HF2 T WHF2 ]-1F2 T W[ eL (i)-HP σP (i)] (21) ここで、
[0038] Here, (16) the evaluation function J of the equation, J = e * (i) T We * (i) = [e L (i) -H P σ P (i) -H F2 σ F2 (i)] T × W [e L (i) -H P σ P (i) -H F2 σ F2 (i)] (20). Σ F2 (i) that minimizes this evaluation function (20) is similarly given by the following equation by weighted least squares estimation. σ F2 (i) = [H F2 T WH F2] -1 H F2 T W [e L (i) -H P σ P (i)] (21) where

【0039】[0039]

【数20】 [Equation 20]

【0040】であるから、(21)式より現在決定すべきσ
k (i) は、
Therefore, σ which should be currently determined from the equation (21)
k (i) is

【0041】[0041]

【数21】 [Equation 21]

【0042】となる。さらに、 [ c,-b ]HF2 T W = [ cW1ΔH1,cW2ΔH2-bW2H1, …, cWM Δ HM - bWM HM-1] であるから、(22)式より、It becomes Furthermore, [c, -b] H F2 T W = [cW 1 ΔH 1, cW 2 ΔH 2 -bW 2 H 1, ..., cW M Δ H M - bW M H M-1] a because, (22 From the expression,

【0043】[0043]

【数22】 [Equation 22]

【0044】書き直すと、Rewriting,

【0045】[0045]

【数23】 [Equation 23]

【0046】ただし、However,

【0047】[0047]

【数24】 [Equation 24]

【0048】であり、これらの定数は、ステップ応答デ
ータ{ Hn }を測定し、重み行列Wを適当に与えること
により、学習を行う前にあらかじめ算出できる。したが
って、時刻iにおける補正量σk (i) は(1b)式に従って
決定される。本願の請求項3記載の発明では、制御対象
にむだ時間があり、H1=H2=… Hd-1=0, Hd ≠0 であると
して、(15)式を次のように変形する。 e* d (i) = eLd(i) - HPdσPd(i) - HFdσFd(i) (25) ただし、 e* d (i) = [ ek * (i+d),ek * (i+d+1),…, ek * (i+M) ]T Ld(i) = [ ek-1 (i+d),ek-1(i+d+1), …, ek-1(i+M) ]T σPd(i) = [ σk (i-1),σk (i-2),……, σk (i-N+d) ]T σFd(i) = [ σk (i),σk (i+1),…, σk (i+M-d) ]T
These constants can be calculated in advance before learning by measuring the step response data {H n } and giving the weight matrix W appropriately. Therefore, the correction amount σ k (i) at time i is determined according to the equation (1b). In the invention according to claim 3 of the present application, assuming that the controlled object has a dead time and H 1 = H 2 = ... H d-1 = 0, H d ≠ 0, the equation (15) is modified as follows. To do. e * d (i) = e Ld (i)-H Pd σ Pd (i)-H Fd σ Fd (i) (25) where e * d (i) = [e k * (i + d), e k * (i + d + 1), ..., e k * (i + M)] T e Ld (i) = [e k-1 (i + d), e k-1 (i + d + 1) ),…, E k-1 (i + M)] T σ Pd (i) = [σ k (i-1), σ k (i-2),…, σ k (i-N + d) ] T σ Fd (i) = [σ k (i), σ k (i + 1),…, σ k (i + Md)] T

【0049】[0049]

【数25】 [Equation 25]

【0050】となる。ここで、次の評価関数J、 J = e* d (i) T We* d (i) =[ eLd(i)-HPdσPd(i)-HFdσFd(i)]T ×W[ eLd(i)-HPdσPd(i)-HFdσFd(i)] (26) を最小にするσFd(i) は、同様に重み付き最小2乗推定
により、次式で与えられる。 σFd(i) = [ HFd T WHFd ]-1Fd T W[ eLd(i)-HPdσPd(i)] (27) ここで、 [ HFd T WHFd ]-1Fd T W = HFd -1-1Fd -TFd T W = HFd -1 (28) であり、さらにHFd -1の1行目は[ Δ Hd -1,0,0, …,0
]であるから、(27)、(28)式より現在決定すべきσ
k (i) は、
It becomes Here, the following evaluation function J, J = e * d (i) T We * d (i) = [ eLd (i) -H Pd σ Pd (i) -H Fd σ Fd (i)] T × W [e Ld (i) -H Pd σ Pd (i) -H Fd σ Fd (i)] σ Fd to the (26) to the minimum (i) likewise by weighted least squares estimation, the following formula Given in. σ Fd (i) = [H Fd T WH Fd] -1 H Fd T W [e Ld (i) -H Pd σ Pd (i)] (27) where, [H Fd T WH Fd] -1 H Fd T W = H Fd -1 W -1 H Fd -T H Fd T W = H Fd -1 (28), and the first line of H Fd -1 is [Δ H d -1 , 0,0 ,…, 0
], So σ that should be currently determined from Eqs. (27) and (28)
k (i) is

【0051】[0051]

【数26】 [Equation 26]

【0052】したがって、時刻iにおける補正量σ
k (i) は(1c)式に従って決定される。以上で、(1a)〜(1
c)式で与えられる補正量σk (i) が、それぞれ、(16)、
(20)、(26)式の評価関数Jを最小にすることが示され
た。
Therefore, the correction amount σ at time i
k (i) is determined according to equation (1c). Above, (1a) ~ (1
The correction amount σ k (i) given by the equation (c) is (16),
It was shown that the evaluation function J of the equations (20) and (26) is minimized.

【0053】[0053]

【発明の効果】以上述べたように、本発明によれば、同
じパターンの目標値に対する動作を繰り返す学習制御系
において、過去の偏差および制御対象の動特性に関する
情報をもとに未来の偏差を予測し、その予測値の重み付
き2乗和が最小となるように制御入力を補正しており、
その際に、未来の補正量も考慮しているため、最終的に
は目標値と出力が一致し、高精度な追従動作が実現され
る。さらに、この補正演算は現在時刻の偏差などの情報
を必要としないため、各試行の間で実行すれば良い。
As described above, according to the present invention, in the learning control system in which the operation for the target value of the same pattern is repeated, the future deviation is calculated based on the information about the past deviation and the dynamic characteristics of the controlled object. Prediction is performed and the control input is corrected so that the weighted sum of squares of the predicted value is minimized.
At that time, since the future correction amount is also taken into consideration, the target value and the output finally match, and a highly accurate follow-up operation is realized. Further, since this correction calculation does not require information such as the deviation of the current time, it may be executed between trials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的実施例を示す図FIG. 1 is a diagram showing a specific embodiment of the present invention.

【図2】本発明の具体的実施例を示す図FIG. 2 is a diagram showing a specific embodiment of the present invention.

【図3】本発明の具体的実施例を示す図FIG. 3 is a diagram showing a specific embodiment of the present invention.

【図4】本発明の動作説明図FIG. 4 is an operation explanatory diagram of the present invention.

【図5】本発明の動作説明図FIG. 5 is an operation explanatory diagram of the present invention.

【符号の説明】 1 指令発生器 2 減算器 3、4、5、7 メモリ 6 演算器 8、9 サンプラ 10 ホールド回路 11 制御対象 23 メモリ 26 演算器 33 メモリ 37 演算器 [Explanation of Codes] 1 command generator 2 subtractor 3, 4, 5, 7 memory 6 arithmetic unit 8, 9 sampler 10 hold circuit 11 control target 23 memory 26 arithmetic unit 33 memory 37 arithmetic unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同じパターンを繰り返す目標指令に制御
対象の出力を追従させるよう試行を繰り返し、k回目の
試行の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i) σk (i) = wh1F T W[ eL (i)-HP σP (i)] (ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 σP (i):現在時刻に至るまでに入力してきた補正量 eL (i):前回の試行における追従偏差 wh1: 制御対象の動特性に関する情報と、未来の追従偏
差の予測値に掛ける重み行列によって決定される定数 HF,p : 制御対象の動特性に関する情報によって決定
される定数 W: 未来の追従偏差の予測値にかける重み行列 である) で与えることを特徴とする学習制御方式。
1. A trial is repeated so that the output of the controlled object follows a target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is expressed by the following equation u k (i) = u k-1 (i) + σ k (i) σ k (i) = w h1 H F T W [e L (i) -H P σ P (i)] (where σ k (i): previous time Amount of correction from control input u k-1 (i) σ P (i): correction amount that has been input up to the current time e L (i): tracking deviation in the previous trial w h1 : movement of the controlled object multiplying the predicted value of the tracking error of the future: the information about the characteristics, constant H F which is determined by the weight matrix multiplying the predicted value of the future tracking error, H p: constant determined by the information on the dynamic characteristic of the controlled object W A learning control method characterized by being given by the weight matrix.
【請求項2】 同じパターンを繰り返す目標指令に制御
対象の出力を追従させるよう試行を繰り返し、k回目の
試行の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i) 【数1】 (ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 ek (i):k 回目の試行の時刻iにおける追従偏差 であり、さらに、 pm = (cW m Δ Hm -bW m H m-1 )/(ac-b2) m=1,2, …,M 【数2】 であり、これらの定数は、制御対象のステップ応答のサ
ンプル値と、未来の追従偏差の予測値に掛ける重み行列
によって決定される定数である)で与えることを特徴と
する学習制御方式。
2. A trial is repeated so that the output of the controlled object follows the target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is expressed by the following equation u k (i) = u k-1 (i) + σ k (i) [Equation 1] (However, sigma k (i): correction amount e k from the preceding control input u k-1 (i) ( i): a tracking error at time i of k-th trial, further, p m = (cW m Δ H m -bW m H m-1 ) / (ac-b 2 ) m = 1,2,…, M [Equation 2] , And these constants are constants determined by the sample value of the step response of the controlled object and the weighting matrix by which the predicted value of the future tracking deviation is multiplied).
【請求項3】 同じパターンを繰り返す目標指令に制御
対象の出力を追従させるよう試行を繰り返し、k回目の
試行の、時刻iにおける制御入力uk (i) を、次式 uk (i) = uk-1(i) +σk (i) 【数3】 (ただし、 σk (i):前回の制御入力uk-1(i)からの補正量 ek (i):k回目の試行の時刻iにおける追従偏差 ΔH n : 制御対象のステップ応答のサンプル値の差分値 である) で与えることを特徴とする学習制御方式。
3. The trial is repeated so that the output of the controlled object follows the target command that repeats the same pattern, and the control input u k (i) at the time i of the k-th trial is given by the following equation u k (i) = u k-1 (i) + σ k (i) [Equation 3] (However, σ k (i): correction amount from the previous control input u k-1 (i) e k (i): tracking deviation at time i of the k-th trial ΔH n : sample of step response of control target The learning control method is characterized in that it is given by the difference value).
JP3223437A 1991-08-07 1991-08-07 Learning control method Expired - Fee Related JP3039814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223437A JP3039814B2 (en) 1991-08-07 1991-08-07 Learning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223437A JP3039814B2 (en) 1991-08-07 1991-08-07 Learning control method

Publications (2)

Publication Number Publication Date
JPH0546206A true JPH0546206A (en) 1993-02-26
JP3039814B2 JP3039814B2 (en) 2000-05-08

Family

ID=16798135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223437A Expired - Fee Related JP3039814B2 (en) 1991-08-07 1991-08-07 Learning control method

Country Status (1)

Country Link
JP (1) JP3039814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179401A (en) * 2014-03-19 2015-10-08 カシオ計算機株式会社 Drive device, light source drive device, light source device, projection device and drive method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179401A (en) * 2014-03-19 2015-10-08 カシオ計算機株式会社 Drive device, light source drive device, light source device, projection device and drive method

Also Published As

Publication number Publication date
JP3039814B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
KR970003823B1 (en) Control system that best follows periodical setpoint value
JP3516232B2 (en) Method and apparatus for implementing feedback control that optimally and automatically rejects disturbances
KR101175290B1 (en) Adaptive command filtering for servomechanism control systems
EP0709754B1 (en) Prediction controller
JPH0695707A (en) Model forecast controller
KR100267362B1 (en) Preview control apparatus
JP3039814B2 (en) Learning control method
JP3036654B2 (en) Learning control method
JP3109605B2 (en) Learning control method
JP2541163B2 (en) A control method that optimally follows the periodic target value.
JP3039573B2 (en) Learning control method
CN113110045A (en) Model prediction control real-time optimization parallel computing method based on computational graph
JP3191836B2 (en) Learning control device
JP2921056B2 (en) Learning control device by correcting speed command
JPH10323070A (en) Motor controller
JP3597341B2 (en) Globally accelerated learning method for neural network model and its device
JPH0830979B2 (en) Control method that optimally follows the periodic target value
JP2876702B2 (en) Learning control method
JPH04369002A (en) Predictive learning control system based upon approximate step response
JPH05165504A (en) Learning control system by incremental value operation
JP3256950B2 (en) Optimal preview learning control device
JP3281312B2 (en) Adjustment method and adjustment device
JP2000035804A (en) Learning controlling method and learning controller
JP2541166B2 (en) Learning control method
JPH06119004A (en) Learning controller for system having wasteful time output detection

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees