JPH0546111B2 - - Google Patents

Info

Publication number
JPH0546111B2
JPH0546111B2 JP58145516A JP14551683A JPH0546111B2 JP H0546111 B2 JPH0546111 B2 JP H0546111B2 JP 58145516 A JP58145516 A JP 58145516A JP 14551683 A JP14551683 A JP 14551683A JP H0546111 B2 JPH0546111 B2 JP H0546111B2
Authority
JP
Japan
Prior art keywords
inductance
current
circuit
superconducting
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58145516A
Other languages
Japanese (ja)
Other versions
JPS6037182A (en
Inventor
Norio Fujimaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58145516A priority Critical patent/JPS6037182A/en
Publication of JPS6037182A publication Critical patent/JPS6037182A/en
Publication of JPH0546111B2 publication Critical patent/JPH0546111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は超伝導回路、特に所要の電流位相特性
を有して広い電流範囲について利用することがで
きる非線形インダクタンス回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to superconducting circuits, and in particular to nonlinear inductance circuits that have the required current phase characteristics and can be used over a wide current range.

(b) 従来技術と問題点 超伝導状態におけるジヨセフソン効果は、ジヨ
セフソン素子として論理回路及び記憶装置に応用
されるとともに、磁束計、電圧標準、電磁波検出
及び温度計などさまざまな応用分野がある。これ
らの応用分野において1乃至2個のジヨセフソン
接合と超伝導インダクタンスとからなるループ構
造は基本的な構造の一つとなつている。
(b) Prior art and problems The Josephson effect in a superconducting state is applied to logic circuits and memory devices as a Josephson element, and has various application fields such as magnetometers, voltage standards, electromagnetic wave detection, and thermometers. In these application fields, a loop structure consisting of one or two Josephson junctions and a superconducting inductance is one of the basic structures.

第1図はこの種のループ構造の一例を示し、1
は鉛(Pb)系合金等の超伝導体よりなるループ
であつて下部電極となり、2は上部電極であつて
両電極間にジヨセフソン接合3及びこれより接合
面積が充分に大きいコンタクト接合4が形成され
ている。
Figure 1 shows an example of this type of loop structure, with 1
is a loop made of a superconductor such as a lead (Pb)-based alloy, which serves as the lower electrode, and 2 is the upper electrode, between which a Josephson junction 3 and a contact junction 4 with a sufficiently larger junction area are formed. has been done.

第1図のループ構造の等価回路は、第2図aの
如く表わすことができる。図においてJは前記ジ
ヨセフソン接合3、Lはループのインダクタンス
を表わす。このループ構造に流入出する信号電流
をI,Jを通ずる電流をIJ,Lを通ずる電流をIL
とし、ループを貫通する磁束をΦとすれば、ジヨ
セフソン接合Jの臨界電流値をIo、そのトンネル
酸化膜の両端の超伝導体の位相差をφ、磁束量子
をΦo(=h/2e=2.07×10-15Wb)で表わして IJ=Io sinφ (1) Φ=Φo/2π×φ (2) なる関係から IL=Φo/2πL×φ (3) となる。
An equivalent circuit of the loop structure shown in FIG. 1 can be expressed as shown in FIG. 2a. In the figure, J represents the Josephson junction 3, and L represents the inductance of the loop. The signal current flowing into and out of this loop structure is I, the current passing through J is I J , and the current passing through L is I L.
If the magnetic flux passing through the loop is Φ, the critical current value of Josephson junction J is Io, the phase difference between the superconductors at both ends of the tunnel oxide film is φ, and the magnetic flux quantum is Φo (=h/2e=2.07 ×10 -15 Wb), I J = Io sinφ (1) Φ = Φo/2π×φ (2) From the relationship, I L = Φo/2πL×φ (3).

前記インダクタンスLを L=Φo/2πIo (4) に設定するならば前記式(3)より IL=Io×φ (5) となり I=IJ+IL=Io(sinφ+φ) (6) と表わすことができる。 If the inductance L is set to L = Φo / 2πIo (4), then I L = Io × φ (5) from the above formula (3), which can be expressed as I = I J + I L = Io (sinφ + φ) (6) I can do it.

前記式(6)による信号電流Iと位相差φとの関係
を第2図bにI/Ioを横軸として示す。図におい
て曲線aは式(2)によるIJ/Io、直線bは式(5)によ
るIL/Ioを示し、曲線cが式(6)によるI/Ioを表
わす。
The relationship between the signal current I and the phase difference φ according to the above equation (6) is shown in FIG. 2b with I/Io as the horizontal axis. In the figure, curve a shows I J /Io according to equation (2), straight line b shows I L /Io according to equation (5), and curve c shows I/Io according to equation (6).

このループ構造の微分インダクタンスは前記式
(2)より dΦ/dI=Φo/2π×dφ/dI (7) であつて曲線cの微分勾配に比例して、ループの
位相差φの2πを周期とし低インダクタンス領域
Aと高インダクタンス領域Bを含む非線形の応答
をする。
The differential inductance of this loop structure is expressed as
From (2), dΦ/dI = Φo/2π×dφ/dI (7) In proportion to the differential slope of curve c, the period is 2π of the phase difference φ of the loop, and the low inductance region A and the high inductance region B has a nonlinear response including

先に述べた如き応用分野においてこのループ構
造の非線形性の応用を試みる際に、インダクタン
スLが前記の如く周期関数であるのみならず、領
域Bが領域Aに比べて狭いために高インダクタン
スはごく狭い電流範囲に限られることはその応用
を甚だ困難なものとしており、より広い範囲の低
インダクタンス領域と高インダクタンス領域とを
得ることが必要とされている。
When trying to apply the nonlinearity of this loop structure in the application field as mentioned above, not only is the inductance L a periodic function as mentioned above, but also because region B is narrower than region A, high inductance is extremely low. Being limited to a narrow current range makes its application extremely difficult, and it is necessary to obtain a wider range of low and high inductance regions.

(c) 発明の目的 本発明の目的は、広い電流範囲についてインダ
クタンスの非線形性を利用することが可能な所要
の電流位相特性を有する超伝導回路を提供するこ
とにある。
(c) Object of the Invention An object of the present invention is to provide a superconducting circuit having required current phase characteristics that can utilize the nonlinearity of inductance over a wide current range.

(d) 発明の構成 本発明の前記目的は、2個以上n個のジヨセフ
ソン接合と2個以上n個の超伝導インダクタンス
と外部回路に接続する一対の終端を有する超伝導
回路であつて、該n個のジヨセフソン接合の一端
は一つの終端に接続しかつ第k(1≦k≦n−1)
番目のジヨセフソン接合の他端と第k+1番目の
ジヨセフソン接合の他端は第k+1番目の超伝導
インダクタンスを介して接続しかつ第n番目のジ
ヨセフソン接合の他端は他の一つの終端に接続す
るはしご形回路を形成し、第1番目のジヨセフソ
ン接合の他端と前記一つの終端の間に第1番目の
超伝導インダクタンスを含む分路を有する超伝導
回路により達成される。
(d) Structure of the Invention The object of the present invention is to provide a superconducting circuit having two or more n Josephson junctions, two or more n superconducting inductances, and a pair of terminations connected to an external circuit. One end of n Josephson junctions is connected to one terminal end and the kth (1≦k≦n-1)
The other end of the th Josephson junction and the other end of the k+1th josefson junction are connected via the k+1th superconducting inductance, and the other end of the nth joosefson junction is connected to one other end of the ladder. This is accomplished by a superconducting circuit forming a shaped circuit and having a shunt comprising a first superconducting inductance between the other end of the first Josephson junction and said one termination.

(e) 発明の実施例 以下本発明を実施例により図面を参照して具体
的に説明する。
(e) Embodiments of the Invention The present invention will be specifically explained below using embodiments with reference to the drawings.

第3図aは先に説明したループ構造と同様の構
成のループ構造の等価回路、bは電流比I/Ioと
位相差φとの関係を示す図である。なお本引用例
においては前記例と同様の符号に添字1を付記す
る。
FIG. 3a is an equivalent circuit of a loop structure having the same configuration as the loop structure described above, and FIG. 3b is a diagram showing the relationship between the current ratio I/Io and the phase difference φ. In this cited example, a subscript 1 is added to the same reference numerals as in the above example.

本引用例においてはインダクタンスL1を L1=Φo/√2πIo1 (8) としており、その結果前記例より直線b1に示す電
流I L1が増加している。なおこの場合には信号
電流I1に曲線c1に見られる如く履歴現象が現われ
る。
In this cited example, the inductance L 1 is set to L 1 =Φo/√2πIo 1 (8), and as a result, the current I L 1 shown on the straight line b 1 increases from the above example. In this case, a hysteresis phenomenon appears in the signal current I 1 as shown by the curve c 1 .

次に第4図aに示す如く前記回路に直列に前記
L1と同一インダクタンスのL2を接続すれば、電
流I1′は第4図bにおいて前記曲線c1と直線b1とか
ら曲線dで表わされる。
Next, as shown in FIG. 4a, the
If L 2 having the same inductance as L 1 is connected, the current I 1 ' is represented by a curve d from the curve c 1 and the straight line b 1 in FIG. 4b.

更に第5図aに示す如く第4図aに示した回路
に第2のジヨセフソン接合J2を並列に接続する。
ただし、第2のジヨセフソン接合J2の臨界電流
Io2をIo1の1/2とする。
Furthermore, as shown in FIG. 5a, a second Josephson junction J2 is connected in parallel to the circuit shown in FIG. 4a.
However, the critical current of the second Josephson junction J 2
Let Io 2 be 1/2 of Io 1 .

この場合の電流I2と位相差φ2との関係は第5図
bにおいて、前記曲線dとIJ1を表わす曲線eと
から曲線fで表わされる。本実施例においては電
流I2に対して、低インダクタンス領域Aと高イン
ダクタンス領域Bとがほぼ同じ電流幅で得られ
る。また電流位相関係は4πの周期関数となるた
めに位相に対しても広い範囲でインダクタンス変
化を利用できる。
The relationship between the current I 2 and the phase difference φ 2 in this case is represented by a curve f in FIG. 5b from the curve d and the curve e representing IJ 1 . In this embodiment, the low inductance region A and the high inductance region B can be obtained with approximately the same current width for the current I 2 . Furthermore, since the current phase relationship is a periodic function of 4π, inductance changes can be used over a wide range for the phase.

第6図に示す如くインダクタンスとジヨセフソ
ン接合を更に多段に接続し、各定数を選択するこ
とによつて、所要の非線形インダクタンス特性を
充分な精度をもつて実現することが可能である。
By further connecting inductances and Josephson junctions in multiple stages as shown in FIG. 6, and selecting each constant, it is possible to realize the required nonlinear inductance characteristics with sufficient accuracy.

以上説明した本発明による非線形インダクタン
ス回路は例えば下記の如く応用することができ
る。
The nonlinear inductance circuit according to the present invention described above can be applied, for example, as follows.

第7図aは本発明を応用して信号電流の伝送を
制御する回路の例を示し、図中Cは本発明による
非線形インダクタンス回路、LTは変成器、Loは
変成器LTの1次側のインダクタンスを示す。図
に示す回路の入力端子11より、信号電流Icに重
畳してオフセツト電流Ioffを入力する。
Figure 7a shows an example of a circuit that controls signal current transmission by applying the present invention, in which C is a nonlinear inductance circuit according to the present invention, LT is a transformer, and Lo is the primary side of the transformer LT. Indicates inductance. An offset current Ioff is input from the input terminal 11 of the circuit shown in the figure, superimposed on the signal current Ic.

非線形インダクタンス回路Cに第7図bの曲線
に示す如き電流位相特性を与えて、回路Cに通ず
るオフセツト電流Ioffの2値選択によつて信号電
流Icの動作点を低インダクタンス領域A又は高イ
ンダクタンス領域B内に設定することにより変成
器LTの1次側を通ずる信号電流、従つて変成器
LTの2次側に伝送される信号電流が制御される。
By giving the nonlinear inductance circuit C a current phase characteristic as shown in the curve of FIG. 7b, and by selecting a binary value of the offset current Ioff passing through the circuit C, the operating point of the signal current Ic can be set to the low inductance region A or the high inductance region. The signal current through the primary of the transformer LT by setting within B, and therefore the transformer
The signal current transmitted to the secondary side of the LT is controlled.

更に第8図は信号電流の閾値との大小を弁別す
る回路の例を示す。本発明による非線形インダク
タンス回路Cを前記閾値において低インダクタン
ス領域より高インダクタンス領域に移行する様に
設定して、これをジヨセフソン接合Joのインダ
クタンスがLoであるコントロールゲート回路に
並列に接続する。信号電流が閾値より小である場
合にはコントロールゲート回路側の電流が抑制さ
れて弁別動作の安定性が向上し、例えば雑音等に
よる誤動作を防止することができる。
Furthermore, FIG. 8 shows an example of a circuit that discriminates whether the signal current is larger or smaller than the threshold value. The nonlinear inductance circuit C according to the present invention is set to shift from a low inductance region to a high inductance region at the threshold value, and is connected in parallel to a control gate circuit in which the inductance of Josephson junction Jo is Lo. When the signal current is smaller than the threshold value, the current on the control gate circuit side is suppressed, improving the stability of the discrimination operation, and making it possible to prevent malfunctions due to noise, for example.

(f) 発明の効果 以上説明した如く本発明によれば、所要の電流
位相特性をもつて低インダクタンス領域と高イン
ダクタンス領域とが充分な電流幅で設定された非
線形インダクタンスが実現されて、これを多くの
超伝導回路に応用することが可能となる。
(f) Effects of the Invention As explained above, according to the present invention, a nonlinear inductance in which the low inductance region and the high inductance region are set with a sufficient current width with the required current phase characteristics is realized. It becomes possible to apply it to many superconducting circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジヨセフソン接合とインダクタンスと
からなるループ構造の例を示す平面図、第2図a
はその等価回路、bはその電流位相特性を示す
図、第3図a及びbは前図とはインダクタンスの
異なる等価回路及び電流位相特性を示す図、第4
図a及びbはループ構造に直列にインダクタンス
を接続した等価回路及びその電流位相特性を示す
図、第5図aは本発明の一実施例の等価回路、b
はその電流位相特性を示す図、第6図は本発明の
実施例の一般化された等価回路を示す図、第7図
aは本発明の応用例を示す等価回路図、bはその
動作説明図、第8図は他の応用例を示す等価回路
図である。 図において、1は下部電極となるループ、2は
上部電極、3はジヨセフソン接合、4はコンタク
ト接合、J,Jo,J1乃至Jnはジヨセフソン接合、
L,Lo,L1乃至Lnはインダクタンスを表わす。
Figure 1 is a plan view showing an example of a loop structure consisting of Josephson junction and inductance, Figure 2a
is its equivalent circuit;
Figures a and b are diagrams showing an equivalent circuit in which an inductance is connected in series with a loop structure and its current phase characteristics, Figure 5 a is an equivalent circuit of an embodiment of the present invention, and b
6 is a diagram showing a generalized equivalent circuit of an embodiment of the present invention, FIG. 7 a is an equivalent circuit diagram showing an application example of the present invention, and b is an explanation of its operation. 8 are equivalent circuit diagrams showing other application examples. In the figure, 1 is a loop serving as a lower electrode, 2 is an upper electrode, 3 is a Josephson junction, 4 is a contact junction, J, Jo, J 1 to Jn are Josephson junctions,
L, Lo, L1 to Ln represent inductance.

Claims (1)

【特許請求の範囲】[Claims] 1 2個以上n個のジヨセフソン接合と2個以上
n個の超伝導インダクタンスと外部回路に接続す
る一対の終端を有する超伝導回路であつて、該n
個のジヨセフソン接合の一端は一つの終端に接続
しかつ第k(1≦k≦n−1)番目のジヨセフソ
ン接合の他端と第k+1番目のジヨセフソン接合
の他端は第k+1番目の超伝導インダクタンスを
介して接続しかつ第n番目のジヨセフソン接合の
他端は他の一つの終端に接続するはしご形回路を
形成し、第1番目のジヨセフソン接合の他端と前
記一つの終端の間に第1番目の超伝導インダクタ
ンスを含む分路を有することを特徴とする超伝導
回路。
1 A superconducting circuit having 2 or more n Josephson junctions, 2 or more n superconducting inductances, and a pair of terminals connected to an external circuit, the n
One end of the Josephson junction is connected to one termination, and the other end of the k-th (1≦k≦n-1) Josephson junction and the other end of the k+1-th Josephson junction are connected to the k+1-th superconducting inductance. and the other end of the nth Josephson junction is connected to one other termination, forming a ladder circuit, and the first junction is connected between the other end of the first Josephson junction and said one termination A superconducting circuit comprising a shunt including a second superconducting inductance.
JP58145516A 1983-08-09 1983-08-09 Superconductive circuit Granted JPS6037182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145516A JPS6037182A (en) 1983-08-09 1983-08-09 Superconductive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145516A JPS6037182A (en) 1983-08-09 1983-08-09 Superconductive circuit

Publications (2)

Publication Number Publication Date
JPS6037182A JPS6037182A (en) 1985-02-26
JPH0546111B2 true JPH0546111B2 (en) 1993-07-13

Family

ID=15387037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145516A Granted JPS6037182A (en) 1983-08-09 1983-08-09 Superconductive circuit

Country Status (1)

Country Link
JP (1) JPS6037182A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515111A (en) * 1978-07-15 1980-02-02 Dainippon Printing Co Ltd Photosensitive solution composition for resin gravure plate
JPS5866419A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Superconducting circuit
JPS58111532A (en) * 1981-12-25 1983-07-02 Hitachi Ltd Superconduction switch circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515111A (en) * 1978-07-15 1980-02-02 Dainippon Printing Co Ltd Photosensitive solution composition for resin gravure plate
JPS5866419A (en) * 1981-10-16 1983-04-20 Hitachi Ltd Superconducting circuit
JPS58111532A (en) * 1981-12-25 1983-07-02 Hitachi Ltd Superconduction switch circuit

Also Published As

Publication number Publication date
JPS6037182A (en) 1985-02-26

Similar Documents

Publication Publication Date Title
Hosoya et al. Quantum flux parametron: A single quantum flux device for Josephson supercomputer
US4496854A (en) On-chip SQUID cascade
US4051393A (en) Current switched josephson junction memory and logic circuits
US5455519A (en) Josephson logic circuit
US2983889A (en) Superconductive bistable elements
EP0174105B1 (en) Superconducting analog-to-digital converter with bidirectional counter
US6310488B1 (en) Superconductive single flux quantum logic circuit
US4028714A (en) Ultralow-power, micro-miniaturized Josephson devices having high inductance
CA1044768A (en) Quantum interference josephson logic devices
EP0076160B1 (en) Josephson-junction logic device
US3843895A (en) Two-way or circuit using josephson tunnelling technology
US3564351A (en) Supercurrent devices
JPH0546111B2 (en)
US4611132A (en) Circuit utilizing Josephson effect
JP2550587B2 (en) The Josephson Gate
JPS63308975A (en) Current control element
JP2783032B2 (en) Josephson reverse current prevention circuit
JPH0223033B2 (en)
JPH02186717A (en) Switching circuit and its signal transmission method
SU991509A1 (en) Quantron
JP2937118B2 (en) Oxide superconducting quantum flux parametron device
JPH0279481A (en) Fluxoid quantum logic element
JPS6173391A (en) Superconductive mixer element
Giaever The Physics of Some Superconducting Devices
JPS62217679A (en) Magnetic field coupling type josephson element