JPH0546074A - Biophantom - Google Patents

Biophantom

Info

Publication number
JPH0546074A
JPH0546074A JP3225303A JP22530391A JPH0546074A JP H0546074 A JPH0546074 A JP H0546074A JP 3225303 A JP3225303 A JP 3225303A JP 22530391 A JP22530391 A JP 22530391A JP H0546074 A JPH0546074 A JP H0546074A
Authority
JP
Japan
Prior art keywords
sodium chloride
living body
complex relative
relative permittivity
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3225303A
Other languages
Japanese (ja)
Inventor
Takehiko Kobayashi
岳彦 小林
Toshio Nojima
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3225303A priority Critical patent/JPH0546074A/en
Publication of JPH0546074A publication Critical patent/JPH0546074A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the biophantom which electrically faithfully simulate animals and plants. CONSTITUTION:This biophantom is constituted by sealing the liquid uniformly mixed with an aq. electrolyte soln. or pure water and a polar org. compd. into a container having >=0.9 electromagnetic wave transmittance. An example of the polar org. compd. includes monohydric or polyhydric alcohol. The exact simulation for estimation of the frequency absorbing power of a living body, the influence on radio equipment, the influence of electromagnetic waves on a heart pace maker and the estimation of the sectional area of a radar is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高周波帯において生
体を電気的に模擬するための生体ファントムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a living body phantom for electrically simulating a living body in a high frequency band.

【0002】[0002]

【従来の技術】高周波帯において生体を電気的に模擬す
るための生体ファントムとしては、従来塩化ナトリウム
水溶液を適当な容器に封入したものを用いることが知ら
れている。例えば、IECパブリケーション(IEC
Publication)489−6〔メソッズ オブ
メジュアメント フォア ラジオ エキップメントユ
ースド イン ザ モビル サービス、パート6:セレ
クチブ−コーリングアンド データ エキップメント
(Methods of measurement f
or radio equipment used i
n the mobile services,Par
t 6:Selective−calling and
data equipment)(1987)〕の付
録H(Appendix H)には、濃度1.49グラ
ム/l(0.025モル/l)の塩化ナトリウム水溶液
を円柱形容器に充てんして人体を模擬する方法が記載さ
れている。
2. Description of the Related Art As a living body phantom for electrically simulating a living body in a high frequency band, it is conventionally known to use an aqueous sodium chloride solution enclosed in an appropriate container. For example, IEC Publication (IEC
Publication) 489-6 [Methods of measurement for Radio Radio Equipment Used in the Mobile Service, Part 6: Selective-Calling and Data Equipment (Methods of measurement f)
or radio equipment used i
n the mobile services, Par
t6: Selective-calling and
Data equipment (1987)] Appendix H (Appendix H) describes a method of simulating a human body by filling a cylindrical container with an aqueous sodium chloride solution having a concentration of 1.49 g / l (0.025 mol / l). Have been described.

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来知られている塩化ナトリウム水溶液を封入した生体
ファントムでは、塩化ナトリウム濃度によってある周波
数における複素比誘電率εは一意に決まってしまい、ε
の実部ε′及び虚部ε″を任意に変えることは不可能で
あった。例えば、周波数1GHz、温度25℃において
前記の濃度1.49グラム/l(0.025モル/l)
の塩化ナトリウム水溶液の複素比誘電率は78−j8程
度であり、生体の筋肉・臓器等の複素比誘電率の約50
−j25とは大きく異なっている。更に、動物や植物の
複素比誘電率は種類や組織ごとに異なっており、それら
の電気的特性を忠実に模擬するには複素比誘電率の実部
及び虚部の双方を模擬したいものに合わせる必要がある
が、従来これら実部及び虚部を自由に変えることのでき
る液体を封入した生体ファントムは知られていなかっ
た。本発明の目的は、動物や植物を電気的に忠実に模擬
する生体ファントムを提供することにある。
By the way, in such a conventionally known biological phantom in which a sodium chloride aqueous solution is enclosed, the complex relative permittivity ε at a certain frequency is uniquely determined by the sodium chloride concentration, and ε
It was impossible to arbitrarily change the real part ε ′ and the imaginary part ε ″ of the above. For example, at the frequency of 1 GHz and the temperature of 25 ° C., the above-mentioned concentration was 1.49 g / l (0.025 mol / l).
The complex relative permittivity of the sodium chloride aqueous solution is about 78-j8, which is about 50 of the complex relative permittivity of the muscles and organs of the living body.
It is very different from -j25. Furthermore, the complex relative permittivity of animals and plants differs depending on the type and tissue, and in order to faithfully simulate their electrical characteristics, match both the real part and the imaginary part of the complex relative permittivity to the one you want to simulate. Although it is necessary, a living body phantom in which a liquid capable of freely changing the real part and the imaginary part is enclosed has not been known. An object of the present invention is to provide a living body phantom that electrically mimics an animal or a plant.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は生体ファントムに関する発明であって、電解質水
溶液又は純水と、有極性有機化合物とを均一に混合した
液体を、電磁波透過率0.9以上の容器に封入したもの
であることを特徴とする。
Means for Solving the Problems The present invention will be described in brief. The present invention relates to a living body phantom, in which a liquid obtained by uniformly mixing an aqueous electrolyte solution or pure water and a polar organic compound has an electromagnetic wave transmittance. It is characterized by being enclosed in a container of 0.9 or more.

【0005】この発明は前記問題点を解決するためのも
のであって、複素比誘電率の広い範囲にわたる実現のた
めに、水に電解質を溶かした溶液及び有極性有機化合物
を、生体ファントム内部に封入する液体の組成としてい
る。
The present invention is intended to solve the above-mentioned problems, and in order to realize a wide range of complex relative permittivity, a solution in which an electrolyte is dissolved in water and a polar organic compound are placed inside a living body phantom. The composition of the liquid to be enclosed.

【0006】水に電解質を加えると、電解質は水中で陽
の水和イオンと陰の水和イオンとに分かれ、電解質は水
に溶ける。一方、有極性有機化合物とは極性を有する有
機化合物の総称であり、OH基、NO2 基、NH2 基、
COOH基などの極性基を有し、水と混合すると水分子
の中の水素原子とこれらの極性基が水素結合を作るこ
め、水あるいは電解質水溶液と広い範囲の体積比で混合
する。特に常温で液体の有極性有機化合物は一般に任意
の体積比で純水あるいは電解質水溶液と混合する。
When an electrolyte is added to water, the electrolyte is separated into positive hydrated ions and negative hydrated ions in water, and the electrolyte dissolves in water. On the other hand, the polar organic compound is a general term for organic compounds having polarity, and includes OH group, NO 2 group, NH 2 group,
It has polar groups such as COOH groups, and when mixed with water, hydrogen atoms in water molecules and these polar groups form hydrogen bonds, and mixed with water or an aqueous electrolyte solution in a wide range of volume ratio. In particular, a polar organic compound that is liquid at room temperature is generally mixed with pure water or an aqueous electrolyte solution at an arbitrary volume ratio.

【0007】したがって本発明の液体は均一に混合する
ことができ、これを電磁波透過率が例えば0.9以上と
いうように大きな容器に封入することにより、生体の電
気的特性を忠実に模擬する生体ファントムを実現しう
る。容器の形状としては、生体を球、回転だ円体、円柱
あるいはこれらの組合せによって近似したもの、あるい
は生体形状をより忠実に模擬したものが考えられる。
Therefore, the liquid of the present invention can be uniformly mixed, and by enclosing the liquid in a container having a large electromagnetic wave transmittance of, for example, 0.9 or more, a living body that faithfully simulates the electrical characteristics of the living body is obtained. Phantom can be realized. As the shape of the container, it is considered that the living body is approximated by a sphere, a spheroid, a cylinder, or a combination thereof, or a body that more closely simulates the shape of the living body.

【0008】[0008]

【作用】水の複素比誘電率εの実部ε′は多くの物質に
比べて大きく、DCからUHF帯にわたりほぼ78であ
るが、虚部ε″は実部ε′に比べてかなり小さい。しか
るに水に電解質を溶かすと、イオン伝導によりε″が大
きくなる。この時、ε′の変化はわずかなままである。
一方、有極性有機化合物のε′は、極性基を有しない無
極性有機化合物におけるよりは大きいが、水に比べれば
一般に数分の1以下(例えば10ないし30)と小さ
い。ε″はε′と同程度ないしやや小さく、水と同程度
である。そこで、有極性有機化合物と水とを混合するこ
とにより、複素比誘電率の実部ε′を例えば10から7
8の範囲で調節しうる。この時、ε″の変化はわずかな
ままである。更に有極性有機化合物と純水ではなく電解
質水溶液とを混合すれば、ε′を上記の範囲で調節しう
ると同時に、ε″を電解質濃度を変えることにより大き
く変えることができる。すなわち、純水あるいは電解質
水溶液及び有極性有機化合物からなる液体誘電体材料に
おいては、複素比誘電率の実部及び虚部の双方を広い範
囲にわたって実現することができ、複素比誘電率の実部
及び虚部が共に大きな生体を電気的に忠実に模擬でき
る。一方、電磁波透過率の大きな容器は電磁波に対して
ほとんど透明である。
The real part ε'of the complex relative permittivity ε of water is larger than many substances, and is about 78 from DC to the UHF band, but the imaginary part ε ″ is considerably smaller than the real part ε '. However, when the electrolyte is dissolved in water, ε ″ increases due to ionic conduction. At this time, the change of ε ′ remains slight.
On the other hand, ε'of a polar organic compound is larger than that of a nonpolar organic compound having no polar group, but is generally a fraction or less (for example, 10 to 30) smaller than that of water. ε ″ is about the same as or slightly smaller than ε ′ and about the same as water. Therefore, by mixing a polar organic compound with water, the real part ε ′ of the complex relative permittivity is, for example, 10 to 7.
It can be adjusted in the range of 8. At this time, the change of ε ″ remains small. Further, if a polar organic compound and an electrolyte aqueous solution are mixed instead of pure water, ε ′ can be adjusted within the above range, and at the same time, ε ″ can be adjusted to the electrolyte concentration. You can make a big change by changing. That is, in a liquid dielectric material composed of pure water or an aqueous electrolyte solution and a polar organic compound, both the real part and the imaginary part of the complex relative permittivity can be realized over a wide range, and the real part of the complex relative permittivity can be realized. Both the imaginary part and the imaginary part can faithfully electrically simulate a large living body. On the other hand, a container having a large electromagnetic wave transmittance is almost transparent to electromagnetic waves.

【0009】本発明における有極性有機化合物としては
腐食性や爆発性がないものが望ましく、酢酸など中性で
ないものや、ニトログリセリンなど爆発性のあるものよ
りは、1価アルコール、又は多価アルコール(エチレン
グリコール以外にはジエチレングリコール、グリセリン
等)、あるいはポリアクリル酸、ポリアクリルアミド、
ポリビニルアミンなどが好適であり、いずれによっても
図面の図1〜図3又は図5のような複素比誘電率を実現
することができる。
As the polar organic compound in the present invention, those which are not corrosive or explosive are desirable, and monohydric alcohols or polyhydric alcohols are preferred to those which are not neutral such as acetic acid and those which are explosive such as nitroglycerin. (Diethylene glycol, glycerin, etc. other than ethylene glycol), polyacrylic acid, polyacrylamide,
Polyvinylamine and the like are suitable, and any one of them can realize the complex relative permittivity as shown in FIGS. 1 to 3 or 5.

【0010】[0010]

【実施例】以下、本発明を実施例に従って詳細に説明す
るが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in detail according to examples, but the present invention is not limited to these examples.

【0011】実施例1 電解質として塩化ナトリウム、有極性有機化合物として
2価アルコールの一種であるエチレングリコールを用い
て、表1及び表2に示す塩化ナトリウム濃度と、塩化ナ
トリウム水溶液とエチレングリコールの体積比の組合せ
の混合液からなる液体の試料を作成し、温度25℃にお
いて複素比誘電率を測定した。
Example 1 Using sodium chloride as the electrolyte and ethylene glycol which is one of the dihydric alcohols as the polar organic compound, the sodium chloride concentrations shown in Tables 1 and 2 and the volume ratio of the aqueous sodium chloride solution to ethylene glycol were used. A liquid sample consisting of the mixed liquid of the combination was prepared, and the complex relative dielectric constant was measured at a temperature of 25 ° C.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】混合液を作る場合には、まず塩化ナトリウ
ムを純水に溶かし、次いで所望の体積比の塩化ナトリウ
ム水溶液とエチレングリコールを混合する。この際、体
積xの塩化ナトリウム水溶液(あるいは一般に電解質水
溶液)と体積yのエチレングリコール(あるいは一般に
有極性有機化合物)を混合すると混合液の体積は(x+
y)よりも小さくなるから、体積xの塩化ナトリウム水
溶液を入れた容器に合計の体積が(x+y)になるまで
エチレングリコールを注ぎ足すのでは、体積比x:yで
混合したことにはならないことに注意を要する。
When preparing a mixed solution, first, sodium chloride is dissolved in pure water, and then an aqueous solution of sodium chloride having a desired volume ratio is mixed with ethylene glycol. At this time, if a volume x sodium chloride aqueous solution (or generally an electrolyte aqueous solution) and a volume y ethylene glycol (or generally a polar organic compound) are mixed, the volume of the mixed solution becomes (x +
Since it is smaller than y), if ethylene glycol is added to a container containing a sodium chloride aqueous solution of volume x until the total volume becomes (x + y), it does not mean that the volume ratio is x: y. Need attention.

【0015】複素比誘電率は、液体の測定に好適な開放
端同軸プローブ法によって測定した。複素比誘電率がよ
く知られている塩化ナトリウム水溶液によって測定法の
検証を行い、測定精度は複素比誘電率の実部・虚部とも
に数%以下であるとの結果を得ている。
The complex relative permittivity was measured by an open-ended coaxial probe method suitable for measuring liquids. The measurement method was verified by using an aqueous solution of sodium chloride, which has a well-known complex relative permittivity, and the measurement accuracy was obtained to be several percent or less in both the real part and the imaginary part of the complex relative permittivity.

【0016】表1及び表2に示した試料の複素比誘電率
を、周波数0.5、1及び1.5GHzにおいて測定し
た結果を図1から図3に示す。複素比誘電率は塩化ナト
リウム濃度や体積比を変えると連続的に変化するから、
試料を表す点を結ぶ曲線は試料と試料の間の組成の混合
液の複素比誘電率を表している。これらの図から、塩化
ナトリウム水溶液とエチレングリコールの体積比及び塩
化ナトリウム水溶液の濃度を変えることにより、従来の
塩化ナトリウム水溶液に比べて広い範囲の複素比誘電率
が実現できることがわかる。なお、図1から図3の一点
鎖線上にある試料番号1〜6は塩化ナトリウム水溶液な
いし純水、〇で示した試料番号25はエチレングリコー
ル単体であって、これらは本発明の範囲外のものであ
る。また図4に、試料番号3(濃度0.6モル/lの塩
化ナトリウム水溶液)、15(濃度0.6モル/lの塩
化ナトリウム水溶液とエチレングリコールを体積比1:
1で混合したもの)及び25(エチレングリコール)の
複素比誘電率の周波数特性を示す。混合液15は、塩化
ナトリウム水溶液3あるいはエチレングリコール25の
どちらとも異なる中間的な周波数分散特性を示す。な
お、図4において、横軸は周波数(GHz)、縦軸は
ε′及びε″を示す。
The results of measuring the complex relative permittivity of the samples shown in Tables 1 and 2 at frequencies of 0.5, 1 and 1.5 GHz are shown in FIGS. The complex relative permittivity changes continuously when the sodium chloride concentration or volume ratio is changed,
The curve connecting the points representing the sample represents the complex relative permittivity of the mixed liquid having the composition between the samples. From these figures, it can be seen that a wider range of complex relative permittivity can be realized as compared with the conventional sodium chloride aqueous solution by changing the volume ratio of the sodium chloride aqueous solution and ethylene glycol and the concentration of the sodium chloride aqueous solution. In addition, sample numbers 1 to 6 on the alternate long and short dash line in FIGS. 1 to 3 are aqueous solutions of sodium chloride or pure water, and sample number 25 shown by ◯ is a simple substance of ethylene glycol, which are outside the scope of the present invention. Is. Further, in FIG. 4, sample numbers 3 (0.6 mol / l sodium chloride aqueous solution) and 15 (0.6 mol / l sodium chloride aqueous solution and ethylene glycol in volume ratio 1:
(Mixed in 1) and 25 (ethylene glycol) are shown. The mixed liquid 15 exhibits an intermediate frequency dispersion characteristic different from both the sodium chloride aqueous solution 3 and the ethylene glycol 25. In FIG. 4, the horizontal axis represents frequency (GHz) and the vertical axis represents ε ′ and ε ″.

【0017】実施例2 電解質として塩化ナトリウム、有極性有機化合物として
1価アルコールの一種であるエチルアルコールを用い
て、表3及び表4に示す塩化ナトリウム濃度と、塩化ナ
トリウム水溶液とエチルアルコールの体積比の組合せの
混合液からなる液体の試料を作成し、温度25℃におい
て複素比誘電率を測定した結果を図5に示す。測定周波
数は0.5、1及び1.5GHzである。この場合にお
いても、塩化ナトリウム水溶液とエチルアルコールの体
積比及び塩化ナトリウム水溶液の濃度を変えることによ
り、広い範囲の複素比誘電率が実現可能なことが分か
る。図5中の一点鎖線上にある試料番号1〜6は塩化ナ
トリウム水溶液ないし純水、〇で示した試料番号44は
エチルアルコール単体であって、これらは本発明の範囲
外のものである。
Example 2 Using sodium chloride as the electrolyte and ethyl alcohol which is one of the monohydric alcohols as the polar organic compound, the sodium chloride concentrations shown in Tables 3 and 4 and the volume ratio of the sodium chloride aqueous solution to the ethyl alcohol were used. FIG. 5 shows the result of measuring the complex relative permittivity at a temperature of 25 ° C. by preparing a liquid sample composed of the mixed liquid of the combination of. The measurement frequencies are 0.5, 1 and 1.5 GHz. Even in this case, it is understood that a wide range of complex relative permittivity can be realized by changing the volume ratio of the sodium chloride aqueous solution and the ethyl alcohol and the concentration of the sodium chloride aqueous solution. Sample numbers 1 to 6 on the alternate long and short dash line in FIG. 5 are sodium chloride aqueous solutions or pure water, and sample number 44 indicated by O is ethyl alcohol alone, which are outside the scope of the present invention.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】図1〜図3と図5とを比べると、2価アル
コール(エチレングリコール)と1価アルコール(エチ
ルアルコール)との差異が現れている。すなわち各グラ
フの左下のエチレングリコール25やエチルアルコール
44に近い塩化ナトリウム水溶液の体積比の小さい領域
では、エチレングリコールの方が曲線群がより近接し、
塩化ナトリウム濃度を増してもε″はエチルアルコール
の場合ほどには大きくならない。このことは次のように
説明できる。2価アルコールは1分子当りOH基を2個
持ち、1価アルコールは1個持つ。OH基は水分子の水
素原子と水素結合を作るから、アルコール類は水分子を
拘束する。多価アルコールは1価アルコールよりも拘束
する水分子の量が多い。一方、塩化ナトリウムのような
電解質は水に溶けてNa(H2 O)x + 、Cl(H
2 O)y - のような水和イオンを作り、これらの水和イ
オンが印加電界に応じて運動するため、イオン電導によ
りε″が大きくなる。しかるにアルコールなどが同時に
存在すると上記のように水分子が拘束を受けるから、水
和イオンを作ってε″を大きくするのに寄与しうる水分
子の数が減少する。すなわち電解質濃度が増してもε″
が大きくなりにくいという効果を現出する。しかもアル
コールの価数(一般には1分子当りの極性基の数)が大
きいほどこの効果は顕著である。したがってε′が10
〜30程度の範囲でε″を大きくしたい場合にはなるべ
く1分子当りの極性基数の少ない有極性有機化合物を用
いるのが適当である。
Comparing FIGS. 1 to 3 with FIG. 5, the difference between the dihydric alcohol (ethylene glycol) and the monohydric alcohol (ethyl alcohol) appears. That is, in the lower left area of each graph in the region where the volume ratio of the sodium chloride aqueous solution near ethylene glycol 25 or ethyl alcohol 44 is small, the group of curves is closer to ethylene glycol,
Even if the sodium chloride concentration is increased, ε ″ does not become as large as in the case of ethyl alcohol. This can be explained as follows: A dihydric alcohol has two OH groups per molecule and one monohydric alcohol has one. The OH group forms a hydrogen bond with a hydrogen atom of a water molecule, so alcohols bind water molecules, and polyhydric alcohols bind more water molecules than monohydric alcohols. The various electrolytes dissolve in water and become Na (H 2 O) x + , Cl (H
2 O) y -. Make a hydrated ions, such as, for these hydrated ions move in response to an applied electric field, epsilon "is increased by the ion conduction However, as the such as alcohol are present simultaneously the water Since the molecules are constrained, the number of water molecules that can contribute to making hydrated ions and increasing ε ″ is reduced. That is, even if the electrolyte concentration increases, ε ″
The effect is that the is hard to grow. Moreover, the larger the alcohol valence (generally, the number of polar groups per molecule), the more remarkable this effect is. Therefore, ε'is 10
When it is desired to increase ε ″ in the range of about 30 to 30, it is appropriate to use a polar organic compound having a small number of polar groups per molecule.

【0021】[0021]

【発明の効果】本発明の生体ファントムは、複素比誘電
率を広い範囲にわたって簡易に実現しうる液体と電磁波
透過率の大きな容器との組合せにより、生体の電気的特
性を正確に模擬することが可能になる。したがって、電
磁界に生体が曝された場合の高周波吸収電力を推定する
場合、人体の近傍に無線機器を置いた場合のアンテナ特
性や受信感度を推定する場合、埋め込み型心臓ペースメ
ーカの電磁波イミュニティを推定する場合、あるいは生
体に電磁波が当った時のレーダ断面積を推定する場合な
どにおいて正確な推定が可能になる。
The biological phantom of the present invention is capable of accurately simulating the electrical characteristics of a living body by combining a liquid capable of easily realizing a complex relative permittivity over a wide range and a container having a large electromagnetic wave transmittance. It will be possible. Therefore, when estimating the high-frequency absorbed power when a living body is exposed to an electromagnetic field, when estimating the antenna characteristics and receiving sensitivity when a wireless device is placed near the human body, the electromagnetic immunity of an implantable cardiac pacemaker is estimated. In such a case, or when estimating a radar cross-section when an electromagnetic wave hits a living body, accurate estimation becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による生体ファントムに封入する液体の
1実施例としてエチレングリコールと塩化ナトリウム水
溶液の混合液の周波数0.5GHzにおける複素比誘電
率を示した図である。
FIG. 1 is a diagram showing a complex relative dielectric constant at a frequency of 0.5 GHz of a mixed liquid of ethylene glycol and an aqueous sodium chloride solution as an example of a liquid to be sealed in a living body phantom according to the present invention.

【図2】図1の混合液において、周波数1GHzにおけ
る複素比誘電率を示した図である。
FIG. 2 is a diagram showing a complex relative dielectric constant at a frequency of 1 GHz in the mixed liquid of FIG.

【図3】図1の混合液において、周波数1.5GHzに
おける複素比誘電率を示した図である。
FIG. 3 is a diagram showing a complex relative dielectric constant at a frequency of 1.5 GHz in the mixed liquid of FIG.

【図4】濃度0.6モル/lの塩化ナトリウム水溶液、
濃度0.6モル/lの塩化ナトリウム水溶液とエチレン
グリコールを体積比1:1で混合したもの及びエチレン
グリコールの複素比誘電率の周波数特性を示した図であ
る。
FIG. 4 is an aqueous sodium chloride solution having a concentration of 0.6 mol / l,
FIG. 3 is a diagram showing a mixture of an aqueous sodium chloride solution having a concentration of 0.6 mol / l and ethylene glycol at a volume ratio of 1: 1 and a frequency characteristic of a complex relative dielectric constant of ethylene glycol.

【図5】本発明による生体ファントムに封入する液体の
別の実施例としてエチルアルコールと塩化ナトリウム水
溶液の混合液の周波数0.5、1及び1.5GHzにお
ける複素比誘電率を示した図である。
FIG. 5 is a diagram showing complex relative dielectric constants at a frequency of 0.5, 1 and 1.5 GHz of a mixed solution of ethyl alcohol and an aqueous sodium chloride solution as another example of the liquid sealed in the living body phantom according to the present invention. ..

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質水溶液又は純水と、有極性有機化
合物とを均一に混合した液体を、電磁波透過率0.9以
上の容器に封入したものであることを特徴とする生体フ
ァントム。
1. A living body phantom, characterized in that a liquid in which an electrolyte aqueous solution or pure water is uniformly mixed with a polar organic compound is sealed in a container having an electromagnetic wave transmittance of 0.9 or more.
【請求項2】 有極性有機化合物が、1価又は多価アル
コールである請求項1に記載の生体ファントム。
2. The living body phantom according to claim 1, wherein the polar organic compound is a monohydric or polyhydric alcohol.
JP3225303A 1991-08-12 1991-08-12 Biophantom Pending JPH0546074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225303A JPH0546074A (en) 1991-08-12 1991-08-12 Biophantom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225303A JPH0546074A (en) 1991-08-12 1991-08-12 Biophantom

Publications (1)

Publication Number Publication Date
JPH0546074A true JPH0546074A (en) 1993-02-26

Family

ID=16827232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225303A Pending JPH0546074A (en) 1991-08-12 1991-08-12 Biophantom

Country Status (1)

Country Link
JP (1) JPH0546074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189322A (en) * 2011-03-08 2012-10-04 Olympus Corp Liquid-state biological phantom and manufacturing method of liquid-state biological phantom
ES2575731A1 (en) * 2015-12-22 2016-06-30 Universitat Politècnica De València Synthetic model of biological tissues for the evaluation of the wireless transmission of electromagnetic waves (Machine-translation by Google Translate, not legally binding)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189322A (en) * 2011-03-08 2012-10-04 Olympus Corp Liquid-state biological phantom and manufacturing method of liquid-state biological phantom
US8809061B2 (en) 2011-03-08 2014-08-19 Olympus Corporation Liquid living body phantom and method of making the same
ES2575731A1 (en) * 2015-12-22 2016-06-30 Universitat Politècnica De València Synthetic model of biological tissues for the evaluation of the wireless transmission of electromagnetic waves (Machine-translation by Google Translate, not legally binding)
WO2017109252A1 (en) * 2015-12-22 2017-06-29 Universitat Politècnica De València Synthetic model of biological tissues for evaluating the wireless transmission of electromagnetic waves

Similar Documents

Publication Publication Date Title
Kaufman et al. The electrical conductivity of the tissues near the heart and its bearing on the distribution of the cardiac action currents
Hartsgrove et al. Simulated biological materials for electromagnetic radiation absorption studies
Veall et al. The partition of trace amounts of xenon between human blood and brain tissues at 37 C
Steeling Crystal‐structure of ruthenium red and stereochemistry of its pectic stain
Mitchell et al. Agarose as a tissue equivalent phantom material for NMR imaging
Cook The dielectric behaviour of some types of human tissues at microwave frequencies
Schwan Alternating current spectroscopy of biological substances
Pawlicka et al. Magnetic resonance study of chitosan bio-membranes with proton conductivity properties
Marchal et al. Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz
Pinto et al. Gelatin: A skin phantom for bioimpedance spectroscopy
Said et al. Preservation of gelatin-based phantom material using vinegar and its life-span study for application in microwave imaging
Baskharoun et al. Physical phantoms for microwave imaging of the breast
JPH0546074A (en) Biophantom
Otterskog et al. A multi-layered head phantom for microwave investigations of brain hemorrhages
Yu et al. Tissue phantom to mimic the dielectric properties of human muscle within 20 Hz and 100 kHz for biopotential sensing applications
Bah et al. Study of breast tissues dielectric properties in UWB range for microwave breast cancer imaging
TEORELL et al. Electrical impedance properties of surviving gastric mucosa of the frog
Khalesi et al. Skin cancer detection through microwaves: validation on phantom measurements
RU2529187C1 (en) Proton-conducting composite polymer material
Clegg et al. Microwave dielectric measurements (0.8-70 GHz) on Artemia cysts at variable water content
Joseph Development of ultra-wide band 500 MHz–20 GHz heterogeneous multi-layered phantom comprises of human skin, fat and muscle tissues for various microwaves based biomedical application
Kaatze Dielectric relaxation in aqueous solutions of polymers
Mattos et al. Proton mobility and copper coordination in polysaccharide-and gelatin-based bioblends and polyblends
KR20160103273A (en) Human phantom, manufacturing method of human phantom, and performance evaluation method of implantable medical device using thereof
JP2006251012A (en) Biological equivalent phantom and manufacturing method of the same