JPH054534B2 - - Google Patents

Info

Publication number
JPH054534B2
JPH054534B2 JP58160252A JP16025283A JPH054534B2 JP H054534 B2 JPH054534 B2 JP H054534B2 JP 58160252 A JP58160252 A JP 58160252A JP 16025283 A JP16025283 A JP 16025283A JP H054534 B2 JPH054534 B2 JP H054534B2
Authority
JP
Japan
Prior art keywords
pressure
belt
hydraulic cylinder
control
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58160252A
Other languages
Japanese (ja)
Other versions
JPS6053258A (en
Inventor
Daisaku Sawada
Takashi Shigematsu
Masami Sugaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16025283A priority Critical patent/JPS6053258A/en
Publication of JPS6053258A publication Critical patent/JPS6053258A/en
Publication of JPH054534B2 publication Critical patent/JPH054534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、車両の動力伝達装置として用いられ
るベルト式無段変速機(以下、無断変速機を
「CVT」と言う。)の油圧制御方法に関する。
The present invention relates to a hydraulic control method for a belt-type continuously variable transmission (hereinafter referred to as "CVT") used as a power transmission device for a vehicle.

【従来の技術】[Conventional technology]

CVTは、増速比e(=出力側回転速度Nout/
入力側回転速度Nin)を連続的に制御することが
でき、車両の燃料消費効率を改善する優れた動力
伝達装置として用いられる。ベルト式CVTでは
ベルトが1対の有効径可変の入力側デイスクの間
と1対の有効径可変の出力側デイスクの間とに掛
けられ、入力側デイスク及び出力側デイスクの
各々に油圧シリンダが設けられ、この油圧シリン
ダへ供給される油圧により入力側デイスク及び出
力側デイスクの押圧力が制御されてそれぞれの有
効径が変更され、無段階の速度比制御ができるよ
うになつている(特開昭56−66553)。 入力側デイスク及び出力側デイスクの従動側
(通常は出力側デイスク)の油圧シリンダの制御
圧はライン圧である。このライン圧は電磁リリー
フ弁によりベルトの伝達動力に関係して制御さ
れ、これによりベルトの滑りを回避しつつオイル
ポンプの駆動損失を抑制している。しかし油圧シ
リンダがデイスクと一体的に回転するため、油圧
シリンダ内の油圧媒体に遠心力が作用し、実際の
油圧がこの遠心力のために制御上意図している値
より大きくなつている。これはデイスクの押圧力
を増大させ、CVTの伝達効率の悪化、CVT各部
品の寿命低下の原因となつている。これに対する
従来対策としては、バランス室を設けることによ
り、油圧媒体の遠心力自体を構造的に相殺する方
法が知られている(例えば特開昭58−621491)。
CVT has speed increasing ratio e (=output side rotational speed Nout/
It can continuously control the input side rotational speed (Nin) and is used as an excellent power transmission device that improves the fuel consumption efficiency of vehicles. In a belt-type CVT, a belt is placed between a pair of input-side disks with variable effective diameters and between a pair of output-side disks with variable effective diameters, and a hydraulic cylinder is installed on each of the input-side disks and the output-side disks. The hydraulic pressure supplied to this hydraulic cylinder controls the pressing force of the input-side disk and the output-side disk, changing their respective effective diameters, making it possible to perform stepless speed ratio control (Japanese Patent Application Laid-Open No. 56−66553). The control pressure of the hydraulic cylinders on the driven side (usually the output side disk) of the input side disk and the output side disk is line pressure. This line pressure is controlled by an electromagnetic relief valve in relation to the power transmitted by the belt, thereby suppressing drive loss of the oil pump while avoiding belt slippage. However, since the hydraulic cylinder rotates integrally with the disk, centrifugal force acts on the hydraulic medium within the hydraulic cylinder, and this centrifugal force causes the actual oil pressure to be larger than the intended value for control purposes. This increases the pressing force on the disk, deteriorating the transmission efficiency of the CVT and shortening the lifespan of each CVT component. As a conventional countermeasure against this problem, a method is known in which the centrifugal force of the hydraulic medium itself is structurally offset by providing a balance chamber (for example, Japanese Patent Laid-Open No. 58-621491).

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしこの方法では発生する遠心力の約50%を
相殺するのが限度であり、十分な補正をすること
ができないという問題があつた。なお、前記特開
昭56−66553公報には入力側(駆動側)の油圧シ
リンダーと体的に回転する部分に油溜めを設け、
この油溜めの油圧値に基づいてライン圧(制御
圧)を制御するという方法が開示されているが、
この技術は入力側(駆動側)の回転数に着目して
いることからも明らかなように、回転数に対する
エンジントルクの変化を考慮しようとしたもので
あり、遠心力を相殺するという技術ではなかつ
た。 本発明の目的は、実用上の難点がなく、遠心力
に因るライン圧の増大分を相殺することができる
ベルト式CVTの油圧制御方法を提供することで
ある。
However, this method has a problem in that it is limited to canceling out approximately 50% of the centrifugal force generated, and it is not possible to make sufficient corrections. In addition, in the above-mentioned Japanese Patent Application Laid-open No. 56-66553, an oil reservoir is provided in the part that physically rotates with the input side (drive side) hydraulic cylinder,
A method has been disclosed in which line pressure (control pressure) is controlled based on the oil pressure value of this oil sump.
As is clear from the fact that this technology focuses on the rotation speed on the input side (drive side), it is an attempt to take into account changes in engine torque with respect to rotation speed, and is not a technology for canceling centrifugal force. Ta. An object of the present invention is to provide a hydraulic control method for a belt-type CVT that is free from practical difficulties and can offset increases in line pressure caused by centrifugal force.

【課題を解決するための手段】[Means to solve the problem]

本発明は、ベルト式無段変速機が、対向的に配
置されて油圧シリンダの油圧に関係して両者間の
距離が変化する1対の入力側デイスク、対向的に
配置されて油圧シリンダの油圧に関係して両者間
の距離が変化する1対の出力側デイスク、及び1
対の入力側デイスクと1対の出力側デイスクとの
間に掛けられ回転トルクを伝達するベルトを備
え、油圧制御装置内のベルト張力を制御する制御
圧が入力側デイスク又は出力側デイスクのうち動
力伝達系において従動側となる方の油圧シリンダ
へ伝えられるように構成されたベルト式無段変速
機の油圧制御方法において、前記制御圧を伝えら
れる側の油圧シリンダの回転速度を検出し、前記
制御圧を、実質的に該検出した回転速度の2乗に
比例して低下させるように補正することにより、
上記目的を達成したものである。
The present invention provides a belt-type continuously variable transmission including a pair of input side disks which are arranged oppositely and whose distance changes in relation to the oil pressure of a hydraulic cylinder; a pair of output side disks, the distance between which varies with respect to;
A belt is provided between a pair of input side disks and a pair of output side disks to transmit rotational torque, and the control pressure that controls the belt tension in the hydraulic control device is the power source of either the input side disk or the output side disk. In a method for controlling hydraulic pressure of a belt type continuously variable transmission configured to transmit the control pressure to a hydraulic cylinder on the driven side in a transmission system, detecting the rotational speed of the hydraulic cylinder on the side to which the control pressure is transmitted, By correcting the pressure so as to decrease it substantially in proportion to the square of the detected rotational speed,
The above objectives have been achieved.

【作用】[Effect]

本発明によれば次の事実に着目する。即ち遠心
力に因るライン圧(制御圧)Plの上昇分ΔPlは次
式により表わされる。 ΔPl=ρ・ω2/4・(R22+R12) ……(1) 但し、ρ:油圧媒体の密度 ω:油圧シリンダの角速度 R2:油圧シリンダの半径 R1:油圧シリンダのボス部の半径 σ、R2、R1は機関の運転状態に関係なく一定で
あり、ω2は油圧シリンダの回転速度Ncの2乗
Nc2に比例するので、ΔPlは次式により置き換え
られる。 ΔPl=K・Nc2 ……(2) 但しKは定数である。 従つて、本発明では、ライン圧Plを伝えられる
側の油圧シリンダの回転速度Ncを検出し、検出
した回転速度Ncの上昇に応じてライン圧を低下
させるように補正する。 この結果、遠心力に因るライン圧Plの上昇分と
補正に因るライン圧plの低下分とが互いに相殺さ
れ、油圧シリンダ内の最終結果としてはライン圧
Plは、ベルトの伝達動力に見合つた値になるの
で、CVTの伝達効率の悪化、オイルポンプの駆
動損失の増大、及びCVT各部品の寿命低下等を
防止することができる。更に本発明ではCVTの
構造を付加したり、ピトー管を設けたりする必要
がなく、補正量に対応する分だけ例えば電磁リリ
ーフ弁の電気制御信号を変更すればよいので、構
造が簡単であり、実用化が容易である。 なお、遠心力を略完全に相殺するには、上記(2)
式より回転速度Ncの2乗に比例してライン圧
(制御圧)を低下させるのが望ましいが、本発明
では必ずしも正確に2乗に比例して低下させるこ
とを要求するものではない。
According to the present invention, attention is paid to the following fact. That is, the increase ΔPl in the line pressure (control pressure) Pl due to centrifugal force is expressed by the following equation. ΔPl=ρ・ω 2 /4・(R2 2 +R1 2 ) ...(1) However, ρ: Density of hydraulic medium ω: Angular velocity of hydraulic cylinder R2: Radius of hydraulic cylinder R1: Radius of boss part of hydraulic cylinder σ , R2, and R1 are constant regardless of the operating state of the engine, and ω 2 is the square of the rotational speed Nc of the hydraulic cylinder.
Since it is proportional to Nc 2 , ΔPl can be replaced by the following equation. ΔPl=K・Nc 2 ...(2) However, K is a constant. Therefore, in the present invention, the rotational speed Nc of the hydraulic cylinder on the side to which the line pressure Pl is transmitted is detected, and the line pressure is corrected to decrease in accordance with the increase in the detected rotational speed Nc. As a result, the increase in line pressure Pl due to centrifugal force and the decrease in line pressure PL due to correction cancel each other out, and the final result in the hydraulic cylinder is line pressure
Since Pl has a value commensurate with the power transmitted by the belt, it is possible to prevent deterioration of CVT transmission efficiency, increase of oil pump drive loss, and shortening of the life of each CVT component. Furthermore, in the present invention, there is no need to add a CVT structure or provide a pitot tube, and the structure is simple because it is only necessary to change, for example, the electric control signal of the electromagnetic relief valve by the amount corresponding to the correction amount. Easy to put into practical use. In addition, in order to cancel centrifugal force almost completely, the above (2)
According to the formula, it is desirable to reduce the line pressure (control pressure) in proportion to the square of the rotational speed Nc, but the present invention does not necessarily require a reduction in exact proportion to the square.

【実施例】【Example】

図面を参照して本発明の実施例を説明する。 第1図においてCVT1は、1対の入力側デイ
スク2a,2b、1対の出力側デイスク4a,4
b、及び入力側デイスク2a,2bの間と出力側
デイスク4a,4bの間とに掛けられているベル
ト6とを有している。一方の入力側デイスク2a
は入力軸8上に軸線方向へは移動可能に、回転方
向へは固定的に設けられ、他方の入力側デイスク
2bは入力軸8上に軸線方向及び回転方向に固定
されている。又、一方の出力側デイスク4aは出
力軸10に軸線方向及び回転方向に固定され、他
方の出力側デイスク4bは出力軸10上に軸線方
向へは移動可能に、回転方向へは固定的に設けら
れている。 1対の入力側デイスク2a,2b及び一対の出
力側デイスク4a,4bの対向面は緩やかな円錐
面状に形成され、ベルト6の横断面は等脚台形に
形成される。ベルト6は入力側デイスク2a,2
b及び出力側デイスク4a,4bの押圧力の増減
に伴つてデイスク2a,2b,4a,4b上にお
ける掛かり半径(有効半径)が変化し、この結
果、CVT1の増速比e(=出力側デイスク4a,
4bの回転速度Nout/入力側デイスク2a,2
bの回転速度Nin)が変化する。 入力軸8は機関12のクランク軸14へクラツ
チ16を介して接続され、オイルポンプ18は、
入力軸8の中空空間を貫通しているポンプ軸20
を介してクランク軸14へ接続されている。オイ
ルポンプ18は油だめ22からのオイルをライン
圧油路24へ供給する。 電磁リリーフ弁26は、ライン圧油路24から
ドレン油路28へのオイルのリリーフ量、即ち戻
し流量を制御してライン圧Plを制御する。 流量制御弁30は油路32とライン圧油路24
あるいはドレン油路28との接続を制御して油路
32へのオイルの流量を制御する。 出力側デイスク4bの油圧シリンダはライン圧
油路24へ接続され、入力側デイスク2aの油圧
シリンダは油路32へ接続される。出力側デイス
ク4a,4bの押圧力、即ちライン圧Plはベルト
6の動力伝達を確保できる必要最小限の値に保持
され、入力側デイスク2a,2bの押圧力は
CVT1の増速比eを制御する。増速比eを増大
する場合には流量制御弁30から油路32へ送ら
れるオイルの流量を増大して入力側デイスク2
a,2bにおけるベルト6の掛かり半径を増大す
る。入力側デイスク2aの油圧シリンダの作用面
積は出力側デイスク4bの油圧シリンダの作用面
積より大きいので、入力側デイスク2aの油圧シ
リンダの油圧はライン圧Pl以下であるにもかかわ
らず、増速比eは1より大きい値になることもで
きる。 電子制御装置34は、データバス36により互
いに接続されるCPU(中央処理装置)38、
RAM40、I/F(インタフエース)42、
A/D(アナログ/デジタル変換器)44、及び
D/A(デジタル/アナログ変換器)46を備え
ている。 点火装置48の点火信号は機関回転速度信号と
して、又、回転角センサ50,52の検出信号は
CVT1の入力側回転速度信号及び出力側回転速
度信号としてI/F42へ送られる。スロツトル
センサ54はスロツトル開度θを検出し、その検
出信号はA/D44へ送られる。電磁リリーフ弁
26及び流量制御弁30はD/A46から増幅器
56を介して制御信号を受ける。 CVT1の作用を概略的に説明すると、目標機
関回転速度Ne′がスロツトル開度θ等の関数とし
て設定され、実際の機関回転速度Neが目標機関
回転速度Ne′となるように、目標機関回転速度
Ne′に対する実際の機関回転速度Neの偏差ΔNe
に関係してCVT1の増速比eが制御される。 前述しているように出力側デイスク4a,4b
の押圧力、即ちライン圧Plは、オイルポンプ18
の駆動損失を制御するために、ベルト6がデイス
ク2a,2b,4a,4bに対して滑らずに動力
伝達を確保できる必要最小限の値に制御される。
ライン圧Plは例えば次式により定義される。 Pl=C・Te・(Nin+Nout)/Nout ……(3) 但し、C:CVT1の構造から決まる定数 Te:機関トルク。 第2図の実線は(3)式の関係を示している。但し
増速比e=Nout/Ninである。しかし出力側デ
イスク4bの油圧シリンダは出力側デイスク4b
と一体的に回転するため、第3図に示すような遠
心力が出力側デイスク4bの回転速度に関係して
生じる。但し第3図の油圧換算値は前述の(1)式に
おいてR2=100mm、R1=0mm、ρ=0.85g/cm3
した。従つて油圧シリンダ内のライン圧Plは第2
図の破線で示すように、本来の制御油圧より上昇
してしまう。 本発明では油圧シリンダにおいて遠心力に因る
ライン圧Plの上昇分ΔPlを予め引いたライン圧Pl
を調圧弁26において発生する。これにより、油
圧シリンダ内の最終的な油圧は第2図の実線で示
されるような値、即ちベルト6の動力伝達に応じ
た必要最小限の値となり、オイルポンプ18の駆
動損失等の不具合を防止することができる。 第4図は電磁リリーフ弁26の制御ルーチンの
フローチヤートである。動力伝達を確保でき且つ
変速に支承のない必要最小限のライン圧g(e、
Te)を計算し、遠心力に因るライン圧の増大分
K・Nout2(但し出力側デイスク4aの回転速度
Nout=出力側デイスク4bの油圧シリンダの回
転速度Nc)をg(e、Te)から引いた値Plに対
応する制御電圧h(Pl)を電磁リリーフ弁26へ
出力する。従つて電磁リリーフ弁26において発
生するライン圧Plはg(e、Te)−K・Nout2
なり、出力側デイスク4bの油圧シリンダにおけ
る最終的な油圧はg(e、Te)となる。 各ステツプを詳述すると、ステツプ62では、機
関回転速度Ne(点火装置48の点火信号から検
出)、入力側回転速度Nin、出力側回転速度
Nout、及びスロツトル開度θを読込む。ステツ
プ64では増速比e=Nout/Ninを計算する。ス
テツプ66では機関回転速度Ne及びスロツトル開
度θから機関トルクTeを計算する。ステツプ68
ではライン圧Plを次式から計算する。 Pl=C・Te・(Nin+Nout)/Nout −K・Nout2 =C・Te{(1+e)/e} −k・Nout2 =g(e、Te)−K・Nout2 ……(4) ステツプ70ではPlの関数h(Pl)として電磁リ
リーフ弁26の制御圧Vrを計算し、Vrを出力す
る。
Embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the CVT 1 includes a pair of input side disks 2a, 2b and a pair of output side disks 4a, 4.
b, and a belt 6 that is hung between the input side disks 2a, 2b and between the output side disks 4a, 4b. One input side disk 2a
is provided on the input shaft 8 so as to be movable in the axial direction and fixed in the rotational direction, and the other input side disk 2b is fixed on the input shaft 8 in the axial direction and rotational direction. Further, one output side disk 4a is fixed to the output shaft 10 in the axial direction and rotational direction, and the other output side disk 4b is provided on the output shaft 10 so as to be movable in the axial direction but fixed in the rotational direction. It is being The opposing surfaces of the pair of input side disks 2a, 2b and the pair of output side disks 4a, 4b are formed into gentle conical shapes, and the cross section of the belt 6 is formed into an isosceles trapezoid. The belt 6 is attached to the input side disks 2a, 2
As the pressing force of the output side disks 4a and 4b increases and decreases, the engaging radius (effective radius) on the disks 2a, 2b, 4a, 4b changes, and as a result, the speed increasing ratio e of the CVT 1 (=output side disk 4a,
Rotational speed Nout of 4b/input side disks 2a, 2
The rotational speed Nin) of b changes. The input shaft 8 is connected to the crankshaft 14 of the engine 12 via a clutch 16, and the oil pump 18 is connected to the crankshaft 14 of the engine 12.
Pump shaft 20 passing through the hollow space of input shaft 8
It is connected to the crankshaft 14 via. Oil pump 18 supplies oil from oil sump 22 to line pressure oil passage 24 . The electromagnetic relief valve 26 controls the relief amount of oil from the line pressure oil passage 24 to the drain oil passage 28, that is, the return flow rate, thereby controlling the line pressure Pl. The flow rate control valve 30 is connected to an oil passage 32 and a line pressure oil passage 24.
Alternatively, the connection with the drain oil passage 28 is controlled to control the flow rate of oil to the oil passage 32. The hydraulic cylinder of the output side disk 4b is connected to the line pressure oil path 24, and the hydraulic cylinder of the input side disk 2a is connected to the oil path 32. The pressing force of the output side disks 4a, 4b, that is, the line pressure Pl, is maintained at the minimum value necessary to ensure the power transmission of the belt 6, and the pressing force of the input side disks 2a, 2b is
Controls the speed increasing ratio e of CVT1. When increasing the speed increasing ratio e, the flow rate of oil sent from the flow rate control valve 30 to the oil passage 32 is increased and the input side disc 2
The radius of engagement of the belt 6 at points a and 2b is increased. Since the working area of the hydraulic cylinder of the input side disk 2a is larger than the working area of the hydraulic cylinder of the output side disk 4b, even though the oil pressure of the hydraulic cylinder of the input side disk 2a is below the line pressure Pl, the speed increasing ratio e can also be greater than 1. The electronic control unit 34 includes a CPU (central processing unit) 38 connected to each other by a data bus 36;
RAM40, I/F (interface) 42,
It includes an A/D (analog/digital converter) 44 and a D/A (digital/analog converter) 46. The ignition signal of the ignition device 48 is an engine rotation speed signal, and the detection signals of the rotation angle sensors 50 and 52 are
The input side rotation speed signal and the output side rotation speed signal of the CVT 1 are sent to the I/F 42. The throttle sensor 54 detects the throttle opening θ, and its detection signal is sent to the A/D 44. Electromagnetic relief valve 26 and flow control valve 30 receive control signals from D/A 46 via amplifier 56 . To roughly explain the operation of CVT1, the target engine rotation speed Ne' is set as a function of the throttle opening θ, etc., and the target engine rotation speed
Deviation ΔNe of actual engine rotational speed Ne from Ne′
The speed increasing ratio e of the CVT 1 is controlled in relation to. As mentioned above, the output side disks 4a, 4b
The pressing force of the oil pump 18, that is, the line pressure Pl is
In order to control the drive loss, the belt 6 is controlled to the minimum value necessary to ensure power transmission without slipping on the disks 2a, 2b, 4a, 4b.
The line pressure Pl is defined, for example, by the following equation. Pl=C・Te・(Nin+Nout)/Nout...(3) However, C: Constant determined from the structure of CVT1 Te: Engine torque. The solid line in FIG. 2 shows the relationship of equation (3). However, the speed increase ratio e=Nout/Nin. However, the hydraulic cylinder of the output side disk 4b is
Since the output disc 4b rotates integrally with the output disc 4b, a centrifugal force as shown in FIG. 3 is generated in relation to the rotational speed of the output disc 4b. However, the hydraulic pressure conversion values in FIG. 3 are set as R2 = 100 mm, R1 = 0 mm, and ρ = 0.85 g/cm 3 in the above-mentioned equation (1). Therefore, the line pressure Pl in the hydraulic cylinder is the second
As shown by the broken line in the figure, the oil pressure rises above the original control oil pressure. In the present invention, in the hydraulic cylinder, the line pressure Pl is calculated by subtracting the increase in line pressure Pl due to centrifugal force ΔPl in advance.
is generated at the pressure regulating valve 26. As a result, the final oil pressure in the hydraulic cylinder becomes the value shown by the solid line in FIG. It can be prevented. FIG. 4 is a flowchart of a control routine for the electromagnetic relief valve 26. The minimum line pressure g (e,
Te), and calculate the increase in line pressure due to centrifugal force K・Nout 2 (however, the rotational speed of the output side disk 4a
A control voltage h(Pl) corresponding to the value Pl obtained by subtracting Nout=rotational speed Nc of the hydraulic cylinder of the output side disk 4b from g(e, Te) is output to the electromagnetic relief valve 26. Therefore, the line pressure Pl generated in the electromagnetic relief valve 26 becomes g(e, Te)-K·Nout 2 , and the final oil pressure in the hydraulic cylinder of the output side disc 4b becomes g(e, Te). To explain each step in detail, in step 62, the engine rotation speed Ne (detected from the ignition signal of the ignition device 48), the input side rotation speed Nin, the output side rotation speed
Read Nout and throttle opening θ. In step 64, the speed increasing ratio e=Nout/Nin is calculated. In step 66, the engine torque Te is calculated from the engine rotational speed Ne and the throttle opening θ. step 68
Now, calculate the line pressure Pl using the following formula. Pl=C・Te・(Nin+Nout)/Nout −K・Nout 2 =C・Te {(1+e)/e} −k・Nout 2 =g(e, Te)−K・Nout 2 ……(4) Step At 70, the control pressure Vr of the electromagnetic relief valve 26 is calculated as a function h (Pl) of Pl, and Vr is output.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば遠心油圧の
増大分を正確に考慮(相殺)した制御を行うこと
ができ、意図した通りの動力伝達を行うことがで
きるようになり、伝達効率の低下やCVT各部品
の耐久性低下が防止できるようになるという優れ
た効果が得られる。
As explained above, according to the present invention, it is possible to perform control that accurately takes into account (offsets) the increase in centrifugal oil pressure, and it becomes possible to perform power transmission as intended, thereby preventing a decrease in transmission efficiency. This has the excellent effect of preventing deterioration in the durability of each CVT component.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCVTを備える電子制御機関の全体の
概略図、第2図は動力伝達に応じたライン圧を示
す線図、第3図は遠心力に因るライン圧の増大分
を示す線図、第4図は電磁リリーフ弁の制御ルー
チンの流れ図である。 1……CVT、2a,2b……入力側デイスク、
4a,4b……出力側デイスク、6……ベルト、
18……オイルポンプ、34……電子制御装置、
38……CPU、52……回転角センサ。
Figure 1 is a schematic diagram of the entire electronically controlled engine equipped with CVT, Figure 2 is a diagram showing line pressure according to power transmission, and Figure 3 is a diagram showing line pressure increase due to centrifugal force. , FIG. 4 is a flowchart of the control routine for the electromagnetic relief valve. 1...CVT, 2a, 2b...input side disk,
4a, 4b...output side disk, 6...belt,
18...Oil pump, 34...Electronic control device,
38...CPU, 52...Rotation angle sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 ベルト式無段変速機が、対向的に配置されて
油圧シリンダの油圧に関係して両者間の距離が変
化する1対の入力側デイスク、対向的に配置され
て油圧シリンダの油圧に関係して両者間の距離が
変化する1対の出力側デイスク、及び1対の入力
側デイスクと1対の出力側デイスクとの間に掛け
られ回転トルクを伝達するベルトを備え、油圧制
御装置内のベルト張力を制御する制御圧が入力側
デイスク又は出力側デイスクのうち動力伝達系に
おいて従動側となる方の油圧シリンダへ伝えられ
るように構成されたベルト式無段変速機の油圧制
御方法において、前記制御圧を伝えられる側の油
圧シリンダの回転速度を検出し、前記制御圧を、
実質的に該検出した回転速度の2乗に比例して低
下させるように補正することを特徴とする、ベル
ト式無段変速機の油圧制御方法。
1. A belt-type continuously variable transmission includes a pair of input side disks that are arranged oppositely and whose distance between them changes depending on the oil pressure of a hydraulic cylinder; A belt in a hydraulic control device is provided with a pair of output-side disks whose distance between the two is changed by changing the distance between the two, and a belt that is hung between the pair of input-side disks and the pair of output-side disks and transmits rotational torque. In a hydraulic control method for a belt type continuously variable transmission configured such that a control pressure for controlling tension is transmitted to a hydraulic cylinder of an input side disk or an output side disk which is a driven side in a power transmission system, the control The rotational speed of the hydraulic cylinder on the side to which pressure is transmitted is detected, and the control pressure is
A hydraulic control method for a belt-type continuously variable transmission, characterized in that the hydraulic pressure is corrected so as to be reduced substantially in proportion to the square of the detected rotational speed.
JP16025283A 1983-09-02 1983-09-02 Method of controlling oil pressure of belt-type continuously variable transmission Granted JPS6053258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16025283A JPS6053258A (en) 1983-09-02 1983-09-02 Method of controlling oil pressure of belt-type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16025283A JPS6053258A (en) 1983-09-02 1983-09-02 Method of controlling oil pressure of belt-type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS6053258A JPS6053258A (en) 1985-03-26
JPH054534B2 true JPH054534B2 (en) 1993-01-20

Family

ID=15710980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16025283A Granted JPS6053258A (en) 1983-09-02 1983-09-02 Method of controlling oil pressure of belt-type continuously variable transmission

Country Status (1)

Country Link
JP (1) JPS6053258A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052980A (en) * 1989-02-13 1991-10-01 Toyota Jidosha Kabushiki Kaisha Hydraulic control apparatus for vehicle power transmitting system having continuously variable transmission
JP5113715B2 (en) * 2008-10-20 2013-01-09 アイシン・エィ・ダブリュ株式会社 Power transmission device and vehicle equipped with the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839875A (en) * 1981-08-31 1983-03-08 Aisin Warner Ltd Hydraulic control device of stepless automatic speed change gear for car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839875A (en) * 1981-08-31 1983-03-08 Aisin Warner Ltd Hydraulic control device of stepless automatic speed change gear for car

Also Published As

Publication number Publication date
JPS6053258A (en) 1985-03-26

Similar Documents

Publication Publication Date Title
US4718306A (en) Power transmission for use in automobiles continuously variable transmission
US4867287A (en) Control method for magnetic powder clutch
US4631043A (en) Hydraulic control apparatus for a continuously variable transmission
US7286922B1 (en) Method of and apparatus for transmitting torque in vehicular power trains
US4762213A (en) Driving system for a four-wheel drive vehicle
JP3358381B2 (en) Control device for continuously variable automatic transmission
US4673378A (en) Hydraulic control apparatus for a continuously variable transmission
JPH0712810B2 (en) Speed ratio control device for continuously variable transmission for vehicles
JPH0427418B2 (en)
JP3240979B2 (en) Slip control device for torque converter
JPS62116320A (en) Control unit for continuously variable transmission
US4817469A (en) Automatic transmission for automobile and method of controlling same
JP2741023B2 (en) Hydraulic control device for automatic transmission
JP3211714B2 (en) Gear ratio control device for continuously variable transmission
JPH0413575B2 (en)
US6192306B1 (en) Speed change controller for continuously variable transmission
US7654926B2 (en) Continuously variable V-belt transmission
US6852066B2 (en) Drive unit for a vehicle
JP2004124966A (en) Controller of belt-type continuously variable transmission
JPH054534B2 (en)
JP3223768B2 (en) Gear ratio control device for continuously variable transmission
JP3703952B2 (en) Lock-up clutch control device
EP0262908A2 (en) System for controlling a transfer clutch of a fourwheel drive vehicle
JP3348594B2 (en) Transmission control device for continuously variable transmission
JP2761139B2 (en) Control device for continuously variable transmission for vehicles