JPH0545270A - Repetitive fatigue testing device - Google Patents

Repetitive fatigue testing device

Info

Publication number
JPH0545270A
JPH0545270A JP22884591A JP22884591A JPH0545270A JP H0545270 A JPH0545270 A JP H0545270A JP 22884591 A JP22884591 A JP 22884591A JP 22884591 A JP22884591 A JP 22884591A JP H0545270 A JPH0545270 A JP H0545270A
Authority
JP
Japan
Prior art keywords
electrostrictive element
signal value
value
test piece
element layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22884591A
Other languages
Japanese (ja)
Other versions
JP3032918B2 (en
Inventor
Koji Ogura
幸治 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP3228845A priority Critical patent/JP3032918B2/en
Publication of JPH0545270A publication Critical patent/JPH0545270A/en
Application granted granted Critical
Publication of JP3032918B2 publication Critical patent/JP3032918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a repetitive fatigue testing device, with which the max. strain signal value of a load cell is made constant through changing of the alternate voltage value to be impressed on electrostrictive element layers, and equip the device with possibility of driving with resonance frequency. CONSTITUTION:A fatigue testing device is furnished with a display device 30 to indicate the alternate voltage value to be impressed on electrostrictive element layers 5a, 5b. It is made practicable to check the alternate voltage value so as to enable selecting the frequency (resonance frequency) at which the voltage value in checking minimizes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミック試験片等の
強度を検査するための繰返し疲労試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cyclic fatigue test apparatus for inspecting the strength of ceramic test pieces and the like.

【0002】[0002]

【従来の技術】セラミック試験片等の繰返し疲労試験に
は、その片面を二点で保持し、他面はその中央を保持し
て、一面側から動荷重を与える三点曲げ試験によって該
試料の曲げ疲労度を計測する方法がある。従来、この方
法に用いられる繰返し疲労試験装置にあって、駆動源と
してピストン,シリンダー等の機械的直線往復駆動機構
を用い、試験片の一面側から動荷重を付与するようにし
ていた。ところで、かかる従来構成にあっては、その駆
動力の調整及び変更が面倒であるとともに、高い周波数
の駆動力を生じさせることができず、しかも大きな駆動
音を発生し、さらには機械的摩擦により損耗が激しく、
試験条件を一定に保ちがたい等の欠点があった。
2. Description of the Related Art In a cyclic fatigue test of a ceramic test piece or the like, one surface is held at two points, the other surface is held at the center, and a three-point bending test in which a dynamic load is applied from one surface side There is a method of measuring bending fatigue. Conventionally, in the cyclic fatigue test apparatus used in this method, a mechanical linear reciprocating drive mechanism such as a piston and a cylinder is used as a drive source, and a dynamic load is applied from one surface side of the test piece. By the way, in such a conventional configuration, it is troublesome to adjust and change the driving force, a driving force of high frequency cannot be generated, a large driving sound is generated, and further mechanical friction causes mechanical friction. Wear is severe,
There were drawbacks such as difficulty in keeping the test conditions constant.

【0003】そこで、図5に示すように湾曲板bのすく
なくとも一面に電歪素子層cを配設してなる振動板a
の、その一端又は両端を基台d上に支持し、さらに該振
動板aの湾動面に試験片pの保持部材eを取付け、保持
部材e上に、該保持部材eとで試験片pを挟持する試験
片押圧端gを備えたロードセルfを配設したものが提案
された(特願昭62−250208号)。
Therefore, as shown in FIG. 5, a diaphragm a having an electrostrictive element layer c disposed on at least one surface of a curved plate b.
One end or both ends of the test piece p are supported on the base d, and the holding member e for the test piece p is attached to the swinging surface of the diaphragm a, and the test piece p is held on the holding member e by the holding member e. It has been proposed that a load cell f provided with a test piece pressing end g for sandwiching is provided (Japanese Patent Application No. 62-250208).

【0004】かかる構成にあって、電歪素子層cの表裏
面電極に所定周波数の交番電圧を印加すると湾曲板bに
湾曲振動を生ずる。そしてこれにともない、振動板aの
湾動面に支持されている保持部材eが振動する。このた
め、一面を前記保持部材eに支持され、他面を押圧端g
で保持された試験片pは、保持部材eの振動によって、
図6に示すように所定の共振周波数の電圧に基く動荷重
が印加され、遂には破損に至る。このとき、破損に至る
速度及び動荷重の周波数を計測することにより、試験片
の強度を検出することができる。
In such a structure, when an alternating voltage of a predetermined frequency is applied to the front and back electrodes of the electrostrictive element layer c, bending vibration is generated in the bending plate b. Along with this, the holding member e supported on the swing surface of the diaphragm a vibrates. Therefore, one surface is supported by the holding member e and the other surface is pressed by the pressing end g.
The test piece p held by means of the vibration of the holding member e,
As shown in FIG. 6, a dynamic load based on a voltage having a predetermined resonance frequency is applied, and eventually damage occurs. At this time, the strength of the test piece can be detected by measuring the speed of failure and the frequency of the dynamic load.

【0005】従って、この構成は、電歪素子層cへの交
番印加電圧を適宜に選定することにより、その繰返し応
力や、周期を調整することができて、多様な試験条件を
随意に設定することができ、しかも機械的直線往復駆動
機構により動荷重を与える従来手段と異なり、騒音の発
生や機械的摩擦による損耗が少なく、同一の試験条件を
維持することが容易となる利点を有する。
Therefore, in this structure, by repeatedly selecting the alternating applied voltage to the electrostrictive element layer c, the repetitive stress and the cycle thereof can be adjusted, and various test conditions can be arbitrarily set. Further, unlike the conventional means for applying a dynamic load by the mechanical linear reciprocating drive mechanism, there is an advantage that the generation of noise and wear due to mechanical friction are small and it is easy to maintain the same test condition.

【0006】かかる構成にあって、高温雰囲気中におけ
る試験片pの強度を検査する場合には、高温クリープに
より歪を与えると、装置全体が伸びたり、試験片が徐々
に変形してくる。ところで、試験片pの中間位置に付与
される電歪素子層cに電圧を印加しない状態における曲
げ応力(図3,6の曲げ応力の中心値;Fmean)は、図
5に示すように機枠iに螺合した螺子杆hを手動により
昇降させて、その押圧端gの位置を定めるものであり、
該押圧端gは定点となる。このため、上述のように試験
片pが変形をしてくると、最初に設定した押圧端gの位
置は定点であるために図6の鎖線のように曲げ応力波形
の中心値Fmeanが序々に低下し、その最大値Fmax が当
初の値よりも小さくなる。このため安定した試験結果を
得ることができないという欠点を生じる。
With such a construction, when inspecting the strength of the test piece p in a high temperature atmosphere, if strain is applied by high temperature creep, the entire apparatus will be stretched or the test piece will be gradually deformed. By the way, the bending stress (center value of bending stress in FIGS. 3 and 6; F mean ) in the state where no voltage is applied to the electrostrictive element layer c applied to the intermediate position of the test piece p is as shown in FIG. The screw rod h screwed to the frame i is manually moved up and down to determine the position of the pressing end g thereof.
The pressing end g is a fixed point. Therefore, when the test piece p is deformed as described above, since the initially set position of the pressing end g is a fixed point, the center value F mean of the bending stress waveform is gradually increased as shown by the chain line in FIG. The maximum value F max becomes smaller than the initial value. For this reason, there is a drawback that stable test results cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】上述の問題点を除去す
るために、ロードセルからの最大歪信号値を、あらかじ
め設定された所定歪信号値と比較し、これに満たない場
合には電歪素子層に印加される交番電圧値を上昇させる
ようにした電圧制御手段を備えるようにしたものが本発
明者によって最近提案された。この構成にあっては、繰
り返し疲労試験を高温雰囲気中で行なうと、高温クリー
プにより装置全体が伸びたり試験片pに塑性変形を生じ
て、図3の実線の応力波形図よりも、その曲げ応力の中
心値Fmeanが下降する。そして、これに伴い、ロードセ
ルからの最大歪信号値も低下する。そこでロードセルの
所定歪信号値fmax をあらかじめ保持しておいて、この
値と比較し、これよりも小さい場合には、電歪素子層に
印加される交番電圧値を上昇させることにより振動板の
振幅が大きくなる。このため、ロードセルからの最大歪
信号値Fmax は所定歪信号値fmax に近づき、図3の鎖
線に示すようについにはこれと等しくなる。而して、最
大歪信号値Fmax は常に所定歪信号値fmax に補正され
るから同一の動荷重が試験片に付与されることとなっ
て、正確な試験結果を得ることができる。
In order to eliminate the above-mentioned problems, the maximum strain signal value from the load cell is compared with a predetermined strain signal value set in advance. It has recently been proposed by the present inventors to provide a voltage control means for increasing the alternating voltage value applied to the layers. In this configuration, when the repeated fatigue test is performed in a high temperature atmosphere, the entire device is stretched due to high temperature creep and the test piece p is plastically deformed, and the bending stress of the solid line of FIG. The median value F mean of F falls. Along with this, the maximum strain signal value from the load cell also decreases. Therefore, the predetermined strain signal value f max of the load cell is held in advance and compared with this value. If it is smaller than this value, the alternating voltage value applied to the electrostrictive element layer is increased to increase the vibration of the diaphragm. The amplitude becomes large. Therefore, the maximum strain signal value F max from the load cell approaches the predetermined strain signal value f max , and finally becomes equal to this as shown by the chain line in FIG. Thus, since the maximum strain signal value F max is always corrected to the predetermined strain signal value f max , the same dynamic load is applied to the test piece, and an accurate test result can be obtained.

【0008】既述の図5,6で示した従来構成にあって
は、図7に示すように、電歪素子層に印加される交番電
圧値は常に一定としており、該交番電圧におけるロード
セルからの最大歪信号値、すなわち最大振幅を生じる周
波数(共振周波数)によって、湾曲板bに湾曲振動を生
じさるようにしていた。このようにかかる手段にあって
は、共振周波数によって湾曲板bに湾曲振動を生じさせ
るものであるために、効率的な電圧印加を施すことがで
きた。
In the conventional structure shown in FIGS. 5 and 6, the alternating voltage value applied to the electrostrictive element layer is always constant as shown in FIG. The bending vibration is generated in the bending plate b by the maximum distortion signal value of, that is, the frequency (resonance frequency) that generates the maximum amplitude. As described above, in such means, since the bending frequency is generated in the bending plate b by the resonance frequency, it is possible to efficiently apply the voltage.

【0009】ところで、上述のように、交番電圧値を変
化させて所定歪信号値fmax に補正するようにした構成
にあっては、あらかじめ振動板のバネ定数と周波数調整
重りから理論共振周波数を割り出したり、共振周波数を
事前に試験して検出するようにしてはいるが、実際の試
験状態にあっては上述の手段によりあらかじめ設定して
おいた共振周波数と誤差を生じ、しかも、この誤差は上
述の従来構成のように、ロードセルからの信号値で確認
することはできない。このため、不要に電歪素子層に高
電圧をかけることとなって、過電流が流れて電力が消耗
し、かつ分極の劣化が早くなって圧電バイモルフの寿命
を短くしたりする等の問題を生ずる。本発明は、かかる
技術的課題を解決することを目的とするものである。
By the way, as described above, in the structure in which the alternating voltage value is changed and corrected to the predetermined distortion signal value f max , the theoretical resonance frequency is previously calculated from the spring constant of the diaphragm and the frequency adjustment weight. Although the index is calculated and the resonance frequency is tested and detected in advance, in the actual test condition, an error occurs with the resonance frequency set in advance by the above-mentioned means, and this error is It cannot be confirmed by the signal value from the load cell as in the conventional configuration described above. Therefore, a high voltage is unnecessarily applied to the electrostrictive element layer, and overcurrent flows, power is consumed, and deterioration of polarization is accelerated to shorten the life of the piezoelectric bimorph. Occurs. The present invention aims to solve such technical problems.

【0010】[0010]

【課題を解決するための手段】本発明は、ロードセルか
らの最大歪信号値を、あらかじめ設定された所定歪信号
値と比較し、これに満たない場合には電歪素子層に印加
される交番電圧値を上昇させるようにした電圧制御手段
を備えるようにしたものにあって、前記電歪素子層に印
加される交番電圧値を表示する表示装置を備えたことを
特徴とするものである。
The present invention compares a maximum strain signal value from a load cell with a predetermined strain signal value set in advance, and if the maximum strain signal value is less than this, an alternating voltage applied to an electrostrictive element layer is compared. It is characterized in that it is provided with a voltage control means for increasing the voltage value, and is provided with a display device for displaying an alternating voltage value applied to the electrostrictive element layer.

【0011】[0011]

【作用】共振周波数で振動板に湾曲振動を生じさせた場
合が最も効率的となる。従って、図4に示すように、最
大歪信号値が一定となっている場合にあっては、交番電
圧値が最低のところが共振周波数となる。そこで、該交
番電圧値を表示する表示装置を備えることにより、該印
加周波数を共振周波数に調整することが可能となり、振
動板を最低の交番電圧で所定最大歪を生じさせるように
振動させることが可能となる。
The function is most efficient when bending vibration is generated in the diaphragm at the resonance frequency. Therefore, as shown in FIG. 4, when the maximum distortion signal value is constant, the resonance frequency is at the lowest alternating voltage value. Therefore, by providing a display device for displaying the alternating voltage value, it becomes possible to adjust the applied frequency to a resonance frequency, and it is possible to vibrate the diaphragm so as to generate a predetermined maximum strain at the lowest alternating voltage. It will be possible.

【0012】[0012]

【実施例】図1〜3について本発明の一実施例を説明す
る。1は下面に軟質ゴム,スポンジ,金属バネ等の弾性
支持材17を配設した基台であって、据付面18に対し
て半浮動状に固定されている。この基台1には駆動源と
なるバイモルフ構造の振動板2がその一辺縁を、該基台
1に螺着した支軸3a及びナット3bによって片持状に
支持されている。前記振動板2は、図2に示すように、
矩形状の湾曲板4の上下面に表裏に電極を備えた電歪素
子層5a,5bが配設されてなるものであって、前記湾
曲板4の他辺には、重錘6が固定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. Reference numeral 1 denotes a base having an elastic support material 17 such as soft rubber, sponge, and metal spring disposed on the lower surface thereof, which is fixed to the installation surface 18 in a semi-floating manner. A vibration plate 2 having a bimorph structure serving as a drive source is supported on the base 1 in a cantilever manner at one side by a support shaft 3a screwed to the base 1 and a nut 3b. The diaphragm 2 is, as shown in FIG.
Electrostrictive element layers 5a and 5b having electrodes on the front and back are provided on the upper and lower surfaces of the rectangular curved plate 4, and a weight 6 is fixed to the other side of the curved plate 4. ing.

【0013】前記電歪素子層5a,5bは逆方向に分極
し、その外側電極を電源発生装置15に接続し、かつ前
記内側電極を湾曲板4を介してアース接続して、その電
圧印加により、一方が伸張すると、他方が収縮するよう
に配線する。前記振動板2の中腹の湾動面上には、図2
に示すように、上部に幅方向に位置する二箇所の支持端
8,8を備えた試料保持部材7が設けられる。前記振動
板2の上方には、機枠14に螺合した螺子杆11に支持
されたロードル12が配設され、該ロードセル12の下
端には、試料保持部材7の支持端8,8の間に位置して
試験片pの上面に当接する試料押圧端13が設けられて
いる。
The electrostrictive element layers 5a and 5b are polarized in opposite directions, their outer electrodes are connected to the power supply generator 15, and their inner electrodes are grounded via the curved plate 4, and the voltage is applied thereto. The wiring is such that when one expands, the other contracts. As shown in FIG.
As shown in, a sample holding member 7 having two support ends 8 located in the width direction is provided on the upper portion. A loadle 12 supported by a screw rod 11 screwed onto a machine frame 14 is disposed above the vibrating plate 2, and a lower end of the load cell 12 is provided between the support ends 8 of the sample holding member 7. There is provided a sample pressing end 13 which is located at the position a and contacts the upper surface of the test piece p.

【0014】上述の構成にあって、試験片pを試料保持
部材7の支持端8,8上に乗載し、螺子杆11を手動に
より回動昇降させて、該螺子杆11を適正位置まで下降
して、該支持端8,8間で試験片p上に押圧端13を当
接し、三点支持する。この時、螺子杆11が適正位置よ
りも僅かに降下し過ぎた場合には、基台1の下面に配し
た弾性支持材17が圧縮し、振動体2,基台1が下方に
変位するので、試験片pは折損することなく、常に一定
の押圧力で保持される。而て後に、電歪素子層5a,5
bに電源発生装置15から所定共振周波数の交番電圧を
印加する。
In the above-mentioned structure, the test piece p is mounted on the supporting ends 8 of the sample holding member 7, and the screw rod 11 is manually rotated and moved up and down to bring the screw rod 11 to an appropriate position. It descends and the pressing end 13 is brought into contact with the test piece p between the supporting ends 8 to support it at three points. At this time, when the screw rod 11 is slightly lowered from the proper position, the elastic support member 17 arranged on the lower surface of the base 1 is compressed and the vibrating body 2 and the base 1 are displaced downward. The test piece p is always held with a constant pressing force without breaking. After that, the electrostrictive element layers 5a, 5
An alternating voltage having a predetermined resonance frequency is applied from the power source generator 15 to b.

【0015】これにより、電歪素子層5a,5bに歪を
生じ、かつその他片を重錘6の慣性力によって保持され
て、湾曲振動を生ずる。そして、該湾曲振動に伴う支持
端8,8の昇降移動によって、試験片pはその両側を下
方から押付けられ、押圧端13を中心として湾曲歪を周
期的に付与される。そしてこの動荷重により疲労して、
遂には破損に至ることとなり、この破損に至る時間,印
加電圧,湾曲繰返し回数等を計測することにより、該試
料pの抗折力等の強度を計測することが可能となる。
As a result, strain is generated in the electrostrictive element layers 5a and 5b, and the other piece is held by the inertial force of the weight 6 to generate bending vibration. Then, the test piece p is pressed from below on both sides by the up-and-down movement of the supporting ends 8 and 8 due to the bending vibration, and bending strain is periodically imparted around the pressing end 13. And this fatigue causes fatigue,
Eventually, it will be damaged, and by measuring the time until this damage, the applied voltage, the number of times of bending, etc., it becomes possible to measure the strength such as the transverse rupture force of the sample p.

【0016】かかる繰返し疲労試験装置には、前記電源
発生装置15から出力される交番電圧の値を制御するた
めの電圧制御手段が設けられている。その構成について
以下説明する。
The cyclic fatigue test apparatus is provided with voltage control means for controlling the value of the alternating voltage output from the power source generator 15. The configuration will be described below.

【0017】前記電圧制御手段は、前記電源発生装置1
5、歪アンプ20、基準電圧設定器21、比較器22等
から構成されている。すなわち前記ロードセル12から
の歪電圧信号は歪アンプ20により増幅され、ここから
最大歪信号値Fmax が取り出される。この最大歪信号値
max は表示器23に表示され、その値が確認され得
る。一方、基準電圧設定器21には、あらかじめ所定歪
信号値fmax が設定され、前記最大歪信号値Fmax を比
較器22により所定歪信号値fmax と比較し、これが低
い場合には、電源発生装置15に情報入力されて、印加
交番電圧が増幅され、より大きな電圧が電歪素子層5
a,5bに印加されて、振動板2に大きな振幅を生じ、
試験片pに付与される歪が上昇する。このため、最大歪
信号値Fmax は高くなり、上述のステップを繰り返すこ
とにより、最大歪信号値Fmax は所定歪信号値fmax
一致することとなる。
The voltage control means includes the power source generator 1.
5, distortion amplifier 20, reference voltage setting device 21, comparator 22 and the like. That is, the distortion voltage signal from the load cell 12 is amplified by the distortion amplifier 20, and the maximum distortion signal value F max is extracted from this. This maximum distortion signal value F max is displayed on the display 23 and its value can be confirmed. On the other hand, a predetermined distortion signal value f max is set in advance in the reference voltage setter 21, and the maximum distortion signal value F max is compared with the predetermined distortion signal value f max by the comparator 22. Information is input to the generator 15, the applied alternating voltage is amplified, and a larger voltage is applied to the electrostrictive element layer 5.
applied to a and 5b, a large amplitude is generated in the diaphragm 2,
The strain applied to the test piece p increases. Therefore, the maximum distortion signal value F max becomes high, and by repeating the above steps, the maximum distortion signal value F max matches the predetermined distortion signal value f max .

【0018】このように、上述の電圧制御手段を備える
ために、前記構成にあっては試験片pに付与される歪
は、その最大歪量が等しくなるように調整されるから、
試験片pに印加される疲労が等しくなり、試験片pが高
温クリ−プにより変形して、図3の実線の初期値より
も、その曲げ応力の中心値Fmeanが下降しても、図3鎖
線のようにその波形が増幅されることにより、最大歪信
号値Fmax が一定となる。このため試験片pに掛かる最
大歪量が等しくなり、同じ動荷重の下で、良好な試験結
果を得ることが可能となる。尚、前記所定歪信号値f
max は、試料pを装着したときの初期最大歪信号値F
max を入力するようにしても良く、この場合には、当該
初期最大歪信号値Fmax が高温状態にあっても維持され
得ることとなる。これは、表示器23に示された初期値
を基準電圧設定器21に手動入力したり、または初期設
定スイッチの入力操作等により自動的に初期値設定がな
され得るようにすることにより達成される。
As described above, since the above-mentioned voltage control means is provided, the strain applied to the test piece p is adjusted so that the maximum strain amounts become equal in the above-mentioned configuration.
Even if the fatigue applied to the test piece p becomes equal, the test piece p is deformed by the high temperature creep, and the center value F mean of the bending stress falls below the initial value of the solid line in FIG. The maximum distortion signal value F max becomes constant because the waveform is amplified like a three-dot chain line. Therefore, the maximum strain amount applied to the test piece p becomes equal, and it becomes possible to obtain a good test result under the same dynamic load. The predetermined distortion signal value f
max is the initial maximum strain signal value F when the sample p is mounted
Max may be input, and in this case, the initial maximum distortion signal value F max can be maintained even in a high temperature state. This is achieved by manually inputting the initial value shown on the display 23 to the reference voltage setting device 21, or by making it possible to automatically set the initial value by an input operation of the initial setting switch. ..

【0019】而して、かかる破損に至る、時間,印加電
圧,湾曲繰返し回数等を計測することにより、該試験片
pの抗折力等の強度を適正に計測することが可能とな
る。
By measuring the time, the applied voltage, the number of times of bending, etc., which lead to such damage, the strength of the test piece p, such as the transverse rupture force, can be properly measured.

【0020】一方、前記電源発生装置15には、出力す
る印加交番電圧の値を表示する電圧計等からなる表示装
置30が接続され、該印加電圧を常に表示するようにし
ている。そこで、前記電源発生装置15から発生する交
番電圧の周波数を調整して、前記印加交番電圧が最低と
なるようにする。そしてこの最小値の周波数が共振周波
数となる。このため前記電歪素子層5a,5bには、最
低印加電圧でしかも所定の最大歪を生ずるように共振周
波数で駆動されることとなり、このため、最低交番電圧
を印加することとなって消費電力が小さくかつ分極の劣
化等を可及的に抑止することができ、電歪素子層5a,
5bの寿命を長くすることができる。その他、本発明は
三点曲げ試験に特に有用であるが、試験片pの全周囲を
支持縁で保持して、該試験片pの中心に押圧端を当接す
る等の試験態様にも適合し得る。
On the other hand, a display device 30 including a voltmeter for displaying the value of the applied alternating voltage to be output is connected to the power generation device 15 so that the applied voltage is constantly displayed. Therefore, the frequency of the alternating voltage generated from the power supply generator 15 is adjusted so that the applied alternating voltage becomes the lowest. The frequency of this minimum value becomes the resonance frequency. For this reason, the electrostrictive element layers 5a and 5b are driven at the resonance frequency so as to generate a predetermined maximum strain at the lowest applied voltage. Therefore, the lowest alternating voltage is applied, resulting in power consumption. Is small and deterioration of polarization can be suppressed as much as possible.
The life of 5b can be extended. In addition, although the present invention is particularly useful for a three-point bending test, it is also suitable for a test mode in which the entire circumference of the test piece p is held by a supporting edge and the pressing end is brought into contact with the center of the test piece p. obtain.

【0021】[0021]

【発明の効果】本発明は、上述のように、ロードセルの
所定歪信号値をあらかじめ保持しておいて、この値と比
較し、これが小さい場合には、電歪素子層に印加される
交番電圧値を上昇させることにより振動板の振幅を大き
くし、試験片pにかかる最大歪量を等しくするようにし
た構成にあって、表示装置によって前記電歪素子層に印
加される交番電圧値を確認し得るようにしたから、その
電圧値が最低となる周波数(共振周波数)を選定するこ
とができ、このためかかる共振周波数で振動板に効率的
に湾曲振動を付与できて、消費電力を小さくでき、かつ
振動板の耐用寿命を長くし得る等の優れた効果がある。
As described above, according to the present invention, the predetermined strain signal value of the load cell is held in advance and compared with this value. When this is small, the alternating voltage applied to the electrostrictive element layer is applied. The amplitude of the diaphragm is increased by increasing the value to make the maximum strain amount applied to the test piece p equal, and the alternating voltage value applied to the electrostrictive element layer by the display device is confirmed. Therefore, it is possible to select the frequency (resonance frequency) that minimizes the voltage value, which makes it possible to efficiently apply bending vibration to the diaphragm at such resonance frequency and reduce power consumption. In addition, there is an excellent effect that the service life of the diaphragm can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は一部切欠正面図である。FIG. 1 is a partially cutaway front view.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】本発明による応力波形図である。FIG. 3 is a stress waveform diagram according to the present invention.

【図4】本発明による最大歪信号値Fmax と、印加電圧
と、周波数との関係を示す波形図である。
FIG. 4 is a waveform diagram showing the relationship between the maximum distortion signal value F max , the applied voltage, and the frequency according to the present invention.

【図5】従来構成の概要側面図である。FIG. 5 is a schematic side view of a conventional configuration.

【図6】従来構成による応力波形図である。FIG. 6 is a stress waveform diagram according to a conventional configuration.

【図7】従来構成による最大歪信号値Fmax と、印加電
圧と、周波数との関係を示す波形図である。
FIG. 7 is a waveform diagram showing the relationship between the maximum distortion signal value F max , the applied voltage, and the frequency according to the conventional configuration.

【符号の説明】[Explanation of symbols]

1 基板 3 振動板 4 湾曲板 5a,5b 電歪素子層 12 ロードセル 15 電源発生装置 20 歪アンプ 21 基準電圧設定器 22 比較器 30 表示装置 p 試験片 DESCRIPTION OF SYMBOLS 1 substrate 3 vibrating plate 4 curved plates 5a, 5b electrostrictive element layer 12 load cell 15 power supply generator 20 strain amplifier 21 reference voltage setting device 22 comparator 30 display device p test piece

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 湾曲板のすくなくとも一面に電歪素子層
を配設してなる振動板の、その一端又は両端を基台上に
保持し、さらに該振動板の湾動面に試料保持部材を取付
け、試料保持部材上に、該保持部材とで試験片を挟持す
るロードセルを備え、さらにロードセルからの最大歪信
号値を、あらかじめ設定された所定歪信号値と比較し、
これに満たない場合には電歪素子層に印加される交番電
圧値を上昇させるようにした電圧制御手段を備え、電歪
素子層に所定周波数の交番電圧を印加して、該振動板に
湾曲振動を生じさせるようにした繰返し疲労試験装置に
おいて、 前記電歪素子層に印加される交番電圧値を表示する表示
装置を備えたことを特徴とする繰返し疲労試験装置。
1. A vibrating plate having an electrostrictive element layer disposed on at least one surface of a curved plate, holding one or both ends of the vibrating plate on a base, and further mounting a sample holding member on the moving surface of the vibrating plate. Mounting, on the sample holding member, provided with a load cell for sandwiching the test piece with the holding member, further comparing the maximum strain signal value from the load cell with a preset strain signal value,
If it is less than this, the voltage control means is arranged to increase the alternating voltage value applied to the electrostrictive element layer, and an alternating voltage of a predetermined frequency is applied to the electrostrictive element layer to bend the diaphragm. A repetitive fatigue test apparatus configured to generate vibration, comprising a display device for displaying an alternating voltage value applied to the electrostrictive element layer.
JP3228845A 1991-08-13 1991-08-13 Cyclic fatigue test equipment Expired - Lifetime JP3032918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3228845A JP3032918B2 (en) 1991-08-13 1991-08-13 Cyclic fatigue test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3228845A JP3032918B2 (en) 1991-08-13 1991-08-13 Cyclic fatigue test equipment

Publications (2)

Publication Number Publication Date
JPH0545270A true JPH0545270A (en) 1993-02-23
JP3032918B2 JP3032918B2 (en) 2000-04-17

Family

ID=16882773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3228845A Expired - Lifetime JP3032918B2 (en) 1991-08-13 1991-08-13 Cyclic fatigue test equipment

Country Status (1)

Country Link
JP (1) JP3032918B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697574A (en) * 1995-05-12 1997-12-16 Bridgestone Sports Co., Ltd. Winding method and apparatus for wound golf balls
JP2009222655A (en) * 2008-03-18 2009-10-01 Shimadzu Corp Material testing machine and material testing method
CN102928305A (en) * 2012-11-14 2013-02-13 中国建筑第八工程局有限公司 Resonant mode composite material sheet fatigue tester
JP2014025862A (en) * 2012-07-30 2014-02-06 Hitachi-Ge Nuclear Energy Ltd Strength testing apparatus and strength testing method for structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101292006B1 (en) * 2011-12-21 2013-08-01 한국항공우주연구원 Desktop Type Bending Test Machine Equipped with Microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697574A (en) * 1995-05-12 1997-12-16 Bridgestone Sports Co., Ltd. Winding method and apparatus for wound golf balls
JP2009222655A (en) * 2008-03-18 2009-10-01 Shimadzu Corp Material testing machine and material testing method
JP2014025862A (en) * 2012-07-30 2014-02-06 Hitachi-Ge Nuclear Energy Ltd Strength testing apparatus and strength testing method for structures
CN102928305A (en) * 2012-11-14 2013-02-13 中国建筑第八工程局有限公司 Resonant mode composite material sheet fatigue tester
CN102928305B (en) * 2012-11-14 2015-04-15 中国建筑第八工程局有限公司 Resonant mode composite material sheet fatigue tester

Also Published As

Publication number Publication date
JP3032918B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US6813960B1 (en) Asymmetrical column assembly for high-cycle fatigue test machines
US4869111A (en) Cyclic fatigue testing apparatus
JP3401444B2 (en) Fine shape measuring device
WO1998037400A1 (en) High-cycle fatigue test machine
JPH0711459B2 (en) Method and apparatus for monitoring tension in an elongated flexible member
JP3032918B2 (en) Cyclic fatigue test equipment
JP2547052B2 (en) Cyclic fatigue test equipment
JP3032917B2 (en) Cyclic fatigue test equipment
JP2686666B2 (en) Cyclic fatigue test equipment
JP2547045B2 (en) Cyclic fatigue test equipment
JP2547047B2 (en) Cyclic fatigue test equipment
JP3595849B1 (en) Fatigue test equipment for micro / nano materials
JP2547051B2 (en) Cyclic fatigue test equipment
JP2006010503A (en) Mechanical characteristic measuring instrument and mechanical characteristic measuring method for piezoelectric element
JP3430660B2 (en) Strength reliability evaluation test equipment
JP5225284B2 (en) Electromechanical property inspection method for electromechanical transducer
JP2513709Y2 (en) Cyclic fatigue test equipment
JP2002131174A (en) Device and method for evaluating property of vibration isolator
JP4220917B2 (en) Fretting wear evaluation device
JPH03200046A (en) Repetitive fatigue testing device
JP2003114165A (en) Vibration tester
JP2001133376A (en) Force calibrating mechanism for hardness testing machine and force calibrating method for hardness testing machine
JPH09145580A (en) Indenter load device in indentation microhardness testing machine
GB2365976A (en) Apparatus for testing of materials comprising a megnetostrictive actuator
JPH08178814A (en) Strength test equipment