JPH0545141A - Method for measuring section area of wall thickness of hollow structure - Google Patents

Method for measuring section area of wall thickness of hollow structure

Info

Publication number
JPH0545141A
JPH0545141A JP3201046A JP20104691A JPH0545141A JP H0545141 A JPH0545141 A JP H0545141A JP 3201046 A JP3201046 A JP 3201046A JP 20104691 A JP20104691 A JP 20104691A JP H0545141 A JPH0545141 A JP H0545141A
Authority
JP
Japan
Prior art keywords
wall thickness
blood vessel
cross
image
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3201046A
Other languages
Japanese (ja)
Inventor
Kazuo Yano
一男 矢野
Kazuyuki Ichijo
和幸 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3201046A priority Critical patent/JPH0545141A/en
Publication of JPH0545141A publication Critical patent/JPH0545141A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To enable a section area of a wall thickness to be measured accurately by measuring the section area of the wall thickness by performing image analysis processing. CONSTITUTION:For example, in the case of a blood vessel, an organization sample where Van Gieson staining for recognizing each layer constituting a wall thickness of the blood vessel easily by immobilization is created after extracting the blood vessel. A traced figure is input to an image-analysis device with a high resolution directly through an accessory camera of the image- analysis device from the organization sample or through a scanner after shooting the organization sample and then section areas of three layers which constitute a wall thickness of the blood vessel are measured separately by using two measurement programs for analyzing particle and measuring opening. The section area can be measured by combining a method for identifying each layer constituting the wall thickness of the blood vessel and the image-analysis device with a high resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は中空構造物、特に血管、
中空管、中空糸の壁厚の断面積、壁厚を構成する各部の
断面積、管内に塗布した物、付着した物の厚みの断面積
を測定する方法に関する。
This invention relates to hollow structures, especially blood vessels,
The present invention relates to a method for measuring the cross-sectional area of the wall thickness of a hollow tube, the hollow fiber, the cross-sectional area of each part constituting the wall thickness, the material applied in the tube, and the thickness of the adhered material.

【0002】[0002]

【従来の技術】これまで、中空体の空内断面積を測定す
る方法(特開昭56−137113号公報)、壁厚を測
定する方法(特開昭59−131112号公報)は知ら
れている。さらに、径の大きい中空構造物の空内断面積
の測定はCTスキャン、X線撮影装置を使用することに
より可能である。しかし、径の小さい、微細な中空構造
物の壁厚の断面積、壁厚を構成する各部の断面積を測定
する場合には、空と壁の識別が不可能である。この課題
を解決するには、近似した2点間を正確に認識する(解
像度が大である)高画質の画像解析装置が必要である。
例えばハイビジョンのように単位当たりの画素数(1イ
ンチ当り82ドット)が大きくなればならない。
2. Description of the Related Art Up to now, a method for measuring the in-air cross-sectional area of a hollow body (JP-A-56-137113) and a method for measuring a wall thickness (JP-A-59-131112) are known. There is. Furthermore, the measurement of the in-air cross-sectional area of a hollow structure having a large diameter can be performed by using a CT scan or an X-ray imaging device. However, when measuring the cross-sectional area of the wall thickness of a fine hollow structure having a small diameter and the cross-sectional area of each part constituting the wall thickness, it is impossible to distinguish between the sky and the wall. To solve this problem, a high-quality image analysis apparatus that accurately recognizes between two approximate points (has a high resolution) is required.
For example, the number of pixels per unit (82 dots per inch) must be large as in high-definition television.

【0003】通常、中空構造物の壁厚の断面積に近似す
る表示として壁厚の測定が行われているが、不定形ある
いは壁厚の不均一な中空構造物においては、その壁厚を
壁厚の断面積の近似値として表示することは正確性に欠
ける。中空構造物、すなわち血管壁厚の変化および空内
閉塞率、中空糸、中空管の空内塗布物およびサビなどの
付着物の割合を表示するには、その壁厚の断面積を測定
することが正確な値を示す。
Usually, the wall thickness is measured as an indication that approximates the cross-sectional area of the wall thickness of the hollow structure. However, in the case of a hollow structure having an irregular shape or an uneven wall thickness, the wall thickness is measured as the wall thickness. Displaying as an approximate value of the cross-sectional area of thickness is not accurate. To display the hollow structure, that is, the change in the wall thickness of the blood vessel and the rate of in-air blockage, the in-air coating of hollow fibers, hollow tubes, and the proportion of deposits such as rust, measure the cross-sectional area of that wall thickness Shows the exact value.

【0004】さらに、従来のようにこれら空内を流れる
物質の量、速度で表示する方法(特開昭56−1371
13号公報、特開昭59−196410号公報)は、中
空構造物の壁厚の変化を二次的に観察しているにすぎな
い。
Further, there is a conventional method of displaying the amount and speed of the substance flowing in the air (JP-A-56-1371).
13 and JP-A-59-196410) only secondarily observe the change in the wall thickness of the hollow structure.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、中空
構造物の壁厚の断面積を正確に測定する方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for accurately measuring the cross-sectional area of the wall thickness of a hollow structure.

【0006】[0006]

【課題を解決するための手段】本発明者らは、不定形な
中空構造物、特に血管壁厚の各層(内膜、中膜、外膜)
の断面積を測定するために鋭意研究を重ねた結果、組織
標本から直接、又は写真撮影後に、画像解析装置に入力
して断面積を測定可能であることを見いだし、この知見
に基づき本発明をなすに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that an amorphous hollow structure, in particular, layers of blood vessel wall thickness (intima, media, adventitia)
As a result of repeated intensive research to measure the cross-sectional area of the tissue, it was found that the cross-sectional area can be measured directly from the tissue sample or after taking a photograph, and the cross-sectional area can be measured, and the present invention is based on this finding. It came to eggplant.

【0007】すなわち、本発明は中空構造物の壁厚の断
面積を画像解析処理により測定する方法である。また、
本発明によれば、中空構造物の層状をなす壁厚の各構成
部の断面積を測定することができる。さらに、中空構造
物の不定形な壁厚の断面積を測定することができる。そ
のうえ、中空構造物の不定形な層状をなす壁厚の各構成
部の断面積を測定することもできる。
That is, the present invention is a method for measuring the cross-sectional area of the wall thickness of a hollow structure by image analysis processing. Also,
According to the present invention, it is possible to measure the cross-sectional area of each component having a wall thickness that forms a layer of a hollow structure. Furthermore, it is possible to measure the cross-section of irregular wall thickness of hollow structures. Moreover, it is possible to measure the cross-sectional area of each of the constituent parts of the wall thickness of the hollow structure, which form an amorphous layer.

【0008】以下、血管の場合を例にとって説明する。
血管壁厚は3層構造(内膜、中膜、外膜)をなし、正常
状態においても収縮時および弛緩時で、また病的状態
で、その血管壁厚とそれを構成する各層(内膜、中膜、
外膜)の断面積は変動する。それら断面積を測定するに
は、血管を摘出後、固定して血管壁厚を構成する各層を
容易に認識するワンギーソン染色を施した組織標本を作
製し、その組織標本から画像解析装置の付属カメラを介
して直接、あるいは組織標本を写真撮影後に透写した図
形をスキャナを介して、高解像度の画像解析装置(IP
−1000、旭化成工業(株)製、1インチ当たり82
ドットの画素数を有する)に入力し、2つの測定プログ
ラム(粒子解析、開口計測)を用いて血管壁厚を構成す
る3層(内膜、中膜、外膜)の断面積を別々に測定する
ことが必要である。この方法では血管壁厚を構成する各
層を識別する方法と高解像度の画像解析装置を組合わせ
ることにより断面積を測定することができる。
The case of a blood vessel will be described below as an example.
The blood vessel wall thickness has a three-layer structure (intima, media, adventitia). Even in the normal state at the time of contraction and relaxation, and in a pathological state, the blood vessel wall thickness and each layer (intimal membrane) , The media,
The cross-sectional area of the adventitia varies. To measure these cross-sectional areas, after removing the blood vessel, fix it and make a tissue sample that has been subjected to One Gieson staining to easily recognize the layers that make up the wall thickness of the blood vessel, and from that tissue sample, the camera attached to the image analyzer High-resolution image analyzer (IP
-1000, manufactured by Asahi Kasei Kogyo Co., Ltd., 82 per inch
Input the number of pixels of dots) and measure the cross-sectional areas of the three layers (intima, media, adventitia) that make up the blood vessel wall thickness separately using two measurement programs (particle analysis, aperture measurement) It is necessary to. In this method, the cross-sectional area can be measured by combining a method for identifying each layer constituting the blood vessel wall thickness with a high-resolution image analysis device.

【0009】血管を固定するには、ホルマリン、アルデ
ヒド系固定液、昇汞、ピクリン酸、クロム酸およびその
塩、四酸化オスミウムを基剤とする固定液、アルコー
ル、アセトンなどが有用である。血管壁厚を構成する各
層を識別するには一般染色(ヘマトキシン・エオジン染
色)、結合組織の染色法(ワンギーソン染色、マロリー
染色、アザン染色、マッソントリクローム染色、レゾル
シン・フクシン染色、オルセイン染色、アルデヒド・フ
クシン染色、鍍銀法、ヘマトキシリンによる弾性線維染
色、ビクトリア青染色、アストラ青染色、アルシアン青
染色など、およびそれら染色の組み合わせ)、血管内
皮、平滑筋細胞、弾性線維、膠原線維を特定する物質
(抗体)を用いる免疫組織化学、および一般染色と結合
組織染色の組み合わせなどが有用である。 血管壁厚を
構成する各層を識別した像を画像解析装置に入力するに
は、白黒入力の他、カラー像をそのまま入力することが
可能である。
For fixing blood vessels, formalin, aldehyde-based fixative, elevation, picric acid, chromic acid and its salts, osmium tetroxide-based fixative, alcohol, acetone and the like are useful. In order to identify each layer that constitutes the wall thickness of the blood vessel, general staining (hematoxin-eosin staining), connective tissue staining method (One Gieson staining, Mallory staining, Azan staining, Masson trichrome staining, resorcin-fuchsin staining, olcein staining, aldehyde) -Fuchsin stain, silver method, elastic fiber stain with hematoxylin, Victoria blue stain, Astra blue stain, Alcian blue stain, etc. and combinations thereof), substances that identify vascular endothelium, smooth muscle cells, elastic fibers, collagen fibers Immunohistochemistry using (antibody) and a combination of general staining and connective tissue staining are useful. In order to input an image in which each layer constituting the blood vessel wall thickness is identified to the image analysis device, it is possible to input a color image as it is, in addition to the monochrome input.

【0010】入力した画像(血管壁厚の3層:内膜、中
膜、外膜)の断面積を測定する場合には、2つの測定プ
ログラム(粒子解析、開口計測)を組み合わせることに
より、測定が可能である。より正確な壁厚の断面積を求
める場合には、単位長当たりの画素数を多くすればよ
い。
When measuring the cross-sectional area of an input image (three layers of blood vessel wall thickness: intima, media, adventitia), measurement is performed by combining two measurement programs (particle analysis, aperture measurement). Is possible. To obtain a more accurate cross-sectional area of the wall thickness, the number of pixels per unit length may be increased.

【0011】[0011]

【実施例】次に、実施例によって本発明をさらに詳細に
説明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0012】[0012]

【実施例1】体重2.5〜3.0kgの日本白色種雄ウ
サギを用い、麻酔下(ペントバルビタール酸ナトリウ
ム、30mg/kg静脈内投与)で左右の総頚動脈を摘
出し、それぞれの側から3ヶ所(近位部、中央部、遠位
部)の血管を採取し、ブアン液で2時間固定後、アルコ
ールでの脱水、キシレンでの透徹を行い、パラフィンに
包埋した。パラフィン切片を作製し、脱パラ後にワンギ
ーソン染色を施して、その組織標本を写真撮影し、最終
倍率70倍に拡大した写真を得た。写真を透写した後、
スキャナ入力で画像解析装置(IP−1000,旭化成
工業(株))に入力し、粒子解析で血管壁厚を構成する
3層を白黒二値化(二値化値:100)し、収縮時の血
管壁厚の中膜の断面積を測定した。次に開口計測で血管
壁厚を構成する3層を白黒二値化(二値化値:100)
し、収縮時の血管壁厚の内膜および外膜の断面積を測定
した。その結果をそれぞれ10匹のウサギの平均値とし
て、表1に示す。
Example 1 Using a Japanese white male rabbit weighing 2.5 to 3.0 kg, the right and left common carotid arteries were extracted under anesthesia (sodium pentobarbitalate, 30 mg / kg intravenous administration), and 3 from each side. Blood vessels at various locations (proximal part, central part, distal part) were collected, fixed with Bouin's solution for 2 hours, dehydrated with alcohol, cleared with xylene, and embedded in paraffin. A paraffin section was prepared, subjected to Wangieson staining after deparaffinization, and the tissue specimen was photographed to obtain a photograph with a final magnification of 70 times. After seeing through the photo,
It is input to the image analysis device (IP-1000, Asahi Kasei Kogyo Co., Ltd.) by scanner input, and the three layers constituting the blood vessel wall thickness are binarized into black and white (binarization value: 100) by particle analysis. The media cross-sectional area of the vessel wall thickness was measured. Next, black-and-white binarization of the three layers constituting the blood vessel wall thickness by opening measurement (binarization value: 100)
Then, the cross-sectional areas of the intima and adventitia of the wall thickness of the blood vessel at the time of contraction were measured. The results are shown in Table 1 as an average value of 10 rabbits.

【0013】この表1から明かなように、収縮時の血管
壁厚を構成する各層の断面積を測定することが可能であ
る。図1は、採取部位が中央部である正常な血管の血管
壁厚を構成する各層を画像解析装置で画像解析した図で
ある。層1は内膜を、層2は中膜を、層3は外膜を示
す。
As is clear from Table 1, it is possible to measure the cross-sectional area of each layer constituting the blood vessel wall thickness at the time of contraction. FIG. 1 is a diagram in which each layer constituting the blood vessel wall thickness of a normal blood vessel whose collection site is the central portion is image-analyzed by an image analyzer. Layer 1 represents the intima, layer 2 the media and layer 3 the adventitia.

【0014】[0014]

【実施例2】実施例1における摘出血管を固定する代わ
りに、100mmHgの圧力で生理食塩液を5分間潅流
して血液を除去した後、同圧力でブアン液を右心室から
全身へ15分間潅流させたのち、15分室温に放置した
材料を採取すること以外は、実施例1と同様にして、弛
緩時の血管壁厚の内膜、中膜、外膜の断面積を測定し
た。その結果をそれぞれ10匹のウサギの平均値とし
て、表2に示す。
Example 2 Instead of fixing the isolated blood vessel in Example 1, physiological saline was perfused for 5 minutes at a pressure of 100 mmHg to remove blood, and then Bouin's solution was perfused from the right ventricle to the whole body for 15 minutes at the same pressure. After that, the cross-sectional areas of the intima, the media and the adventitia of the blood vessel wall thickness at the time of relaxation were measured in the same manner as in Example 1 except that the material left at room temperature for 15 minutes was collected. The results are shown in Table 2 as an average value of 10 rabbits.

【0015】この表2から明かなように、弛緩時の血管
壁厚を構成する各層の断面積を測定することが可能であ
る。図2は、採取部位が中央部である正常な血管の血管
壁厚を構成する各層を画像解析装置で画像解析した図で
ある。層1は内膜を、層2は中膜を、層3は外膜を示
す。
As is clear from Table 2, it is possible to measure the cross-sectional area of each layer constituting the blood vessel wall thickness at the time of relaxation. FIG. 2 is a diagram in which each layer constituting the blood vessel wall thickness of a normal blood vessel whose collection site is the central portion is image-analyzed by the image analyzer. Layer 1 represents the intima, layer 2 the media and layer 3 the adventitia.

【0016】[0016]

【実施例3】実施例1における正常血管の代わりに、内
膜が肥厚した血管(内膜肥厚血管、右側)および正常な
血管(左側)の中央部から材料を採取すること以外は、
実施例1と同様にして、収縮時の血管壁厚の内膜、中
膜、外膜の断面積を測定した。その結果をそれぞれ11
匹ウサギの平均値として、表3に示す。
Example 3 In place of the normal blood vessel in Example 1, except that the material is collected from the central part of the blood vessel with thickened intima (intimal thickened blood vessel, right side) and the normal blood vessel (left side).
In the same manner as in Example 1, the cross-sectional areas of the intima, the media and the adventitia of the blood vessel wall thickness at the time of contraction were measured. 11 of the results
Table 3 shows the average values for rabbits.

【0017】この表3から明かなように、内膜肥厚血管
(右側)における不定形の血管壁厚を構成する各層の断
面積を測定することが可能である。また正常な血管(左
側、3.2×10-2mm2)に比較して内膜肥厚血管(右側、
16.9×10-2mm2)では内膜の断面積が増加しているこ
とを数値で表すことができる。図3は、採取部位が中央
部である内膜肥厚血管の血管壁厚を構成する各層を画像
解析装置で画像解析した図である。層1は内膜を、層2
は中膜を、層3は外膜を示す。
As is clear from Table 3, it is possible to measure the cross-sectional area of each layer constituting the irregular blood vessel wall thickness in the intimal thickened blood vessel (right side). Also, compared with normal blood vessels (left side, 3.2 × 10 -2 mm 2 ), intimal thickened blood vessels (right side,
At 16.9 × 10 -2 mm 2 ), it can be shown numerically that the cross-sectional area of the intima is increasing. FIG. 3 is a diagram in which each layer constituting the blood vessel wall thickness of the intimal thickened blood vessel whose collection site is the central portion is image-analyzed by the image analyzer. Layer 1 is the intima and layer 2
Indicates the media and layer 3 indicates the adventitia.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明の方法は、中空構造物の壁厚を容
易に測定することができる。特に正常な血管、内膜肥厚
を含む様々な血管の形態的変化を数値化することが出来
るので、医薬品開発のための各種血管疾患のモデル動物
の評価法に適している。
According to the method of the present invention, the wall thickness of the hollow structure can be easily measured. In particular, since morphological changes of various blood vessels including normal blood vessels and intimal thickening can be quantified, it is suitable for the evaluation method of model animals for various vascular diseases for drug development.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法における収縮時、右側、中央部、
正常血管の画像解析像である。
FIG. 1 is a side view of a right side portion, a central portion, and
It is an image analysis image of a normal blood vessel.

【図2】本発明の方法における弛緩時、右側、中央部、
正常血管の画像解析像である。
FIG. 2 is a schematic view of the method of the present invention when relaxing, right side, central part,
It is an image analysis image of a normal blood vessel.

【図3】本発明の方法における収縮時、右側、中央部、
内膜肥厚血管の画像解析像である。
FIG. 3 is a schematic diagram showing the contraction in the method of the present invention,
It is an image analysis image of an intimal thickened blood vessel.

【符号の説明】[Explanation of symbols]

層1:内膜の断面 層2:中膜の断面 層3:外膜の断面 Layer 1: Cross-section of intima Layer 2: Cross-section of media Layer 3: Cross-section of epicardium

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空構造物の壁厚の断面積を画像解析処
理により測定する方法。
1. A method for measuring the cross-sectional area of the wall thickness of a hollow structure by image analysis processing.
JP3201046A 1991-08-12 1991-08-12 Method for measuring section area of wall thickness of hollow structure Withdrawn JPH0545141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201046A JPH0545141A (en) 1991-08-12 1991-08-12 Method for measuring section area of wall thickness of hollow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201046A JPH0545141A (en) 1991-08-12 1991-08-12 Method for measuring section area of wall thickness of hollow structure

Publications (1)

Publication Number Publication Date
JPH0545141A true JPH0545141A (en) 1993-02-23

Family

ID=16434513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201046A Withdrawn JPH0545141A (en) 1991-08-12 1991-08-12 Method for measuring section area of wall thickness of hollow structure

Country Status (1)

Country Link
JP (1) JPH0545141A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613639A (en) * 2018-05-11 2018-10-02 中国建材检验认证集团浙江有限公司 Ornamental engraving decorated gypsum board hollow out rate measurement method
CN110132185A (en) * 2019-06-18 2019-08-16 常州工学院 A kind of measurement method of plant fiber cross-sectional area
CN110487222A (en) * 2019-09-29 2019-11-22 河南科技大学第一附属医院 It is a kind of for measuring the measuring instrument of external exposure blood volume

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613639A (en) * 2018-05-11 2018-10-02 中国建材检验认证集团浙江有限公司 Ornamental engraving decorated gypsum board hollow out rate measurement method
CN110132185A (en) * 2019-06-18 2019-08-16 常州工学院 A kind of measurement method of plant fiber cross-sectional area
CN110487222A (en) * 2019-09-29 2019-11-22 河南科技大学第一附属医院 It is a kind of for measuring the measuring instrument of external exposure blood volume

Similar Documents

Publication Publication Date Title
Nichols et al. Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms.
Kuhn et al. Evaluation of a microcomputed tomography system to study trabecular bone structure
US6421552B1 (en) Methods and apparatus for estimating cardiac motion using projection data
King et al. Focal and diffuse liver disease studied by quantitative microstructural sonography.
CN1163190C (en) Image and analyzing system and method for individual erythrocytes in blood vessels
US6698885B2 (en) Judging changes in images of the eye
CH689724A5 (en) Device for endoscopic or gastroscopic examinations with detection of the distance scale.
DE102012108121A1 (en) Method and system for ultrasound-assisted automatic detection, quantification and tracking of pathologies
US11850095B2 (en) Ultrasound imaging device and method using position and posture tracking of probe of ultrasound scanner
DE60306413T2 (en) METHOD AND DEVICE FOR SELECTING AREAS OF INTEREST IN OPTICAL ILLUSTRATION
Norrby Microvascular density in terms of number and length of microvessel segments per unit tissue volume in mammalian angiogenesis
JPH0545141A (en) Method for measuring section area of wall thickness of hollow structure
Melton Jr et al. Automatic real-time endocardial edge detection in two-dimensional echocardiography
Hansell Computed tomography of diffuse lung disease: functional correlates
KR100440255B1 (en) System of measuring fat content in target organ and sotoring medium of storing fat content measuring program
WO2006033066A1 (en) Apparatus, software and method for processing images from a patient's heart
Wisner et al. Radiographic and microscopic correlation of diffuse interstitial and bronchointerstitial pulmonary patterns in the caudodorsal lung of adult thoroughbred horses in race training
US20030114743A1 (en) Method of improving the resolution of a medical nuclear image
Glover Characterization of in vivo breast tissue by ultrasonic time-of-flight computed tomography
Selzer et al. A second look at quantitative coronary angiography: some unexpected problems
Conetta et al. In vitro analysis of boundary identification techniques used in quantification of two-dimensional echocardiograms
D'Souza et al. Computed tomography evaluation of renal parenchymal volume in patients with chronic pyelonephritis and its relationship to glomerular filtration rate
CN115841506B (en) Fluorescent molecular image processing method and system
JPH0491017A (en) Method for measuring alopecic degree
Beier et al. A comparison of 7 different volumetry methods of left and right ventricle using post-mortem phantoms

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112