JPH0544589B2 - - Google Patents

Info

Publication number
JPH0544589B2
JPH0544589B2 JP59191509A JP19150984A JPH0544589B2 JP H0544589 B2 JPH0544589 B2 JP H0544589B2 JP 59191509 A JP59191509 A JP 59191509A JP 19150984 A JP19150984 A JP 19150984A JP H0544589 B2 JPH0544589 B2 JP H0544589B2
Authority
JP
Japan
Prior art keywords
duct
tank
gas
cooling device
cryogenic cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59191509A
Other languages
Japanese (ja)
Other versions
JPS6170346A (en
Inventor
Norimoto Matsuda
Hisanao Ogata
Norihide Saho
Kozo Matsumoto
Yasuomi Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19150984A priority Critical patent/JPS6170346A/en
Publication of JPS6170346A publication Critical patent/JPS6170346A/en
Publication of JPH0544589B2 publication Critical patent/JPH0544589B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は極低温冷却装置に係り、特に狭くて密
閉に近い室内に設置して使用するのに好適な極低
温冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cryogenic cooling device, and particularly to a cryogenic cooling device suitable for installation and use in a narrow, nearly airtight room.

〔発明の背景〕[Background of the invention]

従来、極低温液体、例えば、液体ヘリウムを多
量に消費する極低温冷却装置においては液体ヘリ
ウムを貯蔵するクライオスタツトからのヘリウム
の蒸発量を極力小さくするために、被冷却物及び
液体ヘリウムを収納する容器を真空断熱し、さら
に容器の周囲を液体ヘリウムよりも蒸発温度の高
い液化ガス(例えば液体窒素等)で冷却されたふ
く射シールド板で囲うなどしているのが一般であ
る。また場合によつては液体ヘリウムの蒸発量を
0にするためにヘリウム冷凍機でクライオスタツ
ト内の液体ヘリウム容器を冷却したり、蒸発ヘリ
ウムガスを再凝縮したりする方式がとられてい
る。(米国特許第4223540号明細書、米国特許第
4277949号明細書、米国特許第4279127号明細書) しかしながら、これら従来の極低温冷却装置に
おいては、いずれも通常の液体ヘリウム蒸発量を
低減するための対策のみで、異常時(例えば地
震、その他の原因でクライオスタツトが真空破壊
を起した場合には液体ヘリウム槽への熱侵入が正
常時の30〜40倍になるため瞬時に大量の液体ヘリ
ウムが蒸発する)の対策については特別に考慮さ
れていなかつた。
Conventionally, in cryogenic cooling equipment that consumes a large amount of cryogenic liquid, such as liquid helium, the object to be cooled and liquid helium are stored in order to minimize the amount of helium evaporated from a cryostat that stores liquid helium. Generally, the container is vacuum insulated and further surrounded by a radiation shield plate cooled with a liquefied gas (such as liquid nitrogen) that has a higher evaporation temperature than liquid helium. In some cases, in order to reduce the amount of evaporation of liquid helium to zero, a method is used in which a helium refrigerator is used to cool the liquid helium container in the cryostat, or the evaporated helium gas is recondensed. (U.S. Patent No. 4,223,540, U.S. Patent No.
4277949, U.S. Patent No. 4279127) However, in these conventional cryogenic cooling devices, only measures are taken to reduce the amount of liquid helium evaporated, and they cannot be used in abnormal situations (e.g. earthquakes, etc.). If the cryostat were to break its vacuum due to this cause, the amount of heat entering the liquid helium tank would be 30 to 40 times greater than normal, causing a large amount of liquid helium to evaporate instantly. Nakatsuta.

一方、最近は超電導応用機器の発展にともない
その機器を冷却するための極低温冷却装置を比較
的狭く、密閉に近い室に設置するケースが増して
きた。その場合に上記のように大量の液体ヘリウ
ムが異状蒸発を起すと、室内が蒸発ヘリウムガス
で充満し、作業者の安全がおびやかされる可能性
があつた。
On the other hand, with the recent development of superconducting application equipment, there has been an increase in the number of cases in which cryogenic cooling equipment for cooling the equipment is installed in relatively small, nearly airtight rooms. In that case, if a large amount of liquid helium were to evaporate abnormally as described above, the room would be filled with evaporated helium gas, potentially endangering the safety of workers.

〔発明の目的〕[Purpose of the invention]

本発明の目的は狭くて密閉に近い室に設置され
た極低温冷却装置のクライオスタツトで真空破壊
等による異状蒸発が起きたときに、大量の蒸発ガ
スを室内に充満させることなくすみやかに室外へ
誘導、排出できる極低温冷却装置を提供すること
にある。
The purpose of the present invention is to quickly move a large amount of evaporated gas outside without filling the room when abnormal evaporation occurs due to vacuum breakage in a cryostat of a cryogenic cooling device installed in a narrow, almost airtight room. The purpose of the present invention is to provide a cryogenic cooling device that can be guided and discharged.

〔発明の概要〕[Summary of the invention]

本発明は被冷却体およびそれを冷却する極低温
液体を収納した真空断熱のクライオスタツト、該
クライオスタツト内を冷却する寒冷を供給するヘ
リウム冷凍機、蒸発ガスを誘導、排出する排出ダ
クト、クライオスタツトのガス放出管と排出ダク
トを連絡する連絡ダクト等によつて構成され、真
空破壊によつて大量に発生する液体槽からの蒸発
ガスを連絡ダクト及び排出ダクトを介して屋外に
排出するようにしたものである。
The present invention relates to a vacuum-insulated cryostat that houses an object to be cooled and a cryogenic liquid that cools it, a helium refrigerator that supplies cold to cool the inside of the cryostat, an exhaust duct that guides and discharges evaporated gas, and a cryostat. The system consists of a connecting duct, etc. that connects the gas discharge pipe and the exhaust duct, and the evaporative gas generated from the liquid tank in large quantities due to vacuum breakage is discharged outdoors through the connecting duct and the exhaust duct. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によつて構成
から説明する。1は被冷却体、例えば、超電導マ
グネツト2、極低温液体、例えば、液体ヘリウム
3を収納した液体槽、4は液体槽1への熱侵入を
低減するため、冷媒、例えば、液体窒素5を収納
してふく射シールドの作用を行うふく射シールド
槽、6はふく射シールド槽4の周囲に貼付けた断
熱材(例えばスーパーインシユレーシヨン、以下
SIと略す)、7は外槽、8及び8′は真空空間、9
は真空バルブ、10はガス放出管、11は他のガ
ス放出管、12はガス放出管10に装着された安
全弁、13は他のガス放出管11に装着された安
全弁、14はヘリウム冷凍機、15はヘリウム冷
凍機で発生した寒冷をクライオスタツト16の液
体槽1およびふく射シールド槽4に移送するため
のトランスフアチユーブ、17はふく射シールド
槽4で蒸発した窒素ガスを再凝縮させる凝縮熱交
換器、18は液体槽1で蒸発したヘリウムガスを
再凝縮させる凝縮熱交換器、19は蒸発ガスを誘
導して室40外に排出するための排出ダクト、2
0は排出ダクト19とガス放出管10及び他のガ
ス放出管11とを連絡する連絡ダクトである。
Hereinafter, one embodiment of the present invention will be explained from the configuration with reference to FIG. Reference numeral 1 indicates a liquid tank containing a cooled object, such as a superconducting magnet 2, and a cryogenic liquid, such as liquid helium 3. Reference numeral 4 contains a refrigerant, such as liquid nitrogen 5, to reduce heat intrusion into the liquid tank 1. A radiation shield tank 6 acts as a radiation shield, and 6 is a heat insulating material pasted around the radiation shield tank 4 (for example, super insulation).
(abbreviated as SI), 7 is an outer tank, 8 and 8' are vacuum spaces, 9
10 is a vacuum valve, 10 is a gas release pipe, 11 is another gas release pipe, 12 is a safety valve attached to the gas release pipe 10, 13 is a safety valve attached to another gas release pipe 11, 14 is a helium refrigerator, 15 is a transfer tube for transferring the cold generated by the helium refrigerator to the liquid tank 1 and the radiation shield tank 4 of the cryostat 16, and 17 is a condensing heat exchanger for recondensing the nitrogen gas evaporated in the radiation shield tank 4. , 18 is a condensing heat exchanger for recondensing the helium gas evaporated in the liquid tank 1, 19 is an exhaust duct for guiding evaporated gas and discharging it outside the chamber 40, 2
0 is a communication duct that communicates the exhaust duct 19 with the gas discharge pipe 10 and other gas discharge pipes 11.

次に本実施例での作用について説明すると、ク
ライオスタツト16の真空空間8,8′を十分な
真空になるまで真空ポンプ(図示せず)で引いた
後真空バルブ9を閉じて、ふく射シールド槽4及
び液体槽1にそれぞれ液体窒素5、液体ヘリウム
3を充てんする。それと同時にヘリウム冷凍機1
4を運転し、トランスフアチユーブ15を経由し
て凝縮熱交換器17,18に寒冷を送る。
Next, the operation of this embodiment will be explained. After the vacuum spaces 8 and 8' of the cryostat 16 are drawn with a vacuum pump (not shown) until a sufficient vacuum is reached, the vacuum valve 9 is closed and the radiation shield tank is closed. 4 and liquid tank 1 are filled with liquid nitrogen 5 and liquid helium 3, respectively. At the same time, helium refrigerator 1
4 is operated to send cold air to the condensing heat exchangers 17 and 18 via the transfer tube 15.

凝縮熱交換器17,18が正常に作用しはじめ
るとふく射シールド槽4及び液体槽1内の蒸発ガ
スは再凝縮されるので各々の槽内圧力はほぼ一定
に維持され、安全弁12及び13は閉じた状態を
保たれる。
When the condensing heat exchangers 17 and 18 start functioning normally, the evaporated gas in the radiation shield tank 4 and liquid tank 1 is recondensed, so the pressure inside each tank is maintained almost constant, and the safety valves 12 and 13 are closed. The condition is maintained.

このような状況の下で超電導マグネツト2を使
つて実験中に、地震及び操作ミス等が原因でクラ
イオスタツト16が大きな真空破壊を起した場
合、真空空間8及び8′の圧力は瞬時に(厳密に
は破壊の状況によつて異なるが数秒から数十秒
で)10-7Torrから大気圧760Torrにまで上昇す
る。そして、それにともなつて液体槽1への熱侵
入は正常時の30〜40倍に増加するので凝縮熱交換
器17,18での再凝縮能力をはるかにこえ、
各々の槽内圧力が上昇しはじめる。槽内圧力が一
定限度をこえると安全弁12,13からヘリウム
ガス及び窒素ガスが噴出する。真空破壊時のガス
噴出量は例えば、表面積5〜6m2、液体槽1の内
容積100程度のクライオスタツト16で30秒間
に100の液体ヘリウムが噴出する程であり、こ
れが常温のヘリウムガスになると約70m3になるの
で排出しないと室40内はヘリウムガスが充満す
ることになるが、この場合、連絡ダクト20、排
出ダクト19を経由して室40外に排出される。
If the cryostat 16 suffers a major vacuum break due to an earthquake or operational error during an experiment using the superconducting magnet 2 under these circumstances, the pressure in the vacuum spaces 8 and 8' will instantly (strictly The atmospheric pressure rises from 10 -7 Torr to 760 Torr (in a few seconds to several tens of seconds, depending on the circumstances of the rupture). As a result, heat intrusion into the liquid tank 1 increases by 30 to 40 times the normal amount, far exceeding the recondensation capacity of the condensing heat exchangers 17 and 18.
The pressure inside each tank begins to rise. When the pressure inside the tank exceeds a certain limit, helium gas and nitrogen gas are ejected from the safety valves 12 and 13. The amount of gas ejected when the vacuum is broken is, for example, from a cryostat 16 with a surface area of 5 to 6 m 2 and an internal volume of liquid tank 1 of about 100, 100 ml of liquid helium is ejected in 30 seconds, and if this becomes helium gas at room temperature, Since the volume is about 70 m 3 , the chamber 40 will be filled with helium gas if it is not discharged, but in this case, it is discharged to the outside of the chamber 40 via the communication duct 20 and the discharge duct 19 .

本実施例ではヘリウム冷凍機14、凝縮熱交換
器17,18で蒸発ガスを再凝縮させるケースに
ついて述べたが、これらヘリウム冷凍機14よ凝
縮熱交換器17,18がない場合でも蒸発ガス量
が増すのみで基本的には同じ作用である。
In this embodiment, a case has been described in which the evaporated gas is recondensed using the helium refrigerator 14 and the condensing heat exchangers 17 and 18, but even if the helium refrigerator 14 and the condensing heat exchangers 17 and 18 are not provided, the amount of evaporated gas is It basically has the same effect, only increasing.

このように、本実施例によれば超電導機器冷却
用のクライオスタツトで大きな真空破壊が起つて
も噴出したヘリウムガスや窒素ガスは連絡ダク
ト、排出ダクトを経由して室外に排出されるの
で、室内に充満することはなく、したがつて作業
者の安全が保たれるという効果がある。
In this way, according to this embodiment, even if a large vacuum breakdown occurs in the cryostat used to cool superconducting equipment, the spouted helium gas and nitrogen gas will be discharged outdoors via the communication duct and the exhaust duct, so that the This has the effect of ensuring the safety of workers.

第2図は本発明の第2の実施例を示すもので、
21はガス放出管10の安全弁12の付近に取付
けられた圧力センサー、22は同様に他のガス放
出管11の安全弁13の付近に取付けられた圧力
センサー、23は圧力センサー21,22の信号
をコントローラ24に伝達する信号ケーブル、2
5はコントローラ24の指令によつて運転される
排出フアンである。
FIG. 2 shows a second embodiment of the present invention.
21 is a pressure sensor installed near the safety valve 12 of the gas discharge pipe 10, 22 is a pressure sensor similarly installed near the safety valve 13 of another gas release pipe 11, and 23 is a pressure sensor that receives the signals of the pressure sensors 21 and 22. A signal cable for transmitting to the controller 24, 2
Reference numeral 5 denotes a discharge fan operated according to commands from the controller 24.

第1図に示した本発明の一実施例との相違は圧
力センサー21,22によつて異常蒸発による各
槽内圧力の急上昇をはやく検知し、安全弁12,
13が噴出する直前に検知した信号を信号ケーブ
ル23を介してコントローラ24に伝達し、コン
トローラ24の動作で排出フアン25を始動す
る。
The difference from the embodiment of the present invention shown in FIG.
A signal detected just before the ejection of the exhaust fan 13 is transmitted to the controller 24 via the signal cable 23, and the discharge fan 25 is started by the operation of the controller 24.

本実施例によれば安全弁が開く前に排出フアン
が運転されるので、排気ダクトの内部は負圧にな
つており、排気ダクトが少しぐらい長くても、噴
出したガスが排出されにくいということなく、ス
ムーズに排出されるという更に他の効果がある。
According to this embodiment, the exhaust fan is operated before the safety valve opens, so the inside of the exhaust duct is under negative pressure, so even if the exhaust duct is a little long, the ejected gas will not be difficult to exhaust. , it has another effect of being smoothly discharged.

第3図は本発明の第3の実施例を示すもので、
排気ダクト19の一部を2重構造にして内ダクト
27の中に排出フアン25を設置し、内ダクト2
7と外ダクト26の間を排出ガスが通るようにし
た。この構造では本発明の第2の実施例を示す第
2図の圧力センサー21,22の信号でコントロ
ーラ24が排出フアン25を動作させると室40
内の空気が点線で示すように通気孔28を通つて
排出される。それによつてエジエクター部29が
負圧になり、排出ダクト19の中のガスを実線矢
印のように吸引する。
FIG. 3 shows a third embodiment of the present invention,
A part of the exhaust duct 19 is made into a double structure, and an exhaust fan 25 is installed inside the inner duct 27.
Exhaust gas is allowed to pass between 7 and the outer duct 26. In this structure, when the controller 24 operates the exhaust fan 25 based on the signals from the pressure sensors 21 and 22 in FIG. 2 showing the second embodiment of the present invention, the chamber 40
The air inside is exhausted through the vent hole 28 as shown by the dotted line. As a result, the ejector section 29 becomes a negative pressure, and the gas inside the exhaust duct 19 is sucked in as shown by the solid arrow.

本実施例によれば排出フアンが直後、極低温の
噴出ガスにさらされることはないので、排出フア
ンが極低温に冷却されたり固着などによつて停止
する心配がなくスムーズに噴出ガスの排出ができ
るという更に他の効果がある。
According to this embodiment, the exhaust fan is not immediately exposed to the extremely low temperature of the blown gas, so there is no need to worry about the exhaust fan being cooled to an extremely low temperature or stopping due to sticking, etc., and the blown gas can be smoothly discharged. There is another effect that can be done.

第4図は本発明の第4の実施例を示すもので内
ダクト27及び通気孔28に断熱材30を貼付け
たものである。本実施例によれば内ダクトの内側
を流れる室内空気が内ダクトを介して冷却されて
間接的に排出フアンが冷却されるのを防止できる
という更に他の効果がある。
FIG. 4 shows a fourth embodiment of the present invention, in which a heat insulating material 30 is attached to the inner duct 27 and the ventilation hole 28. According to this embodiment, there is a further effect that indoor air flowing inside the inner duct can be cooled through the inner duct and the exhaust fan can be prevented from being indirectly cooled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、狭くて密閉に近い室に設置さ
れた極低温冷却装置のクライオスタツトで真空破
壊等による異常蒸発が発生しても、ガス放出管の
完全弁から噴出したガスは連絡ダクト及び排出ダ
クトを介してすみやかに室外に排出されるので、
室内が噴出されたガスによつて充満されるという
危険性が防止できるという効果がある。
According to the present invention, even if abnormal evaporation occurs due to vacuum breakage or the like in a cryostat of a cryocooler installed in a narrow, almost airtight room, the gas ejected from the complete valve of the gas discharge pipe will be transferred to the connecting duct and Since it is quickly discharged outside through the discharge duct,
This has the effect of preventing the danger of the room being filled with the ejected gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による極低温冷却装置の一実
施例を示す系統図、第2図は、本発明による極低
温冷却装置の第2の実施例を示す系統図、第3図
は、本発明による極低温冷却装置の第3の実施例
を示す排出ダクトの部分拡大縦断面図、第4図
は、本発明による極低温冷却装置の第4の実施例
を示す排出ダクトの部分拡大縦断面図である。 1……液体槽、4……ふく射シールド槽、7…
…外槽、8,8′……真空空間、10……ガス放
出管、11……他のガス放出管、16……クライ
オスタツト、19……排出ダクト、20……連絡
ダクト、40……室。
FIG. 1 is a system diagram showing one embodiment of the cryogenic cooling device according to the present invention, FIG. 2 is a system diagram showing a second embodiment of the cryogenic cooling device according to the present invention, and FIG. FIG. 4 is a partially enlarged longitudinal cross-sectional view of a discharge duct showing a third embodiment of the cryogenic cooling device according to the invention; FIG. It is a diagram. 1...Liquid tank, 4...Radiation shield tank, 7...
... Outer tank, 8, 8' ... Vacuum space, 10 ... Gas discharge pipe, 11 ... Other gas discharge pipes, 16 ... Cryostat, 19 ... Discharge duct, 20 ... Connection duct, 40 ... Room.

Claims (1)

【特許請求の範囲】 1 被冷却体を収納して冷却するための液体槽
と、該液体槽を囲んだふく射シールド槽と、前記
液体槽及びふく射シールド槽を収納した外槽とよ
り構成され、各槽間の空間を真空断熱したクライ
オスタツトを有し、該クライオスタツトの液体槽
上部にそれぞれ設けられ、窒素ガス及びヘリウム
ガスを再凝縮させる凝縮熱交換器と、該それぞれ
の凝縮熱交換器に連通し他端をヘリウム冷凍機に
連通したトランスフアチユーブを有し、前記クラ
イオスタツトの液体槽に連通せるガス放出管及び
ふく射シールド槽に連通せる他のガス放出管を備
えた極低温冷却装置において、 前記該極低温冷却装置を設置した室内から室外
に通ずる排出ダクトを設け、該排出ダクトと前記
ガス放出管及び前記他のガス放出管とを連絡ダク
トで連結し、前記ガス放出管及び前記他のガス放
出管のうちの少なくとも一方に槽内圧力の急上昇
を検知する圧力センサーを取付けるとともに、前
記排出ダクト内に排出フアンを備え、該排出フア
ンの操作を圧力センサーからの検知信号に応じて
コントローラで指令するように構成したことを特
徴とする極低温冷却装置。 2 前記排出ダクトの一部を2重構造にし、内部
ダクトの中に排出フアンを備え、内ダクトと外ダ
クトの間を排出ガス通路にするとともに内ダクト
と前記室内を連通する通気孔を設けたことを特徴
とする特許請求の範囲1記載の極低温冷却装置。 3 前記内ダクト及び前記通気孔に断熱材を貼付
けたことを特徴とする特許請求の範囲2記載の極
低温冷却装置。
[Claims] 1. Consisting of a liquid tank for storing and cooling an object to be cooled, a radiation shield tank surrounding the liquid tank, and an outer tank housing the liquid tank and the radiation shield tank, It has a cryostat in which the space between each tank is vacuum insulated, and a condensing heat exchanger that is installed above the liquid tank of the cryostat and recondenses nitrogen gas and helium gas, and a condensing heat exchanger that recondenses nitrogen gas and helium gas A cryogenic cooling device having a transfer tube that communicates with the helium refrigerator at the other end, and a gas discharge tube that communicates with the liquid tank of the cryostat and another gas discharge tube that communicates with the radiation shield tank. , providing an exhaust duct leading from the room in which the cryogenic cooling device is installed to the outside; connecting the exhaust duct and the gas discharge pipe and the other gas discharge pipe with a communication duct; A pressure sensor is attached to at least one of the gas discharge pipes for detecting a sudden increase in the pressure inside the tank, and a discharge fan is provided in the discharge duct, and a controller controls the operation of the discharge fan according to a detection signal from the pressure sensor. A cryogenic cooling device characterized in that it is configured to issue commands. 2 A part of the exhaust duct has a double structure, an exhaust fan is provided in the inner duct, an exhaust gas passage is provided between the inner duct and the outer duct, and a ventilation hole is provided to communicate the inner duct and the room. The cryogenic cooling device according to claim 1, characterized in that: 3. The cryogenic cooling device according to claim 2, wherein a heat insulating material is attached to the inner duct and the ventilation hole.
JP19150984A 1984-09-14 1984-09-14 Cryogenic cooling device Granted JPS6170346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19150984A JPS6170346A (en) 1984-09-14 1984-09-14 Cryogenic cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19150984A JPS6170346A (en) 1984-09-14 1984-09-14 Cryogenic cooling device

Publications (2)

Publication Number Publication Date
JPS6170346A JPS6170346A (en) 1986-04-11
JPH0544589B2 true JPH0544589B2 (en) 1993-07-06

Family

ID=16275834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19150984A Granted JPS6170346A (en) 1984-09-14 1984-09-14 Cryogenic cooling device

Country Status (1)

Country Link
JP (1) JPS6170346A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625697U (en) * 1992-09-04 1994-04-08 日本酸素株式会社 Liquefied gas storage tank for immersion cooling

Also Published As

Publication number Publication date
JPS6170346A (en) 1986-04-11

Similar Documents

Publication Publication Date Title
US5410286A (en) Quench-protected, refrigerated superconducting magnet
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
US2576985A (en) Liquid oxygen converter
GB2274330A (en) Apparatus for producing liquid nitrogen
JP2005310811A (en) Superconductive magnet device
US5287702A (en) Carbon dioxide storage with thermoelectric cooling for fire suppression systems
US2657542A (en) Liquid oxygen converter apparatus
US20050088266A1 (en) Zero backflow vent for liquid helium cooled magnets
US20060137376A1 (en) Cooling device for mr apparatus
JPH0544589B2 (en)
EP0561077A1 (en) Improvements in or relating to helium topping-up apparatus
US11988340B2 (en) Cryogenic cooling system with vent
JP2006165009A (en) Superconducting magnet device, nmr analyzer using the same, mri equipment or icr mass spectrometer
JP3553388B2 (en) Cooling device for biomagnetic measurement device
US3646775A (en) Cryostat
JP4796995B2 (en) Superconducting magnet device, magnetic resonance imaging device using the same, and nuclear magnetic resonance device
GB2468491A (en) Cryostat Vent Valve
CN114556498A (en) Helium recondensing device for cryostat
CN212433377U (en) Cold head exhaust structure of magnetic resonance imaging equipment and magnetic resonance imaging equipment
JP2005203704A (en) Superconducting magnet
JP2637280B2 (en) Cryostat
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
JPH05172924A (en) Intruding heat measuring instrument for cryostat
GB2421299A (en) Melting ice in an exhaust tube of a container holding liquid helium
JPS6138363A (en) Helium refrigerator