JPH0544451B2 - - Google Patents

Info

Publication number
JPH0544451B2
JPH0544451B2 JP24229584A JP24229584A JPH0544451B2 JP H0544451 B2 JPH0544451 B2 JP H0544451B2 JP 24229584 A JP24229584 A JP 24229584A JP 24229584 A JP24229584 A JP 24229584A JP H0544451 B2 JPH0544451 B2 JP H0544451B2
Authority
JP
Japan
Prior art keywords
aniline
catalyst
reaction
indole
sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24229584A
Other languages
Japanese (ja)
Other versions
JPS61122266A (en
Inventor
Atsuro Yamauchi
Seiya Iguchi
Juzo Ono
Hiroshi Kimura
Satoshi Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59242295A priority Critical patent/JPS61122266A/en
Priority to CA000495440A priority patent/CA1253508A/en
Priority to US06/798,919 priority patent/US4727161A/en
Priority to DE8585114623T priority patent/DE3576496D1/en
Priority to EP85114623A priority patent/EP0183160B1/en
Priority to KR1019850008653A priority patent/KR870001913B1/en
Publication of JPS61122266A publication Critical patent/JPS61122266A/en
Publication of JPH0544451B2 publication Critical patent/JPH0544451B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、アニリンとエチレングリコールから
インドールを製造する方法に関する。更に詳しく
は、アニリンとエチレングリコールを触媒の存在
下、気相で反応させてインドールを製造するに当
たり、触媒の活性低下を防止する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing indole from aniline and ethylene glycol. More specifically, the present invention relates to a method for preventing a decrease in catalyst activity when producing indole by reacting aniline and ethylene glycol in the gas phase in the presence of a catalyst.

(従来の技術および発明が解決しようとする問題
点) インドールは香料、染料等広く化学工業原料と
して使用され、特に近年、アミノ酸の合成原料と
して注目されている。従来、インドールは高価な
原料を用い、あるいは、長く煩雑な工程を経て製
造されていた。しかしながら、最近に至り、安価
な原料を用い、且つ簡単な工程でインドールを製
造する方法としてアニリンとエチレングリコール
の気相接触反応が見出された。
(Prior Art and Problems to be Solved by the Invention) Indole is widely used as a raw material for chemical industries such as perfumes and dyes, and has particularly attracted attention in recent years as a raw material for the synthesis of amino acids. Traditionally, indole has been manufactured using expensive raw materials or through long and complicated processes. However, recently, a gas phase catalytic reaction of aniline and ethylene glycol has been discovered as a method for producing indole using inexpensive raw materials and in a simple process.

反応に供する触媒としては、各種の固体酸触媒
や金属触媒が提案されている。これらの触媒は、
長期に亙つて反応を行つた場合、触媒の種類、反
応条件によつて程度は異なるが、活性の低下を示
し、定期的に酸素雰囲気中での加熱焼成による再
生操作を必要とする。再生操作は煩雑で、其の頻
度が過大であればプロセスの経済性を損う場合も
ある。此の活性低下の原因についてその詳細は明
らかではないが、常法にしたがつて再生賦活が可
能であることから、主な原因は有機物が反応条件
下で炭素質となつて触媒表面に沈着し、触媒の活
性点を被覆するためと考えられる。反応を水素雰
囲気で行つたり、更に、反応系に水を添加するこ
とによつて活性低下は低減されるが、必ずしも充
分なものではない。
Various solid acid catalysts and metal catalysts have been proposed as catalysts for the reaction. These catalysts are
When the reaction is carried out over a long period of time, the activity decreases, although the extent varies depending on the type of catalyst and reaction conditions, and periodic regeneration operations by heating and calcination in an oxygen atmosphere are required. Regeneration operations are complicated, and if performed too frequently, they may impair the economics of the process. The details of the cause of this decrease in activity are not clear, but since reactivation is possible using conventional methods, the main cause is organic matter becoming carbonaceous and depositing on the catalyst surface under the reaction conditions. This is thought to be due to coating the active sites of the catalyst. The reduction in activity can be reduced by carrying out the reaction in a hydrogen atmosphere or by adding water to the reaction system, but this is not always sufficient.

一方、収率良くインドールを得る為には、反応
系に大過剰のアニリンを存在させる必要があるこ
とが知られている。したがつて、この方法で工業
的にインドールを製造する場合には、得られる反
応混合物中に含まれる多量のアニリンを分離回収
し、再び原料として反応に使用することが不可欠
となる。ところが、この場合、回収アニリンを使
用しない場合と此較して触媒の活性低下が著しく
促進されると言う問題を生ずる。即ち、回収アニ
リンをリサイクルすることなしに反応を行つた場
合、数百時間に亙つて充分な反応活性を維持出来
る触媒に対して、他の条件は全く同一のまゝ、回
収アニリンを供給すると触媒の活性低下が顕著と
なり再生操作の頻度が著しく増大する。したがつ
て、回収アニリンは触媒に対して有害な不純物を
含有しているものと推定される。
On the other hand, it is known that in order to obtain indole in good yield, it is necessary to have a large excess of aniline present in the reaction system. Therefore, when producing indole industrially by this method, it is essential to separate and recover a large amount of aniline contained in the resulting reaction mixture and use it again as a raw material in the reaction. However, in this case, a problem arises in that the activity of the catalyst is significantly reduced compared to the case where recovered aniline is not used. In other words, if the reaction is carried out without recycling the recovered aniline, the catalyst can maintain sufficient reaction activity for several hundred hours, but if the recovered aniline is supplied with other conditions being exactly the same, the catalyst The activity of this product decreases significantly, and the frequency of regeneration operations increases significantly. Therefore, it is presumed that the recovered aniline contains impurities that are harmful to the catalyst.

反応装置を出たガス状の反応混合物を凝縮して
得られる反応液中には、生成したインドール及び
水、未反応のエチレングリコール、過剰のアニリ
ンのみならず少量ではあるが各種の副反応生成物
が存在している。其の一部については分離、同定
されているが、多くの副反応生成物については、
其の化学構造、物理化合物性質等は明らかにされ
ていない。これらの副反応生成物の中に、回収ア
ニリンと分離されることなく反応装置へリサイク
ルされた場合、炭素質となつて触媒表面に沈着
し、其の活性低下の原因となるものが含まれてい
るものと考えられる。
The reaction liquid obtained by condensing the gaseous reaction mixture exiting the reactor contains not only the produced indole and water, unreacted ethylene glycol, and excess aniline, but also small amounts of various side reaction products. exists. Some of them have been isolated and identified, but many of the side reaction products are
Its chemical structure, physical compound properties, etc. have not been clarified. If these side reaction products are recycled to the reactor without being separated from the recovered aniline, they may become carbonaceous and deposit on the catalyst surface, causing a decrease in its activity. It is thought that there are.

しかも、常法にしたがつて蒸溜によつて回収し
たアニリンが触媒活性に悪影響を与えることか
ら、活性低下の原因となる副反応生成物はアニリ
ンのと気液平衡関係から、蒸溜操作ではアニリン
との分離が困難であるものと考えられる。
Moreover, since the aniline recovered by distillation according to the conventional method has an adverse effect on the catalyst activity, the side reaction products that cause the decrease in activity are due to the vapor-liquid equilibrium relationship between aniline and aniline in the distillation operation. It is considered that it is difficult to separate.

本発明の課題は、このような触媒に有害で、且
つ蒸溜分離の困難な副反応生成物を有効に除去
し、回収アニリンを反応原料として使用しても、
触媒の活性に対する悪影響を回避し得る方法を提
供することである。
The problem of the present invention is to effectively remove side reaction products that are harmful to the catalyst and difficult to separate by distillation, and to effectively remove side reaction products that are harmful to the catalyst and difficult to separate by distillation.
The object of the present invention is to provide a method that can avoid adverse effects on the activity of a catalyst.

(問題点を解決するための手段) 本発明者らは、前記課題解決のための鋭意検討
した結果、アニリンを蒸溜によつて分離、回収し
て再び反応装置に供給するに先立つて、この副反
応生成物及びアニリンを含む溶液を加熱処理する
ことによつて、副反応生成物を不揮発性物質に変
換してアニリンとの蒸溜分離を容易ならしめるこ
とが局めて有効であることを見出し、本発明の方
法に至つた。
(Means for Solving the Problems) As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention discovered that before separating and recovering aniline by distillation and supplying it to the reaction apparatus again, We have discovered that it is extremely effective to heat-treat a solution containing the reaction product and aniline to convert the side reaction product into a non-volatile substance to facilitate distillation separation from the aniline, The method of the present invention has been achieved.

即ち、本発明はエチレングリコールに対し過剰
量のアニリンを用い、触媒の存在下気相反応させ
てインドールを製造する方法において、再使用す
るアニリンが反応生成物または反応生成物から分
離したアニリンを加熱処理、ついで蒸溜分離して
得られる回収アニリン含有アニリンであることを
特徴とするインドールの製造方法である。
That is, the present invention is a method for producing indole by using an excess amount of aniline with respect to ethylene glycol and carrying out a gas phase reaction in the presence of a catalyst. This is a method for producing indole, characterized in that the recovered aniline-containing aniline is obtained by treatment and subsequent distillation separation.

本発明の対象となるインドールの製造方法は、
固体酸触媒や金属触媒の存在下、アニリンとエチ
レングリコールを気相で反応させる方法である。
この方法において使用される触媒の中、固体酸触
媒としては、(1)Si、Al、B、Sb、Bi、Sn、Pb、
Ga、Ti、In、Sr、Ca、Zr、Be、Mg、Y、Cu、
Ag、Zn、Cd及びランタナイド元素から選ばれた
少なくとも1種の元素の酸化物又は水酸化物(以
下、触媒物質(1)と称する)を含有する触媒、例え
ばCdO、ZnO、PbO2、Al2O3−B2O3、SiO2
ZnO、SiO2−CaO、SiO2−In2O3、SiO2−SrO、
SiO2−CdO、SiO2−Al2O3、SiO2−MgO、TiO
−SnO2、TiO2−ZrO2、CdO2−Bi2O3、SiO2
Y2O3、SiO2、Bi2O3−BeO、SiO2−Ga2O3
SiO2−La2O3、SiO2−Ce2O3、SiO2−ZnO−
AgO、SiO2−MgO−CuO等を挙げることが出来
る。又、(2)Pd、Pt、Cr、Fe、Ni、Co、Zn、
Mo、Cd及びWから選ばれた少なくとも1種の元
素の硫化物又はセレン化物(以下、触媒物質(2)と
称する)を含有する触媒、例えば、PdS、PtS、
CrS、FeS、NiS、CoS、ZnS、MoS2、CdS、
WS2、ZnSe、CdSe等を挙げることが出来る。
又、(3)Fe、Tl、Ca、Mn、Bi、St、Y、Al、
Zn、Cd、Ni、Mg、In、Be、Co、Ga及びランタ
ナイド元素から選ばれた少なくとも1種の元素の
無機塩、即ちハロゲン化物、炭酸塩、硝酸塩、硫
酸塩、燐酸塩、ピロ燐酸塩、燐モリブデン酸塩、
珪タグステン酸塩(以下、触媒物質(3)と称する)
を含有する触媒、例えば、硫酸第二鉄、硫酸タリ
ウム、硫酸カルシウム硫酸マンガン、硫酸ビスマ
ス、硫酸ストロンチウム、硫酸イツトリウム、臭
化カドミウム、硫酸アルミニウム、硫酸亜鉛、硫
酸ニツケル、塩化カドミウム、硫酸マグネシウ
ム、硫酸インジウム、硫酸ベリリウム、硝酸カド
ミウム、硫酸コバルト、硫酸アルミニウム亜鉛、
塩化マグネシウム、硫酸カドミウム等を挙げる事
が出来る。
The method for producing indole, which is the subject of the present invention, is as follows:
This is a method in which aniline and ethylene glycol are reacted in the gas phase in the presence of a solid acid catalyst or metal catalyst.
Among the catalysts used in this method, the solid acid catalysts include (1) Si, Al, B, Sb, Bi, Sn, Pb,
Ga, Ti, In, Sr, Ca, Zr, Be, Mg, Y, Cu,
A catalyst containing an oxide or hydroxide of at least one element selected from Ag, Zn, Cd, and lanthanide elements (hereinafter referred to as catalyst substance (1)), such as CdO, ZnO, PbO 2 , Al 2 O 3 −B 2 O 3 , SiO 2
ZnO, SiO2 -CaO, SiO2 - In2O3 , SiO2 -SrO,
SiO2 -CdO, SiO2 - Al2O3 , SiO2 -MgO, TiO
−SnO 2 , TiO 2 −ZrO 2 , CdO 2 −Bi 2 O 3 , SiO 2
Y2O3 , SiO2 , Bi2O3 - BeO, SiO2 - Ga2O3 ,
SiO 2 −La 2 O 3 , SiO 2 −Ce 2 O 3 , SiO 2 −ZnO−
AgO, SiO2 -MgO-CuO, etc. can be mentioned. Also, (2) Pd, Pt, Cr, Fe, Ni, Co, Zn,
A catalyst containing a sulfide or selenide of at least one element selected from Mo, Cd, and W (hereinafter referred to as catalyst material (2)), such as PdS, PtS,
CrS, FeS, NiS, CoS, ZnS, MoS2 , CdS,
Examples include WS 2 , ZnSe, and CdSe.
Also, (3) Fe, Tl, Ca, Mn, Bi, St, Y, Al,
Inorganic salts of at least one element selected from Zn, Cd, Ni, Mg, In, Be, Co, Ga and lanthanide elements, i.e. halides, carbonates, nitrates, sulfates, phosphates, pyrophosphates, phosphomolybdate,
Silica tagstate (hereinafter referred to as catalyst material (3))
Catalysts containing, for example, ferric sulfate, thallium sulfate, calcium sulfate manganese sulfate, bismuth sulfate, strontium sulfate, yttrium sulfate, cadmium bromide, aluminum sulfate, zinc sulfate, nickel sulfate, cadmium chloride, magnesium sulfate, indium sulfate , beryllium sulfate, cadmium nitrate, cobalt sulfate, aluminum zinc sulfate,
Examples include magnesium chloride and cadmium sulfate.

更に、金属触媒としては、Cu、Ag、Pt、Pd、
Ni、Co、Fe、Ir、Os、Ru及びRhから選ばれた
少なくとも1種の元素(以下、触媒物質(4)と称す
る)を含有する触媒を挙げることが出来る。
Furthermore, as metal catalysts, Cu, Ag, Pt, Pd,
Examples include catalysts containing at least one element selected from Ni, Co, Fe, Ir, Os, Ru, and Rh (hereinafter referred to as catalyst material (4)).

前記の各触媒物質の群の中で、最も好ましい用
いられるものとして、触媒物質(1)の群では、
SiO2−ZnO−AgO、触媒物質(2)の群では、硫化
カドミウムが、触媒物質(3)の群では、硫酸カドミ
ウムが、又、触媒物質(4)の群では此表面積の大き
な担体に担持したAgが挙げられる。
Among the above-mentioned groups of catalyst materials, the group of catalyst materials (1) is most preferably used.
SiO 2 −ZnO−AgO, in the group of catalyst materials (2), cadmium sulfide, in the group of catalyst materials (3), cadmium sulfate, and in the group of catalyst materials (4), supported on a large surface area carrier. An example of this is Ag.

これらの触媒は、公知の任意の方法により製造
することが出来る。即ち、触媒物質(1)は、触媒構
成元素の水可溶性塩を加水分解して水酸化物と
し、得られたゲルを乾燥、焼成する方法、又は、
易分解性塩を空気中で熱分解する方法等により製
造することが出来る。
These catalysts can be manufactured by any known method. That is, the catalyst substance (1) can be prepared by hydrolyzing a water-soluble salt of a catalyst constituent element to form a hydroxide, and drying and calcining the resulting gel;
It can be produced by a method such as thermally decomposing an easily decomposable salt in the air.

触媒物質(2)は、触媒構成元素の水可溶性塩に硫
酸ナトリウム又はセレン化カリウムを加える方
法、又は、触媒構成元素又は其の塩を硫化水素ガ
ス又はセレン化水素ガスと触媒させる方法等によ
り製造することが出来る。
The catalyst substance (2) is produced by adding sodium sulfate or potassium selenide to a water-soluble salt of a catalyst constituent element, or by catalyzing a catalyst constituent element or its salt with hydrogen sulfide gas or hydrogen selenide gas, etc. You can.

更に、金属触媒である触媒物質(4)は、触媒構成
元素の塩、水酸化物又は酸化物を水素、ホルマリ
ン蟻酸、亜燐酸、ヒドラジン等の還元剤で還元す
る方法等により製造出来る。
Furthermore, the catalyst substance (4), which is a metal catalyst, can be produced by a method in which a salt, hydroxide or oxide of a catalyst constituent element is reduced with a reducing agent such as hydrogen, formalin formic acid, phosphorous acid, or hydrazine.

これらの固体酸触媒又は金属触媒は前記の触媒
物質(1)、(2)、(3)、(4)を夫々単独、あるいは2種以
上混合したもの、又はそれらを担体に担持したも
のであつても良い。担体としては、一般に使用さ
れているものがいずれも使用出来るが、通常、珪
藻土、軽石、チタニア、シリカーアルミナ、アル
ミナ、マグネシア、シリカゲル、活性炭、活性白
土、石綿等が用いられる。これらの担体に前記触
媒物質を定法により担持させて担持触媒を調製す
る。
These solid acid catalysts or metal catalysts are each of the above-mentioned catalyst substances (1), (2), (3), and (4) alone, or a mixture of two or more thereof, or they are supported on a carrier. It's okay. As the carrier, any commonly used carrier can be used, and diatomaceous earth, pumice, titania, silica alumina, alumina, magnesia, silica gel, activated carbon, activated clay, asbestos, etc. are usually used. A supported catalyst is prepared by supporting the catalyst substance on these carriers by a conventional method.

前記触媒物質の担体にする担持量は特に制限は
なく、通常、担体に応じた適当量、例えば1〜50
%の前記触媒物質を担持させて良い。
The amount of the catalyst substance supported on the carrier is not particularly limited, and is usually an appropriate amount depending on the carrier, for example, 1 to 50
% of said catalyst material may be supported.

本発明のインドールの製造方法においてアニリ
ンとエチレングリコールとの反応は前記の触媒の
存在下、気相で実施されるが、固定層、流動層又
は移動層反応装置のいずれでも良い。
In the method for producing indole of the present invention, the reaction between aniline and ethylene glycol is carried out in the gas phase in the presence of the above-mentioned catalyst, but it may be carried out in a fixed bed, fluidized bed or moving bed reactor.

反応装置に導入することアニリンとエチレング
リコールは、アニリン1モルに対してエチレング
リコール0.01〜1モルの範囲、好ましくは0.05〜
0.5モルの範囲である。
Aniline and ethylene glycol to be introduced into the reactor are in the range of 0.01 to 1 mol of ethylene glycol per 1 mol of aniline, preferably 0.05 to 1 mol.
It is in the range of 0.5 mole.

原料であるアニリンとエチレングリコールの導
入量は液空間速度(LHSV)で、0.01〜10hr-1
範囲であり、予め蒸発器にて気化させた後、反応
装置に導入する。又、其の際に、水蒸気、水素、
一酸化炭素、二酸化炭素、メタン、窒素、ネオ
ン、アルゴン等をキヤリアガスとして同伴させて
も良い。とくに、水蒸気、水素、一酸化炭素は触
媒寿命を増大させるので好ましい。
The amounts of aniline and ethylene glycol that are introduced as raw materials are in the range of 0.01 to 10 hr -1 in terms of liquid hourly space velocity (LHSV), and are introduced into the reaction apparatus after being vaporized in an evaporator in advance. Also, in that case, water vapor, hydrogen,
Carbon monoxide, carbon dioxide, methane, nitrogen, neon, argon, etc. may be accompanied as a carrier gas. In particular, water vapor, hydrogen, and carbon monoxide are preferred because they increase the catalyst life.

反応温度は200〜600℃の範囲、好ましくは250
〜500℃の範囲である。
The reaction temperature ranges from 200 to 600℃, preferably 250℃
~500℃ range.

反応圧力は、標準大気圧以上、反応温度におい
て原料あるいは反応混合物中に含まれる成分が凝
縮相を形成する圧力以下の任意の圧力を選ぶこと
が出来るが、実用的には1.1×105〜1.0×107Paの
範囲が好ましく、2.0×1055.0×106Paの範囲がよ
り好ましい。
The reaction pressure can be selected from any pressure above standard atmospheric pressure and below the pressure at which the raw materials or components contained in the reaction mixture form a condensed phase at the reaction temperature, but in practice it is 1.1 x 10 5 to 1.0. A range of ×10 7 Pa is preferred, and a range of 2.0 × 10 5 to 5.0 × 10 6 Pa is more preferred.

本発明の方法は、上記条件によるインドール製
造の反応装置を出たガス状の反応混合物を凝縮し
て得られる反応液、あるいはこの反応液からイン
ドールを分離した後のアニリン溜分であつても良
い。
The method of the present invention may be a reaction liquid obtained by condensing a gaseous reaction mixture exiting a reactor for indole production under the above conditions, or an aniline fraction after indole is separated from this reaction liquid. .

加熱処理における処理温度は、100〜350℃、好
ましく150〜250℃である。一方、処理時間は処理
温度に応じて本発明の目的を達成するのに、必要
十分な時間を選定すれば良い。通常、10分乃至10
時間程度十分である。
The treatment temperature in the heat treatment is 100 to 350°C, preferably 150 to 250°C. On the other hand, the treatment time may be selected to be a necessary and sufficient time to achieve the object of the present invention depending on the treatment temperature. Usually 10 minutes to 10
About an hour is enough.

其の操作圧力は処理溶液の組成及び処理温度に
応じて、其の飽和蒸気圧以上の圧力であれば良
い。この加熱処理を実施するに当たつては、回分
式であつても、あるいは連続式であつて良い。連
続式の場合には、完全混合、押出し流れまたは其
の中間の流体混合のいずれであつても良いが、押
出し流れに近い方が容積効率は向上する。
The operating pressure may be a pressure equal to or higher than its saturated vapor pressure depending on the composition of the processing solution and the processing temperature. This heat treatment may be carried out either batchwise or continuously. In the case of a continuous type, complete mixing, extrusion flow, or intermediate fluid mixing may be used; however, the volumetric efficiency is improved when the flow is closer to extrusion flow.

以上のように加熱処理した反応生成液または回
収アニリンは、触媒に対して有害な副反応生成物
が加熱処理で不揮発性物質に変換しているので、
これらを常法による蒸留分離で除去される。この
うようにして得られたアニリンはそのまゝ、また
は新しいアニリンと混合して反応に再使用され
る。
In the reaction product liquid or recovered aniline that has been heat-treated as described above, side reaction products harmful to the catalyst are converted into non-volatile substances by the heat treatment.
These are removed by conventional distillation separation. The aniline thus obtained is reused in the reaction as is or mixed with fresh aniline.

(作用および発明の効果) 本発明の方法によれば、エチレングリコールに
対する化学量論量より過剰のアニリンを反応装置
へ導入し、反応生成物からこの過剰のアニリンを
分離回収して再び原料として使用するに再し、こ
れに加熱処理を行うことより触媒に対すて有害な
副反応生成物を不揮発性物質に変換し除去するこ
とができる。
(Operation and Effects of the Invention) According to the method of the present invention, aniline in excess of the stoichiometric amount relative to ethylene glycol is introduced into the reaction apparatus, and the excess aniline is separated and recovered from the reaction product and used again as a raw material. Then, by subjecting this to heat treatment, side reaction products harmful to the catalyst can be converted into non-volatile substances and removed.

そのため、触媒の活性を長時間維持し収率よく
インドールを製造できる。
Therefore, the activity of the catalyst can be maintained for a long time and indole can be produced in good yield.

すなわち、本発明はアニリンとエチレングリコ
ールを原料とするインドールの工業的製造方法を
提供するものである。
That is, the present invention provides an industrial method for producing indole using aniline and ethylene glycol as raw materials.

(実施例) 以下、参考例、此較例及び実施例により本発明
の方法及び効果を更に具体的に説明する。
(Example) Hereinafter, the method and effects of the present invention will be explained in more detail with reference examples, comparative examples, and examples.

参考例 1 内径25mmのステンレス鋼製反応管に、粒径3〜
4mmの触媒500mlを充填して反応に供した。触媒
は粉末状の硫化カドミウムを圧縮成形したもので
ある。7Kg/cm2の加圧下に、水素ガスを2/
minで反応管に供給し、触媒層の温度を室温から
徐々に350℃迄上昇せしめ、350℃に保持した。つ
いで、アニリンと33%エチレングルコール水溶液
夫々234g/hr、48g/hrで混合、気化させた後、
反応管に供給して反応を開始した。反応開始直後
におけるエチレングリコール基準のインドール収
率74.8%であつた。この収率は時間の経過と共に
漸次低下し、反応開始後310時間では52.0%であ
つた。この場合、反応に供したアニリンは市販の
工業用アニリンである。
Reference example 1 In a stainless steel reaction tube with an inner diameter of 25 mm, a particle size of 3~
500 ml of 4 mm catalyst was charged and subjected to reaction. The catalyst is compression molded powdered cadmium sulfide. Under a pressure of 7Kg/ cm2 , hydrogen gas is
The temperature of the catalyst layer was gradually raised from room temperature to 350°C and maintained at 350°C. Next, aniline and 33% ethylene glycol aqueous solution were mixed at 234 g/hr and 48 g/hr, respectively, and then vaporized.
The reaction was started by supplying it to the reaction tube. Immediately after the start of the reaction, the indole yield was 74.8% based on ethylene glycol. This yield gradually decreased with the passage of time, and was 52.0% at 310 hours after the start of the reaction. In this case, the aniline used in the reaction is commercially available industrial aniline.

比較例 1 参考例1において、反応管を出る反応混合物を
室温迄冷却し、得られた凝縮液を水相と有機相に
二相分離して、後者より蒸溜によつてアニリンを
分離回収した。即ち、内容積30の蒸溜釜、内径
80mm、高さ2000mmの呼称寸法1/4inchラシヒリ
ングの充填層及び凝縮器より成るガラス製の蒸溜
装置に該有機相25Kgを仕込み、操作圧力10Torr、
還流比0.2で回分蒸溜を行つた。初溜分0.4Kgに、
ついで20.3Kgのアニリン溜分を溜出させた。同様
の回分蒸溜を繰り返して、略80Kgの回収アニリン
を得た。分析の結果、回収アニリンの純度は99%
以上であつた。
Comparative Example 1 In Reference Example 1, the reaction mixture exiting the reaction tube was cooled to room temperature, the resulting condensate was separated into an aqueous phase and an organic phase, and aniline was separated and recovered from the latter by distillation. In other words, a distillation pot with an internal volume of 30 mm, an internal diameter of
25 kg of the organic phase was charged into a glass distillation apparatus consisting of a packed bed of 1/4 inch Raschig ring with nominal dimensions of 80 mm and a height of 2000 mm and a condenser, and the operating pressure was 10 Torr.
Batch distillation was performed at a reflux ratio of 0.2. Initial distillation amount is 0.4Kg,
Then, 20.3 kg of aniline fraction was distilled out. Similar batch distillation was repeated to obtain approximately 80 kg of recovered aniline. As a result of the analysis, the purity of recovered aniline was 99%.
That's all.

この回収アニリンを用いて参考例1と全く同様
の条件でインドール合成反応を実施した。反応開
始直後におけるエチレングリコール基準のインド
ール収率は参考例1と略同様の75.2%であつた
が、反応開始後195時間で既にに43.6%迄低下し
た。
Using this recovered aniline, an indole synthesis reaction was carried out under exactly the same conditions as in Reference Example 1. Immediately after the start of the reaction, the indole yield based on ethylene glycol was 75.2%, almost the same as in Reference Example 1, but it had already decreased to 43.6% 195 hours after the start of the reaction.

実施例 1 参考例1の同一の条件のインドール合成反応に
於いて得られた有機相略100Kgを熱媒用ジヤケツ
ト付のステンレス鋼製撹拌槽に挿入し、緩かに撹
拌しながら、熱媒により加熱した。内部の温度が
200℃に達した後、2時間に亙つてこの温度に保
持した。この時、略6Kg/cm2の蒸気圧を示した。
Example 1 Approximately 100 kg of the organic phase obtained in the indole synthesis reaction under the same conditions as in Reference Example 1 was placed in a stainless steel stirring tank equipped with a jacket for a heat medium, and the mixture was heated by a heat medium while being gently stirred. Heated. The internal temperature
After reaching 200°C, it was held at this temperature for 2 hours. At this time, the vapor pressure was approximately 6 Kg/cm 2 .

この熱処理液から、比較例1とから全く同一の
蒸溜装置及び操作条件による回分蒸溜で略80Kgの
アニリンを回収し、参考例1と全く同様のインド
ール合成反応に供した。反応開始直後におけるエ
チレングリコール基準のインドール収率は参考例
1と略同様の75.0%であつた。以後、320時間に
亙つて反応を継続したが、この時の収率は50.5%
であり、参考例1と比較して遜色のない反応成績
が得られた。
Approximately 80 kg of aniline was recovered from this heat-treated liquid by batch distillation using the same distillation apparatus and operating conditions as in Comparative Example 1, and subjected to the same indole synthesis reaction as in Reference Example 1. Immediately after the start of the reaction, the indole yield based on ethylene glycol was 75.0%, which is approximately the same as in Reference Example 1. After that, the reaction continued for 320 hours, but the yield was 50.5%.
Therefore, reaction results comparable to those of Reference Example 1 were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 エチレングリコールに対し過剰量のアニリン
を用い、触媒の存在下気相反応させてインドール
を製造する方法において、再使用するアニリンが
反応生成物または反応生成物から分離したアニリ
ンを加熱処理し、ついで蒸留分離して得られる回
収アニリン含有アニリンであることを特徴とする
インドールの製造方法。
1 In a method for producing indole by using an excess amount of aniline with respect to ethylene glycol and performing a gas phase reaction in the presence of a catalyst, the aniline to be reused is heat-treated as a reaction product or the aniline separated from the reaction product, and then A method for producing indole, characterized in that the aniline contains recovered aniline obtained by distillation separation.
JP59242295A 1984-11-19 1984-11-19 Preparation of indole Granted JPS61122266A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59242295A JPS61122266A (en) 1984-11-19 1984-11-19 Preparation of indole
CA000495440A CA1253508A (en) 1984-11-19 1985-11-15 Preparation process of indoles
US06/798,919 US4727161A (en) 1984-11-19 1985-11-15 Process for the preparation of indoles
DE8585114623T DE3576496D1 (en) 1984-11-19 1985-11-18 METHOD FOR PRODUCING INDOL.
EP85114623A EP0183160B1 (en) 1984-11-19 1985-11-18 Preparation process of indole
KR1019850008653A KR870001913B1 (en) 1984-11-19 1985-11-19 Preparation process of indol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242295A JPS61122266A (en) 1984-11-19 1984-11-19 Preparation of indole

Publications (2)

Publication Number Publication Date
JPS61122266A JPS61122266A (en) 1986-06-10
JPH0544451B2 true JPH0544451B2 (en) 1993-07-06

Family

ID=17087108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242295A Granted JPS61122266A (en) 1984-11-19 1984-11-19 Preparation of indole

Country Status (1)

Country Link
JP (1) JPS61122266A (en)

Also Published As

Publication number Publication date
JPS61122266A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
EP0319302A2 (en) Process for dehydrogenating cyclohexenone
US4693877A (en) Cleavage of formamide to give hydrocyanic acid and water
US6458737B1 (en) Catalyst for oxidizing methylbenzenes and method for producing aromatic aldehyde
KR890001299B1 (en) Preparation of isophorone and mesityl oxide from acetone
JPH0544451B2 (en)
US6433229B1 (en) Method of producing cyclic, α, β-unsaturated ketones
US4732654A (en) Preparation process of indole
JPH0544941B2 (en)
KR860001577B1 (en) Process for preparation of indole
US6429339B1 (en) Method for producing cyclopentanone
JPS6356222B2 (en)
JPH066573B2 (en) Indian manufacturing method
US4727161A (en) Process for the preparation of indoles
JPH0359064B2 (en)
US4100361A (en) Manufacture of butenediol diacetates
JPS6232735B2 (en)
JPH0243736B2 (en)
US5679869A (en) Preparation of aldehydes
US4523016A (en) Process for the catalytic dehydrogenation of piperidine
EP1586548B1 (en) Process for the preparation of 3,3-dimethylbutanal
US4038307A (en) Manufacture of butenediol diacetates
US4178305A (en) Oxidative dehydrogenation of propionitrile to acrylonitrile
JPH06157397A (en) Production of glycolate
JP3541448B2 (en) Method for producing acetamide
JPH066574B2 (en) Indian manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term