JPH0544369B2 - - Google Patents

Info

Publication number
JPH0544369B2
JPH0544369B2 JP59268841A JP26884184A JPH0544369B2 JP H0544369 B2 JPH0544369 B2 JP H0544369B2 JP 59268841 A JP59268841 A JP 59268841A JP 26884184 A JP26884184 A JP 26884184A JP H0544369 B2 JPH0544369 B2 JP H0544369B2
Authority
JP
Japan
Prior art keywords
fluid
conduit
orifice
frequency
power unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59268841A
Other languages
Japanese (ja)
Other versions
JPS61146619A (en
Inventor
Kenichi Watanabe
Haruyuki Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP26884184A priority Critical patent/JPS61146619A/en
Priority to US06/808,812 priority patent/US4762306A/en
Priority to DE19853544613 priority patent/DE3544613A1/en
Publication of JPS61146619A publication Critical patent/JPS61146619A/en
Publication of JPH0544369B2 publication Critical patent/JPH0544369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • B60K5/12Arrangement of engine supports
    • B60K5/1208Resilient supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばエンジン等のパワーユニツト
を車両の車体等の基台に対しマウンテイングする
ためのマウンテイング装置に関し、特に、パワー
ユニツトの回転軸を挾んで両側方に配置された対
なるマウントの変形を互いに関連付けるようにし
たものの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mounting device for mounting a power unit such as an engine to a base such as a vehicle body. This invention relates to an improvement in which deformations of pairs of mounts placed on both sides of a shaft are correlated with each other.

(従来の技術) 従来、この種のマウンテイング装置として、例
えば特開昭58−161617号公報等に開示されるよう
に、パワーユニツトの回転軸を挾んで左右両側に
配置され、各々非圧縮性流体が封入された上下室
を有するとともに、該上下室の隔壁にパワーユニ
ツトの脚部が連結され、パワーユニツトを基台に
対し弾性支持する対なるマウントを備え、左側マ
ウントの上室と右側マウントの下室とを、また左
側マウントの下室と右側マウントの上室とをそれ
ぞれ独立した導管で連通してなり、パワーユニツ
トのバウンス振動に対しては、両マウントの互い
に連通する上下室同士で流体が移動する際の移動
ばね定数により低バウンド剛性を得る一方、パワ
ーユニツトのロール振動に対しては、上記上下室
間の流体移動が行われないことによつてロール剛
性を増大させるようにしたものが知られている。
(Prior Art) Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 58-161617, this type of mounting device has been disposed on both the left and right sides of the power unit, with each mounting device being non-compressible. It has upper and lower chambers filled with fluid, the legs of the power unit are connected to the partition walls of the upper and lower chambers, and it has opposing mounts that elastically support the power unit with respect to the base, and includes an upper chamber of the left mount and a right mount. Also, the lower chamber of the left mount and the upper chamber of the right mount are communicated with each other through independent conduits.In response to bounce vibrations of the power unit, the upper and lower chambers of both mounts communicate with each other. Low bounce rigidity is obtained by the movement spring constant when the fluid moves, while roll rigidity is increased by preventing fluid movement between the upper and lower chambers in response to roll vibration of the power unit. something is known.

(発明が解決しようとする課題) ところが、この従来のものでは、本質的にロー
ル剛性の増大を目的としているため、その高ロー
ル剛性によりパワーユニツトの変動トルクの基台
への伝達率が大きくなり、振動や騒音等を緩和す
ることは困難である。
(Problem to be Solved by the Invention) However, since the purpose of this conventional device is essentially to increase the roll rigidity, the high roll rigidity increases the transmission rate of the fluctuating torque of the power unit to the base. , it is difficult to alleviate vibrations, noise, etc.

一方、上記以外の従来例としては、例えば米国
特許第2705118号に開示されるように、上記の如
くパワーユニツトの回転軸を挾んで両側方に配置
されるマウントの各々を、非圧縮性流体が封入さ
れた1つの流体室を有する構成とするとともに、
両マウントの流体室をオリフイスを有する導管で
連通することにより、パワーユニツトの過渡的な
大トルク変動をオリフイスによつて減衰するよう
にしたものが知られている。
On the other hand, as a conventional example other than the above, for example, as disclosed in U.S. Pat. In addition to having a configuration having one sealed fluid chamber,
It is known that the fluid chambers of both mounts are communicated with each other through a conduit having an orifice so that transient large torque fluctuations of the power unit are attenuated by the orifice.

ところで、本発明者らは、マウンテイング装置
のロール剛性の低減を目的として、上記後者の従
来技術の基本的な構成、つまりパワーユニツトの
回転軸を挾んで両側方に配置されたマウントの流
体室同士を導管で連通してなる構成について各種
の検討を繰り返したところ、導管内の流体の共振
現象により、パワーユニツトのトルク変動に伴う
振動数の変化に応じてマウンテイング装置のロー
ル剛性が第4図で曲線にて示すように変化するこ
とを見出した。すなわち、ロール剛性を表すロー
ルばね定数は、 ) 低振動数域では、導管内を流体が移動する
ために流体室連通時の静ばね定数Kにほぼ等し
く、振動数の増加に従つて低下して振動数faで
最小値に達する。
By the way, with the aim of reducing the roll rigidity of the mounting device, the present inventors have developed the basic configuration of the latter conventional technology, that is, the fluid chambers of the mount arranged on both sides of the rotation axis of the power unit. As a result of repeated studies on a configuration in which these parts are connected to each other through a conduit, we found that due to the resonance phenomenon of the fluid within the conduit, the roll rigidity of the mounting device changes to It was found that the change occurs as shown by the curve in the figure. In other words, the roll spring constant, which represents the roll stiffness, is approximately equal to the static spring constant K when the fluid chamber is in communication in the low frequency range due to the movement of fluid in the conduit, and decreases as the frequency increases. It reaches its minimum value at frequency fa.

) 上記最小値振動数faを過ぎて振動数が増加
すると、加速度の自乗に比例する導管内流体の
慣性力の増大によつて導管内を流体が流れ難く
なるため、比較的急激に増加し、振動数feで流
体室非連通時の非連通ばね定数(1+N)K
(Nはマウントにおける弾性壁の膨張/移動ば
ね定数比)と等しくなる。
) When the frequency increases beyond the above minimum value frequency fa, the inertial force of the fluid in the conduit increases, which is proportional to the square of the acceleration, making it difficult for the fluid to flow in the conduit, so the frequency increases relatively rapidly. Non-communicating spring constant (1+N)K when the fluid chamber is non-communicating at frequency fe
(N is the expansion/movement spring constant ratio of the elastic wall in the mount).

) 上記振動数feを過ぎてもさらに増加し、導
管内流体の固有振動数fnにて最大値に達する。
) Even after the frequency fe is exceeded, it continues to increase and reaches its maximum value at the natural frequency fn of the fluid in the conduit.

) 上記固有振動数fnよりも高振動数域では振
動数増加と共に低下し、流体が導管内を流れな
い状態での上記非連通ばね定数(1+N)Kに
漸近する。
) In a frequency range higher than the natural frequency fn, it decreases as the frequency increases, and approaches the non-communicating spring constant (1+N)K in a state where fluid does not flow in the conduit.

したがつて、マウンテイング装置のロール剛性
を低くするには、パワーユニツトのロール振動数
が固有振動数fn付近にある逆効果域でのばね定数
を低下させることが必要となる。
Therefore, in order to reduce the roll stiffness of the mounting device, it is necessary to reduce the spring constant in the adverse effect region where the roll frequency of the power unit is near the natural frequency fn.

本発明の目的とするところは、上記の如く、パ
ワーユニツト側方の両マウントの流体室同士を導
管で連通してなるマウンテイング装置において、
導管での流体移動をコントロールするようにする
ことにより、ロール振動数の逆効果域でのばね定
数の低下を図ることにある。
As described above, an object of the present invention is to provide a mounting device in which the fluid chambers of both mounts on the sides of a power unit are communicated with each other through a conduit.
By controlling fluid movement in the conduit, the purpose is to reduce the spring constant in the adverse effect range of the roll frequency.

(課題を解決するための手段) 上記の目的を達成するため、本発明の解決手段
は、パワーユニツトの回転軸を挾んで両側方にそ
れぞれパワーユニツトを基台に弾性支持するため
のマウントを配設し、該各マウントには非圧縮性
流体が封入される1つの流体室を設ける。
(Means for Solving the Problem) In order to achieve the above object, the solution of the present invention is to arrange mounts for elastically supporting the power unit on the base on both sides of the rotating shaft of the power unit. and each mount has a fluid chamber containing an incompressible fluid.

また、この両マウントの流体室同士を連通して
流体の移動を許容し、両流体室の圧力変化を関連
付けるための導管を設ける。
Further, a conduit is provided to communicate the fluid chambers of both mounts to allow movement of fluid and to correlate pressure changes in both fluid chambers.

さらに、上記導管に、導管内の流体の流動時に
生じる共振現象によりマウンテイング装置のパワ
ーユニツトに対するロール剛性が高くなる振動数
域で、導管内を流れる流体の流量を減少させる流
量可変手段を配設する。
Furthermore, a flow rate variable means is installed in the conduit to reduce the flow rate of the fluid flowing in the conduit in a frequency range where the roll stiffness of the power unit of the mounting device increases due to the resonance phenomenon that occurs when the fluid flows in the conduit. do.

(作用) 上記の構成により、本発明では、パワーユニツ
トのロール振動数が流体室非連通時における非連
通ばね定数に対応する振動数よりも低く、導管内
の流体の流動に伴う共振現象によりマウンテイン
グ装置のロール剛性が低いときには、流量可変手
段は導管内流体の流量が大になるように制御され
る。すると、ロール振動に伴い導管内で流体が抵
抗なく移動するため、ばね定数が低く保たれる。
(Function) With the above configuration, in the present invention, the roll frequency of the power unit is lower than the frequency corresponding to the non-communicating spring constant when the fluid chambers are not communicating, and the mounting is caused by the resonance phenomenon accompanying the fluid flow in the conduit. When the roll rigidity of the rolling device is low, the flow rate variable means is controlled so that the flow rate of the fluid in the conduit becomes large. Then, the fluid moves within the conduit without resistance as the roll vibrates, keeping the spring constant low.

一方、ロール振動数が上記非連通ばね定数に対
応する振動数以上であつて、上記ロール剛性が高
くなる振動数域では、上記流量可変手段は導管内
流体の流量が小になるように制御される。このこ
とにより、導管内での流体移動が流動抵抗を受け
て減衰されるので、固有振動数近傍の逆効果域で
のばね定数の低下が図られる。よつて、パワーユ
ニツトのロール振動数の全域に亘りマウンテイン
グ装置のロール剛性を下げることができる。
On the other hand, in a frequency range where the roll vibration frequency is higher than the frequency corresponding to the non-communicating spring constant and the roll stiffness increases, the flow rate variable means is controlled so that the flow rate of the fluid in the conduit becomes small. Ru. As a result, the fluid movement within the conduit is damped by the flow resistance, so that the spring constant can be reduced in the adverse effect region near the natural frequency. Therefore, the roll rigidity of the mounting device can be lowered over the entire range of the roll frequency of the power unit.

(第1実施例) 以下、本発明の実施例を図面に基づいて説明す
る。
(First Embodiment) Hereinafter, embodiments of the present invention will be described based on the drawings.

第1図は車両用レシプロエンジンを車体にマウ
ンテイングする場合に適用した第1実施例の全体
構成を示し、1は基台としての車体、2は車体1
のエンジンルーム内底部に載置支持されるパワー
ユニツトとしてのエンジンであつて、該エンジン
2の回転軸つまりクランク軸2aを挾んだ左右両
側面には略水平方向に延びるブラケツト3,3が
一体に突設され、該ブラケツト3,3と車体1と
の間、すなわちエンジン2のクランク軸2aを挾
んで両側方にはエンジン2を車体1に対し弾性支
持するための対なるマウント4,4が配置されて
いる。
FIG. 1 shows the overall configuration of a first embodiment applied to mounting a vehicle reciprocating engine on a vehicle body, where 1 is a vehicle body as a base, and 2 is a vehicle body 1.
This is an engine as a power unit that is mounted and supported at the bottom of the engine room of the engine 2, and brackets 3, 3 extending in a substantially horizontal direction are integrally formed on both the left and right sides of the engine 2, which sandwich the rotating shaft, that is, the crankshaft 2a. Between the brackets 3, 3 and the vehicle body 1, that is, on both sides of the crankshaft 2a of the engine 2, there are paired mounts 4, 4 for elastically supporting the engine 2 with respect to the vehicle body 1. It is located.

上記各マウント4は、車体1に固定され上面が
開放した有底円筒状のケース5と、該ケース5の
上面開放口を密閉し、かつ上記各ブラケツト3に
連結ボルト8を介して結合されたゴム等よりなる
弾性壁6とを備え、上記ケース5内には弾性壁6
により非圧縮性流体(液体)が封入された密閉状
の1つの流体室7が形成されている。
Each of the mounts 4 includes a bottomed cylindrical case 5 that is fixed to the vehicle body 1 and has an open upper surface, and the upper opening of the case 5 is sealed, and is connected to each of the brackets 3 via connecting bolts 8. The case 5 includes an elastic wall 6 made of rubber or the like.
One sealed fluid chamber 7 in which an incompressible fluid (liquid) is sealed is formed.

また、上記マウント4,4のケース5,5には
導管9の各端部がそれぞれ連結されており、この
導管9により、両マウント4,4の流体室7,7
同士を連通して流体の移動を許容し、両流体室
7,7の圧力変化を関連付けるように構成されて
いる。
Further, each end of a conduit 9 is connected to the cases 5, 5 of the mounts 4, 4, respectively, and this conduit 9 connects the fluid chambers 7, 7 of both the mounts 4, 4.
They are configured to communicate with each other to allow movement of fluid, and to correlate pressure changes in both fluid chambers 7, 7.

また、上記両マウント4,4を連通する導管9
の中間位置には導管9内を流れる流体の流量を可
変とする流量可変手段としての可変オリフイス1
0が配設されている。該可変オリフイス10は第
2図及び第3図に拡大詳示するように、導管9内
に連通する円筒状の密閉ケース11と、該ケース
11内に回転自在に液密嵌合され、導管9の内径
と同等の孔径を有する開放孔12及び該開放孔1
2よりも小径のオリフイス孔13がそれぞれ交差
して開口された円柱状の回転体14と、該回転体
14に連結軸15を介して連結され、回転体14
を回転駆動して導管9と開放孔12又はオリフイ
ス孔13との連通を切り換える電動アクチユエー
タ16とを備えてなる。
In addition, a conduit 9 that communicates both the mounts 4, 4 is provided.
At an intermediate position, there is a variable orifice 1 as a flow rate variable means for varying the flow rate of the fluid flowing inside the conduit 9.
0 is placed. As shown in enlarged detail in FIGS. 2 and 3, the variable orifice 10 has a cylindrical sealed case 11 that communicates with the conduit 9, and is rotatably and liquid-tightly fitted into the case 11, and is connected to the conduit 9. an open hole 12 having a hole diameter equivalent to the inner diameter of the open hole 1;
2, a cylindrical rotating body 14 in which orifice holes 13 having a diameter smaller than 2 are opened to intersect with each other;
The electric actuator 16 rotates to switch communication between the conduit 9 and the open hole 12 or the orifice hole 13.

さらに、上記可変オリフイス10のアクチユエ
ータ16には該アクチユエータ16を作動制御す
るコントローラ17が接続されており、該コント
ローラ17にはエンジン2の回転数を検出する回
転センサ18と、車両のアクセル開度(吸気負
圧)を検出するアクセル開度センサ19と、車両
の変速機のシフト位置を検出するシフト位置セン
サ20と、車両の走行速度を検出する車速センサ
21と、エンジン2のラフネス状態等の振動を検
出する振動センサ22と、車両のクラツチの
ON・OFF状態を検出するクラツチセンサ23と
の各出力が入力されており、これらセンサ18〜
23の検出信号に基づいてコントローラ17によ
り車両の運転状態を判定し、それに応じて可変オ
リフイス10の回転体14を回転させてその開放
孔12又はオリフイス孔13と導管9との連通を
自動的に切換制御し、導管9内の流体の流動時に
生じる共振現象によりマウンテイング装置のエン
ジン2に対するロール剛性が高くなる振動数域、
つまり両マウント4,4の流体室7,7を非連通
状態にしたときの非連通ばね定数(1+N)Kに
対応する振動数fe以上の振動数域では、回転体1
4のオリフイス孔13を導管9に連通させて、導
管9内を流れる流体の流量を減少させるように構
成されている。
Furthermore, a controller 17 for controlling the operation of the actuator 16 is connected to the actuator 16 of the variable orifice 10, and the controller 17 includes a rotation sensor 18 for detecting the rotation speed of the engine 2, and a rotation sensor 18 for detecting the rotation speed of the engine 2, and a rotation sensor 18 for detecting the rotation speed of the engine 2. an accelerator opening sensor 19 that detects negative intake pressure), a shift position sensor 20 that detects the shift position of the vehicle's transmission, a vehicle speed sensor 21 that detects the vehicle's running speed, and vibrations such as the roughness state of the engine 2. The vibration sensor 22 detects the
Each output from a clutch sensor 23 that detects the ON/OFF state is input, and these sensors 18 to
The controller 17 determines the operating state of the vehicle based on the detection signal of the variable orifice 10, and accordingly rotates the rotating body 14 of the variable orifice 10 to automatically establish communication between the open hole 12 or the orifice hole 13 and the conduit 9. A frequency range in which the roll rigidity of the mounting device relative to the engine 2 is increased due to a resonance phenomenon that occurs when the fluid flows in the conduit 9 by switching control;
In other words, in the frequency range above the frequency fe corresponding to the non-communicating spring constant (1+N)K when the fluid chambers 7, 7 of both mounts 4, 4 are in a non-communicating state, the rotating body 1
The orifice holes 13 of 4 are connected to the conduit 9 and are configured to reduce the flow rate of fluid flowing within the conduit 9.

したがつて、上記実施例においては、各センサ
18〜23の検出信号を受けたコントローラ17
により、エンジン2のトルク変動の最低次数成分
(例えば4サイクル4気筒エンジンでは2次成分)
のロール振動数が検出され、第4図で実線にて示
すように、該振動数が両流体室7,7を非連通状
態にしたときの非連通ばね定数(1+N)Kに対
応する振動数feよりも低いときには可変オリフイ
ス10の開放孔12が導管9に連通され、上記振
動数fe以上のときには小径のオリフイス孔13が
導管9に連通される。その結果、振動数feよりも
低い低振動数域では、導管9内で流体が抵抗なく
移動するので、ロールばね定数が低くなる連通効
果がそのまま得られる一方、振動数fe以上の振動
数域では、導管9内での流体移動がオリフイス孔
13によるオリフイス抵抗を受けて減衰されるの
で、連通時のように固有振動数fn付近の逆効果域
でばね定数が増大することはなくなり、ばね定数
は非連通ばね定数(1+N)Kに近付くように低
下する。よつてロール剛性を全体的に低下させて
エンジン2のロール振動の車体1への伝達率を下
げ、車体1での振動や騒音を緩和することができ
る。
Therefore, in the above embodiment, the controller 17 receives the detection signals from each of the sensors 18 to 23.
As a result, the lowest order component of the torque fluctuation of engine 2 (for example, the second order component in a 4-cycle 4-cylinder engine)
The roll vibration frequency is detected, and as shown by the solid line in FIG. When the frequency is lower than fe, the open hole 12 of the variable orifice 10 is communicated with the conduit 9, and when the frequency is higher than the frequency fe, the small diameter orifice hole 13 is communicated with the conduit 9. As a result, in the low frequency range lower than the frequency fe, the fluid moves within the conduit 9 without resistance, so the communication effect of lowering the roll spring constant is still obtained, while in the frequency range higher than the frequency fe. , the fluid movement within the conduit 9 is attenuated by the orifice resistance from the orifice hole 13, so the spring constant does not increase in the adverse effect region near the natural frequency fn as in the case of communication, and the spring constant becomes The non-communicating spring constant (1+N) decreases as it approaches K. Therefore, it is possible to reduce the overall roll stiffness, lower the transmission rate of roll vibration of the engine 2 to the vehicle body 1, and alleviate vibrations and noise in the vehicle body 1.

また、センサ18〜23により検出されたエン
ジン回転数、アクセル開度(吸気負圧)、変速機
のシフト位置、車速、エンジン2のラフネス等の
振動状態、クラツチのON・OFF状態をもとにエ
ンジン2の発生トルクが検出され、該発生トルク
が設定値以上のときには上記と同様に可変オリフ
イス10のオリフイス孔13が導管9に連通され
る。このオリフイス孔13の導管9への連通によ
り、オリフイス抵抗が発生して流体の移動が減衰
され、ロール減衰係数が連通時の値よりも増大し
て、その結果、過渡的な大トルク発生時のエンジ
ン2の過大な運動を規制して、他の部材との干
渉、過渡振動や衝撃の緩和を図ることができる。
Also, based on the engine speed detected by sensors 18 to 23, accelerator opening (intake negative pressure), transmission shift position, vehicle speed, vibration state such as roughness of engine 2, and ON/OFF state of the clutch. The generated torque of the engine 2 is detected, and when the generated torque is equal to or greater than a set value, the orifice hole 13 of the variable orifice 10 is communicated with the conduit 9 in the same manner as described above. By communicating the orifice hole 13 with the conduit 9, orifice resistance is generated and fluid movement is attenuated, and the roll damping coefficient is increased compared to the value at the time of communication, and as a result, when a large transient torque is generated, Excessive motion of the engine 2 can be restricted to alleviate interference with other members, transient vibrations, and shocks.

尚、上記可変オリフイス10における開放孔1
2又はオリフイス孔13の導管9に対する連通切
換えは車両の乗員のマニユアル操作によつて行う
こともできる。
Note that the open hole 1 in the variable orifice 10
2 or the orifice hole 13 to the conduit 9 can also be performed by manual operation by a vehicle occupant.

(第2実施例) 第5図は本発明の第2実施例を示し、上記第1
実施例では導管9での流体の流量切換えを可変オ
リフイス10によつて導管9外部から制御するよ
うにしたのに対し、エンジン2のロール振動数が
逆効果域にあるときにはそれに伴つて振動の振幅
も大きくなることに着目して、その振幅の変化を
利用して自動的に流体の流量を切り換えるように
したものである。
(Second Embodiment) FIG. 5 shows a second embodiment of the present invention.
In the embodiment, the switching of the fluid flow rate in the conduit 9 is controlled from the outside of the conduit 9 by the variable orifice 10, but when the roll frequency of the engine 2 is in the adverse effect range, the vibration amplitude is changed accordingly. By focusing on the fact that the amplitude increases, this change in amplitude is used to automatically switch the fluid flow rate.

すなわち、本実施例では、両マウント4,4の
流体室7,7を連通する導管9の途中に流量可変
手段としての可動オリフイス24が配設されてい
る。該可動オリフイス24は、導管9内に連通す
る弁室25を形成する密閉状ケース26と、上記
弁室25内に遊嵌合されているとともに所定孔径
のオリフイス孔27が開口され、両マウント4,
4の流体室7,7間の流体圧の差により移動する
可動板28とからなる。上記ケース26には可動
板28をその静止位置に対し設定範囲±δだけ往
復移動可能に規制するストツパ部29,29が形
成されており、ロール振動時、導管9内で振動す
る流体の振幅がストツパ部29,29による可動
板28の移動可能範囲±δよりも小さいときに
は、可動板28を流体と共に移動させるが、流体
の振幅が可動板28の移動可能範囲±δ以上にな
ると、ストツパ部29,29により可動板28を
移動規制するとともに、その移動規制された可動
板28のオリフイス孔27を通して流体を流動さ
せて流体のオリフイス抵抗を発生させ、ロール振
動を減衰させるように構成されている。そして、
上記可動板28の移動可能範囲|δ|は、第6図
a及びbに示すように、連通効果域(振動数fa付
近)でのばね定数を増大させることなく逆効果域
(固有振動数fn付近)でのばね定数を低下させる
よう、固有振動数fnで最大となる導管9内での流
体の振幅よりも小さく、かつ極低振動数域での流
体の振幅よりも大きい最適値に設定されている。
That is, in this embodiment, a movable orifice 24 as a flow rate variable means is disposed in the middle of a conduit 9 that communicates the fluid chambers 7, 7 of both mounts 4, 4. The movable orifice 24 has a sealed case 26 forming a valve chamber 25 communicating with the conduit 9, and is loosely fitted into the valve chamber 25 and has an orifice hole 27 of a predetermined diameter opened therein. ,
It consists of a movable plate 28 that moves due to the difference in fluid pressure between the four fluid chambers 7, 7. The case 26 is formed with stopper parts 29, 29 that restrict the reciprocating movement of the movable plate 28 by a set range ±δ with respect to its rest position. When the movable range of the movable plate 28 by the stoppers 29, 29 is smaller than ±δ, the movable plate 28 is moved together with the fluid, but when the amplitude of the fluid exceeds the movable range ±δ of the movable plate 28, the stopper portion 29 , 29 restricts the movement of the movable plate 28, and causes fluid to flow through the orifice hole 27 of the movable plate 28 whose movement is restricted, thereby generating orifice resistance of the fluid and damping roll vibration. and,
As shown in FIGS. 6a and 6b, the movable range |δ| of the movable plate 28 is determined by the opposite effect range (natural frequency fn In order to reduce the spring constant near the natural frequency fn, the spring constant is set to an optimal value that is smaller than the amplitude of the fluid in the conduit 9, which reaches its maximum at the natural frequency fn, and larger than the amplitude of the fluid in the extremely low frequency region. ing.

したがつて、この実施例では、エンジン2のロ
ール振動時、導管9内の流体の振動数が低く、そ
の振幅が可動オリフイス24における可動板28
の移動可能範囲±δよりも小さい連通効果域にあ
るときには、可動板28はストツパ部29,29
により移動規制を受けることなく自在に移動する
ため、流体移動に対するオリフイス抵抗が生ぜ
ず、導管9開放時と同様の低いロール剛性を得る
ことができる。
Therefore, in this embodiment, when the engine 2 rolls vibrates, the frequency of the fluid in the conduit 9 is low, and the amplitude of the fluid in the movable plate 28 in the movable orifice 24 is low.
When the movable plate 28 is in the communication effect range smaller than the movable range ±δ, the movable plate 28
Since it moves freely without being restricted by the movement, orifice resistance to fluid movement does not occur, and it is possible to obtain the same low roll rigidity as when the conduit 9 is open.

一方、流体の振動数が増加してその振幅が上記
可動板28の移動可能範囲±δ以上に増大する逆
効果域では、可動板28の上記移動可能範囲±δ
以上の移動がストツパ部29,29によつて規制
され、導管9内の流体はその移動規制された可動
板28のオリフイス孔27を通つて流動するた
め、流体の移動にオリフイス抵抗が発生し、この
オリフイス抵抗により流体の共振現象を減衰させ
てロール剛性を低下させることができる。
On the other hand, in an adverse effect region where the frequency of the fluid increases and its amplitude increases beyond the movable range ±δ of the movable plate 28, the movable range ±δ of the movable plate 28 is exceeded.
The above movement is regulated by the stoppers 29, 29, and the fluid in the conduit 9 flows through the orifice hole 27 of the movable plate 28 whose movement is regulated, so orifice resistance occurs in the movement of the fluid. This orifice resistance can attenuate the fluid resonance phenomenon and reduce roll rigidity.

また、エンジン2の過渡的な大トルク発生時に
は、それに伴つて導管9内の流体が大きな移動量
で移動するので、上記の場合と同様に可動板28
のストツパ部29,29による移動規制によつ
て、オリフイス抵抗が発生するようになり、よつ
てロール減衰の増大によりエンジン2の過大運動
を防止することができる。
Furthermore, when the engine 2 generates a large transient torque, the fluid in the conduit 9 moves by a large amount, so the movable plate 28 moves as in the above case.
Due to the restriction of movement by the stopper parts 29, 29, orifice resistance is generated, and therefore, excessive movement of the engine 2 can be prevented by increasing roll damping.

この場合、導管9内の流体の振動振幅の増大変
化に応じて自動的に可動板28がストツパ部2
9,29により移動規制されるので、上記第1実
施例に比べて、ロール減衰の自動切換えを簡単な
構造で行うことができる利点がある。
In this case, the movable plate 28 automatically moves to the stopper portion 2 in response to an increase in the vibration amplitude of the fluid in the conduit 9.
9 and 29, there is an advantage that automatic switching of roll damping can be performed with a simpler structure than in the first embodiment.

尚、上記実施例では、可動オリフイス24の可
動板28をケース26内に遊嵌合したが、第7図
に示すように、可動板28をケース26′に、弁
室25内を仕切る円板状の保持ゴム30によつて
移動可能に支持するようにしてもよい。また、上
記実施例では、導管9の途中に可動オリフイス2
4を配設したが、第8図に示すように、導管9の
一方のマウント4との接続部分に可動オリフイス
24″を配設してもよく、いずれの場合でも上記
実施例と同様の作用効果を奏することができる。
In the above embodiment, the movable plate 28 of the movable orifice 24 is loosely fitted into the case 26, but as shown in FIG. It may be movably supported by a holding rubber 30 having a shape. Further, in the above embodiment, a movable orifice 2 is provided in the middle of the conduit 9.
However, as shown in FIG. 8, a movable orifice 24'' may be provided at the connection portion of the conduit 9 to one of the mounts 4. In either case, the same effect as in the above embodiment is obtained. It can be effective.

(第3実施例) 第9図は本発明の第3実施例を示し、上記第1
実施例では可変オリフイス10を車体1側に設け
たのに対し、エンジン2側に設けたものである。
(Third Embodiment) FIG. 9 shows a third embodiment of the present invention, which is similar to the first embodiment described above.
In the embodiment, the variable orifice 10 was provided on the vehicle body 1 side, whereas it was provided on the engine 2 side.

すなわち、本実施例では、各マウント4の弾性
壁6に結合された連結ボルト8′にオイル通路
8′aが貫通形成され、該オイル通路8′aに導管
9の各端部が連結され、該導管9の中間位置に配
設される可変オリフイス10はエンジン2側に取
り付けられている。その他は上記第1実施例と同
様に構成されている。したがつて、本実施例でも
上記第1実施例と同様の作用効果を奏することが
できる。
That is, in this embodiment, an oil passage 8'a is formed through the connecting bolt 8' connected to the elastic wall 6 of each mount 4, and each end of the conduit 9 is connected to the oil passage 8'a. A variable orifice 10 disposed at an intermediate position of the conduit 9 is attached to the engine 2 side. The rest of the structure is the same as that of the first embodiment. Therefore, this embodiment can also achieve the same effects as the first embodiment.

(発明の効果) 以上説明した如く、本発明によれば、パワーユ
ニツトの回転軸を挾んで両側方に、1つの流体室
を持ちパワーユニツトを基台に弾性支持する流体
封入マウントを配置し、該両マウントの流体室同
士を導管で連通するとともに、該導管内の流体の
流動時に生じる共振現象によりパワーユニツトに
対するロール剛性が高くなる振動数域では、導管
内を流れる流体の流量を減少させる流量可変手段
を設けたことにより、パワーユニツトのロール振
動時、導管内流体の固有振動数付近の逆効果域で
増大するロールばね定数を流量可変手段による減
衰抵抗により抑制して、ロール剛性を全体的に低
く保つことができ、パワーユニツトから基台への
ロール振動の伝達率を低減して基台での振動や騒
音を低減することができ、特に車両への適用によ
り有用な効果を発揮することができるものであ
る。
(Effects of the Invention) As explained above, according to the present invention, fluid-filled mounts having one fluid chamber and elastically supporting the power unit on the base are arranged on both sides of the rotating shaft of the power unit, The fluid chambers of both mounts are communicated with each other by a conduit, and in the frequency range where the roll stiffness of the power unit increases due to the resonance phenomenon that occurs when the fluid flows in the conduit, the flow rate of the fluid flowing in the conduit is reduced. By providing the variable means, when the power unit rolls vibrates, the roll spring constant, which increases in the adverse effect region near the natural frequency of the fluid in the conduit, is suppressed by the damping resistance provided by the flow rate variable means, and the overall roll stiffness is reduced. It is possible to maintain a low level of vibration, reduce the transmission rate of roll vibration from the power unit to the base, and reduce vibration and noise at the base, which is particularly useful when applied to vehicles. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の第1実施例を示
すもので、第1図は全体構成を示す模式説明図、
第2図は可変オリフイスの拡大断面図、第3図は
第2図の−線断面図、第4図はロール剛性の
振動周波数特性を示す説明図である。第5図ない
し第8図は第2実施例を示し、第5図は可動オリ
フイスの拡大断面図、第6図は可動オリフイスに
おける可動板の移動可能範囲の最適値を設定する
ための特性図、第7図及び第8図はそれぞれ可動
オリフイスの変形例を示す第5図相当図である。
第9図は第3実施例を示す第1図相当図である。 1……車体、……エンジン、2a……クランク
軸、4……マウント、7……流体室、9……導
管、10……可変オリフイス、12……開放孔、
13……オリフイス孔、14……回転体、17…
…コントローラ、24,24′,24″……可動オ
リフイス、27……オリフイス孔、28……可動
板、29……ストツパ部。
1 to 4 show a first embodiment of the present invention, and FIG. 1 is a schematic explanatory diagram showing the overall configuration;
FIG. 2 is an enlarged sectional view of the variable orifice, FIG. 3 is a sectional view taken along the line -- in FIG. 2, and FIG. 4 is an explanatory diagram showing the vibration frequency characteristics of roll rigidity. 5 to 8 show the second embodiment, FIG. 5 is an enlarged sectional view of the movable orifice, and FIG. 6 is a characteristic diagram for setting the optimum value of the movable range of the movable plate in the movable orifice. 7 and 8 are views corresponding to FIG. 5, respectively, showing a modification of the movable orifice.
FIG. 9 is a diagram corresponding to FIG. 1 showing the third embodiment. 1... Vehicle body,... Engine, 2a... Crankshaft, 4... Mount, 7... Fluid chamber, 9... Conduit, 10... Variable orifice, 12... Open hole,
13... Orifice hole, 14... Rotating body, 17...
... Controller, 24, 24', 24'' ... Movable orifice, 27 ... Orifice hole, 28 ... Movable plate, 29 ... Stopper section.

Claims (1)

【特許請求の範囲】 1 パワーユニツトの回転軸を挾んで両側方に配
置され、パワーユニツトを基台に対し弾性支持す
るマウントを備え、該各マウントには非圧縮性流
体が封入される1つの流体室が設けられる一方、 該両マウントの流体室を連通して流体の移動を
許容し、両流体室の圧力変化を関連付けるための
導管と、 該導管に配設され、導管内の流体の流動時に生
じる共振現象によりロール剛性が高くなる振動数
域では、導管内を流れる流体の流量を減少させる
流量可変手段とを備えていることを特徴とするパ
ワーユニツトのマウンテイング装置。
[Claims] 1. Mounts arranged on both sides of the rotation axis of the power unit to elastically support the power unit with respect to the base, each mount having one mount in which an incompressible fluid is sealed. A fluid chamber is provided, and a conduit is provided for communicating the fluid chambers of both the mounts to allow movement of fluid and to correlate pressure changes in both fluid chambers, and a conduit disposed in the conduit to allow fluid movement within the conduit. 1. A mounting device for a power unit, comprising: a flow rate variable means for reducing the flow rate of fluid flowing in a conduit in a frequency range where roll rigidity increases due to a resonance phenomenon that sometimes occurs.
JP26884184A 1984-12-19 1984-12-19 Power unit mounting device Granted JPS61146619A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26884184A JPS61146619A (en) 1984-12-19 1984-12-19 Power unit mounting device
US06/808,812 US4762306A (en) 1984-12-19 1985-12-13 Hydraulic mounting system for a power unit
DE19853544613 DE3544613A1 (en) 1984-12-19 1985-12-17 HYDRAULIC FASTENING SYSTEM FOR A DRIVE OR POWER UNIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26884184A JPS61146619A (en) 1984-12-19 1984-12-19 Power unit mounting device

Publications (2)

Publication Number Publication Date
JPS61146619A JPS61146619A (en) 1986-07-04
JPH0544369B2 true JPH0544369B2 (en) 1993-07-06

Family

ID=17464007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26884184A Granted JPS61146619A (en) 1984-12-19 1984-12-19 Power unit mounting device

Country Status (1)

Country Link
JP (1) JPS61146619A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147925A (en) * 1981-03-11 1982-09-13 Honda Motor Co Ltd Engine suspension device
JPS59156821A (en) * 1983-02-25 1984-09-06 Mitsubishi Motors Corp Engine supporting structure for car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147925A (en) * 1981-03-11 1982-09-13 Honda Motor Co Ltd Engine suspension device
JPS59156821A (en) * 1983-02-25 1984-09-06 Mitsubishi Motors Corp Engine supporting structure for car

Also Published As

Publication number Publication date
JPS61146619A (en) 1986-07-04

Similar Documents

Publication Publication Date Title
US4709779A (en) Vibration damping system for power unit
US6491290B2 (en) Fluid-filled vibration damping device having pressure receiving chamber whose spring stiffness is controllable
US4762306A (en) Hydraulic mounting system for a power unit
JPS5821131B2 (en) Rubber bearing device with hydraulic damping effect
JPH0236812B2 (en)
KR0168380B1 (en) Device of hydraulic engine mounting
JPH0544369B2 (en)
JP2676124B2 (en) Cylindrical vibration isolator
JPS6325206Y2 (en)
JPS62270843A (en) Mounting device for power unit
JPH06117475A (en) Vibration isolating mount device
JPS61146630A (en) Power unit mounting device
JPH0316737Y2 (en)
JPH0316739Y2 (en)
JPH0568372B2 (en)
JPH0568368B2 (en)
KR100246665B1 (en) Hydraulic engine mount with adjusting damping force
JPH0111542Y2 (en)
JPH0224997Y2 (en)
JPS6322353Y2 (en)
JPH0568370B2 (en)
JPH0568369B2 (en)
JPH08166037A (en) Vibration control device
JPH0637132B2 (en) Power unit mounting device
JPS61146627A (en) Power unit mounting device